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Abstract

The Q-Coder algorithm is a very efficient compres-
ston technique for bi-level images based on the arith-
melic coding. This paper presenis a new and fast
version of the @Q-Coder algorithm in which the carry-
propagated adders have been replaced by carry-save
adders. In this way, all the additions can be performed
with a delay time of a single full adder, independently
of the length of the operands. Our compression method
is faster than the traditional Q-Coder algorithm with
an almost unnoticeable increasing of the hardware re-
quirements.

1 Introduction

Quite a lot of techniques are known in the literature
for the information coding; among them, an important
role is played by the arithmetic coding. Arithmetic
coding is theoretically able to achieve code messages
with minimum redundancy without any loss of infor-
mation; moreover, it often allows betier compression
ratios than well-known algorithms such as Huffman
coding {7]. The main features of arithmetic coding are
its generality (it has not been designed bearing in mind
a specific application or source model) and its suitabil-
ity for adaptive implementations (it takes advantage of
the changes in the statistics of the symbols to be en-
coded).

The original version of the general arithmetic compres-
sion method was presented by Rissanen and Langdon
in {14}, who introduced also a version for black and
white (bi-level) images [9]. Langdon in [10] presented
a survey on the arithmetic coding algorithms. Some
implementation issues for applying arithmetic coding
to data organized as a stream of bytes were presented
in [17] and more recently in [8].

This class of arithmetic compression methods, however,
is not well suited for real-time encoding and decoding,
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because they require a re-normalization of the intervals,
and hence a multiplication for each symbol encoded or
de-coded. In [11}, Mitchell and Pennebaker substituted
the multiplications with simpler additions. Variations
of this method have been adopted for the final entropy
encoder in JPEG {15] (in alternative to Huffman cod-
ing) and for bi-level images encoding (JBIG or ITU
T.82) [16].

The encoder of this method, which is the most rele-
vant for the purposes of this paper, may be thought as
composed by three blocks:

o a model block that, on the basis of the value of the
surrounding (binary) pels, selects the probability
estimator (or context) to be used;

an adapter block which, on the basis of the context
and the pel, decides the new symbol probability,
and the new state for the estimator itself;

the coder, which performs the actual encoding, by
using the probability selected by the adapter and
the pel.

This paper focuses on the last of the above listed
blocks; the goal is to substitute the carry-propagate
addition used in previous algorithms with a carry-free
one. In other words, the addition performed by the
coder block will be implemented by using a carry-save
adder, which produces a redundant but carry-free re-
sult; then, a group of the most significant digits are
inspected, in order to make a decision about the re-
normalization of the intermediate quantities. This in-
spection is equivalent to the assimilation of the most
significant redundant digits of the result, While using
this scheme, each addition requires an execution time
shorter than for carry-propagate adders and indepen-
dent of the length of the operands.

It will also be shown that it is possible to decode
the string produced by our encoder by using the same
type of decoder used in [11] with minor modifications
to the blocks performing the arithmetic operations.



An evaluation of the compression capabilities of the
encoder proposed is included which is based on the
CCITT test documents and a comparison is made with
the results obtained with the Q-coder. We will show
that the proposed architecture is up to 25% faster than
that based on the traditional Q-Coder algorithm and
that the compression ratios obtained decrease by less
than 2%.

The content of the paper is the following: arith-
metic coding and the traditional Q-Coder algorithm
are briefly reviewed in section 2, together with the def-
initions and symbols used in the paper. In section 3 the
proposed methodology is presented, whereas the archi-
tecture for a carry-free Q-Coder is shown in section 4.
Finally, performance comparisons between the carry-
free Q-Coder algorithm and the conventional approach
are reported in section 5.

2 Arithmetic coding

In arithmetic coding, a message is represented by
an interval of real numbers between 0 and 1 which cov-
ers the whole range of probabilities for the input data,
The initial range is the entire half-open interval [0, 1);
each time a symbol is encoded, the range is narrowed
to a portion of it, according to the cumulative proba-
bility interval of the encoded symbol. The more likely
symbols reduce the range less than the unlikely sym-
bols and therefore they add fewer bits to the encoded
message. The output code is the string of bits used to
represent a value in the final coding range; the lower
end-point value is usually chosen. Practical implemen-
tations of arithmetic coding can be found in [8] and
[17). In this paper we address the problem of the bi-
nary arithmetic coding which is slightly different from
the general problem of the arithmetic coding, since just
two symbols are involved in the alphabet.

The idea beyond the binary arithmetic coders
(BAC) [10], [11] is to encode a sequence of binary
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Figure 1. Sample structure of the C register.

storage devices) and part (the less significant bits) in
a fixed size register called C on which the actual arith-
metic operations are performed.

2.1 Definitions and symbols

In the Q-Coder algorithm (QCA) the role of the
A register is related fo the emission of encoded sym-
bols: in fact, code symbols are output in correspon-
dence with normalizations of A. The role of C is to
store the less significant bits of the current code string,
which is partially emitted when A is normalized. An
example of the format of C [11] is provided in Fig. 1.
The updating of the code string mainly concerns the
bits labeled with x in Fig. 1. Bits b are instead used
as a repository for a new byte of encoded data to be
read out. Related to the bit stuffing technique [9] used
to avoid carry propagation, a certain number of spacer
bits has to be introduced in the format of the C reg-
ister (bits s in Fig. 1). The bit stuffing technique will
be analyzed in detail in section 3.3. Finally, z bits are
used in the Q-Coder as a pad to a 32 bit register and
are not involved in the arithmetic operations. In Fig. 1
the position of the fractional point is also shown. Let
us denote with A;[j] and C;[j] the values of A and C
respectively after j bits have been read in and encoded
and i normalization shifts have been done (that is, af-

* ter i bits have been written out of the encoder). Note

gymbols called Most Probable Symbol (MPS) and Less

Probable Symbol (LPS) into a code string representing
a fractional binary value. Such a value is obtained by
successively partitioning a base interval in two subin-
tervals, one related to the LPS symbol and the other to
the MPS symbol, and then selecting the interval cor-
responding to the input binary symbol read. At each
- gtep, the interval is described by means of its base value
and its size. The size of the interval is stored in a fixed
length register A. By means of a normalization opera-
tion the representation of A is kept within a specified
range. The base value of the interval (representing the
encoded code siring) is instead stored part by some
unspecified external means (transmission channels or
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that the values of ¢ and j are in general uncorrelated
and that no biunivocal relation exists between them.
In fact, several input bits can be encoded without any
bit is written out (the emission of any bit by the en-
coder is related to the normalization operation) while
some other input bits (such as for example the LPSs)
can cause the emission of more than one output bit.
Moreover, let us denote with A the estimate of A trun-
cated to the #-th fractional bit and with s the number
of spacer bits which have to be introduced in the rep-
resentation of C to have the bit stufling mechanism
operating properly (see section 3.3).

We also denote with p the number of fractional bits
in the representation of 4, with u the number of shifts
necessary for the normalization test (see sections 3.2),



and with Q. the probability of the LPS at current
step. Since we adopt the same probability estimation
table used in [11], the probability is expressed on a
16 bit number in the range 0 < Q, < 2753/4096
(i.e., the representation varies in the range X‘0.000°<
repres(Q.) <X‘0.AC1%).

2.2 Analysis of the Q-Coder algorithm

The encoding operations of the Q-coder algorithm
can be summarized as follows:

1. e if a MPS is encoded the addition Cifj +
11 +« Cij] + Q. and the subtraction
Ai[74+1] «— A;[f]—Q. have to be performed;

e if a LPS is encoded C and A have to be up-
dated as follows: Ci[j + 1] « C;[j] and
Ali+1] « Qe

2. normalization of A;[j+1]: if A;[j+1] < K (where
K is a predefined constant on a finite and small
number of bits) then: A;4[j+1] — 2xA;[j+1]
and Ciy3[j+1] «— 2%C;[j+1). Every 8 normaliza-
tion shifts (or 7 immediately after a stuff bit) the 8
(or 7) most significant bits of C are removed and a
byte of encoded data is emitted from the Q-Coder.
In this case, C[j+1] «~ C[j+1]—y -2, where y
is the value of the byte just emitted. If a normal-
ization occurs, then Q. is updated according to a
predefined scheme.

Step (2) is repeated until A[j + 1) > K. In [11] the
value K = 1 was selected.

3 Basic idea

One of the bottlenecks of the Q-Coder algorithm
is that the additions and subtractions are carry-
propagated. An alternative strategy for the represen-
tation of the results can be considered in order to avoid
the limitation of having long carry-propagated opera-
tions. The main idea is to represent the results in the
redundant carry-sum form [3], [13], where the values
involved are represented as pairs (carry and sum bits),
whose sum equals the value of the result and where an
addition has the delay of just one full adder.

3.1 Carry free Q-Coder algorithm

In the carry free Q-Coder algorithm (CFQCA),
carry free adders have been used instead of the carry-
propagated adders for carrying out the updating of C[j]
and A[j], and this has mainly two advantages:

1. the updating of the contents of A4 and C is per-
formed with carry-save adders which are faster
than the carry-propagated ones;

2. the delay for updating A and C' does not depend
on the number of bits of 4, C and Q,. ‘This implies
that Q¢ can be represented using a larger number
of bits, without affecting the performance.

However, the use of a carry-sum representation for the
A[j] values leads to the introduction of uncertainty,
which has to be reduced before the normalization test,
since the decisions affect the compression capabilities
of the algorithm. An estimate 4 of A (starting from
its most significant bits) is considered and the normal-
ization test is based on the value of this estimate. This
operation has costs both in terms of delay and hard-
ware requirements (which depend on the bits number of
the estimate), therefore a tradeoff between the number
of bits required for the estimate and the performances
of the hardware unit has to be found, as described in
section 5.

The operating steps of the proposed CFQCA are:

1. e if MPS is encoded the carry save addition
Cili + 1] « Ci[§] + Q. and the carry save
subtraction 4;{j+ 1] + A;[j] - Q. have to be
performed;

o if LPS is encoded C and 4 have to be up-
dated: Ci[j+ 1] « Ci[j] and A[j + 1] « Q.;

2. an estimate 4 of A;[f + 1], on all the integer and
t fractional bits has to be considered;

3. A1is compared with K, to determine the amount
of the normalization:

o ifd 2> K then no normalization is necessary;

e if A < K the amount u of normalization
shifts has to be determined; then: A;.y[j +
1] — 2% % Ag[j + 1] and C¢+u[j -+ 1] —
2% % Ci[5 + 1). As in the QCA, every 8 nor-
malization shifts (or 7 if a bit stuff has been
inserted), the 8 (or 7) most significant bits of
C are removed and one byte of encoded data
is emitted. Finally, since a normalization oc-
curred, the value Q. is updated according to
the same schemes used from the QCA.

As in the QCA, we set K = 1 for the normalization
test. Since @, < 1 this implies that 4 > 0. Moreover,
since a normalization may occur when 4 < 1 — 2%
and since (4 — 4) < 2-(t-1), it follows that the shifted
(renormalized) A is

sh(A) < 2(1 - 27t ¢ 2"("‘1)) =242t (1)

284



Therefore, 2 integer bits are necessary and sufficient
for the integer part of A. Since the estimate Adis ob-
tained from truncation of A4, the representation of a
too requires 2 integer bits (plus t fractional).

3.2 Remarks

The use of carry save adders for updating both A
and C leads to carry free results. This implies that
the normalization test has to be redefined in terms of
the estimate A, otherwise, all the advantages of having
a carry save adder would be lost. From its definition,
Afi+1) € Al+1) < Afj+1)4270-D_2-0-1),
where p is the number of fractional bits of A;[7 + 1],
therefore, the test A;[j+1] < K = 1 does not guarantee
that also A;[j 4+ 1] < 1. This implies that in some
cases the CFQCA could operate a normalization not
activated from the QCA. This has two main effects:

1. since the normalization implies the emission of
code bits and the “new tuning” of the compres-
sion parameters, it is important that the encoder
and decoder both take the same decisions in cor-
respondence of same values of A;[j + 1] (i.e. they
must be designed with similar architectures) since
a carry assimilated decoder would not be able to
decompress codewords encoded by a carry save en-
coder;

. the “uncertainty” due to the term 2-(¢-1) could
worsen and decrease the compression capabilities
of the CFQCA with respect to the QCA, because a
normalization could be carried out (together with
the emission of some bits) even in cases when it is
not strictly necessary.

The first issue is not a problem, because it can be
solved by providing the same carry save mechanism for
updating A;[;] in the encoder and in the decoder. The
negative effects of the second issue can be addressed
(or at least limited) by choosing a proper value for ¢,
(related to the length of the estimate). However, as we
will see in section 5, the CFQCA achieve almost the
same compression ratios as the QCA.

Theorem 1 The minimum value of 1 which is nec-
essary for detecting (through the iest on A) up o o
mazimum of uprax sufficient shifis (et one time) for
obtaining a normalized A, i3 tyin = upmax — 1.

Proof. Let us examine the estimate A of A on t bits.
By looking at A we can detect the number u of shifts
sufficient for the normalization of 4 by simply per-
forming the test 27% < A; < 2-(+-1) with u < ¢
In fact from A4; < A; and Aip, = 2% A; we get
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A = estim(2* 4;) > 24 4;; therefore, Z,-.,_., >1
which is the definition of normalization. With a similar
analysis it can be seen that if 4; < 27 then it follows
Aiys < 1 and hence at least u = { 4 1 normalization
shifts are necessary. O

Having fixed up4x, to consider values of ¢ larger
than t,,;,, may have the positive effect of further re-
ducing the uncertainty between A and A, and hence
obtaining better compression factors, i.e. closer to the
ones obtained with the QCA.

Observe, however, that Theorem 1 deals with a num-
ber of sufficient shifts, in order to obtain a normal-
ized A. The actual number of necessary shifts should
be obtained by performing a sequence of step-by-step
normalizations (i.e. using single shifts & normalization
tests), until the normalization is achieved. Since each
normaligation corresponds to the emission of one code
bit, it is clear that it would be better to normalize
only when it is strictly necessary. This statement has
been checked with some simulations, which have con-
firmed that the step-by-step normalizations (i.e. with
upax = 1) lead to better compression ratios.

Concerning the value of ¢, it must be chosen in order
to obtain a convenient tradeoff between the compres-
sion requirements, the execution speed and the hard-
ware requirements, as explained; in section 5.3. As it
will be shown, even for small values of ¢, the CFQCA
achieves compressions sufficiently close to the QCA.

It is worth to observe that the proposed CFQCA is
equal to the QCA in the part of the prediction hard-
ware and that they differ only in the way A and C are
updated and how the “normalizations” are carried out.

3.3 Bitstuffing

As in the QCA, also in the CFQCA a carry prop-
agation may occur in an already emitted part of the
code string. In the QCA, there is a carry propagation
if in the part of the code string already emitted there is
a sequence of consecutive 1 bits, This is surely a prob-
lem, because we want to use fixed length adders and,
more important, part of the code string already gener-
ated could be no more available to the encoder. Since
the above cited sequence can be arbitrarily long (the-
oretically up to the length of the whole code string), a
technique known as bit stuffing has been introduced to
limit carry propagation [} [8].

According to this technique, sequences of 1 bits are
periodically split by the insertion of 0 stuff bits. In
particular the QCA forecasts that a 0 bit is stuffed in
the high order bit of the byte immediately following
an emitted byte whose value is X‘FF?, such to act as a
repository for a possible subsequently generated carry.



This technique is proven o work correctly if only one
stuff bit is sufficient to contain all the carries that can
be generated by the algorithm from its insertion on.

In their paper [11] Mitchell and Pennebaker demon-
strated that, by introducing 4 spacer bits in the struc-
ture of C, any byte containing a stuff bit cannot be
followed by another byte with a stuff bit; this guar-
antees that no more than one stuff bit every 15 code
bits is necessary and that any byte pattern in the range
from X‘FF90’ to X‘FFFF’ is not legal in the code string
output.

The bit stuffing technique of the QCA can be ap-
plied also in the CFQCA. In a very similar way to that
explained in [11] it is possible to demonstrate that:

Theorem 2 Inthe CFQCA no more than 8 spacer bils
are necessary for the correct operation of the bit stuffing
mechanism. If ot least one more fractional bit beyond
the minimum is considered in estimating the value of
A (that 43,1 > tpmin + 1) then only two spacer bits are
needed.

Proof. For the representation we have chosen for the
redundant register A with, 1 < A < 2(14+2~%). Let us
consider the condition in which a byte of coded data
has just been removed. Let C; be the value of C at that
time. C; is such to satisfy the relation C; < 2* 4- 1.

After 8 normalization shifts (i.e. when a new byte
is ready to be extracted) the value of Ciys + Ajys is
bounded by Ciys + Aiys < 2%(Ci + A;) thus, since
Aiys > 0 we have Ciyg < 28[2° + 14 2(1+27%)).

The worst case is when no fractional bit is considered
in estimating A, that is, when ¢ = ¢,,5, = 0. In this
case the condition C;;g < 23(2° 4 5) holds.

To have no more than one carry bit we must impose
Cits < 29%%) 8o the minimum number of spacer bits
necessary that satisfies the expression 29+¢ > 28(2°+-5)
is 8 = 3. In a similar way it is possible to demonstirate
that if £ > ¢, + 1 the minimum number of spacer
bits needed is s = 2. O

By using 4 spacer bits it is possible to show that in
the CFQCA any two byte pattern in the range X‘FFAS’
to X‘FFFF is illegal in the code string output, thus
these codes can be used as escape characters [11]. This
confirms that the bit stuffing technique can be used
unmodified also for the CFQCA.

In a real implementation of the CFQCA there is
no reason to use more spacer bits than the minimum
necessary, since this only increases the hardware com-
plexity and does not lead to any advantages in terms
of the compression ratio.

Figure 2. Proposed CFQCA encoder.

4 The proposed encoder
4.1 Proposed implementation

The architecture of the proposed CFQCA encoder
(in its parts for the updating and test of 4 and for the
updating of C) is depicted in Fig. 2, where the following
blocks can be observed:

o blocks C and A: pairs of registers to store the carry
save representations of C and A4;

o blocks MUX: multiplexers;

e blocks CSA: carry save adder (or subtractor) to
perform carry save the updating of C {or 4);

o block NORM: hardware to consider the estimate A
in order to determine the amount of shifts required
from the normalization, i.e., 0 or 1. This implies
that, for the implementation of block NORM we
have chosen uarax = 1 and ¢4, = 0. We have
demonstrated (see [1]) that if @, < 2, the normal-
ization required in correspondence of a MPS can
imply either 1 or 2 shifts. However, our simula-
tions have shown that the normalizations in cor-
respondence of MPS requiring 2 shifts occur very
seldom. Therefore, in order not to increase the
complexity of an architecture we have chosen to
consider a maximum of one normalization shift per
cycle;

e blocks SHIFT: shifter of 0 or 1 positions;
e block H: register, one bit long;

o block OTFC: hardware to convert on-the-fiy into
the conventional form the bytes of C as they are
emitted; in addition, hardware for a correct man-
agement of the emission (alignment and bit stuff-

ing);
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e signal h: control signal carrying the information
on the number of detected shifts (either 0 or 1);

s signals e, f, ¢: control signals for the MUXes.

Let us focus our attention on the part concerning
the updating and normalizing of A, which is found in
the rightmost part of Fig. 2. The operating princi-
ple is very simple: when a MPS is encountered, A is
updated through CSA1 with the subtraction of @, (ar-
riving from MUX2). The updated value of A (passing
through MUX1) arrives to the block NORM, which
produces in output the control signal A concerning the
number of shifts required for the normalization (i.e., 0
or 1). Then, by means of the shifter and the control
signal h, the correct A is produced and stored into the
A register. During the cycle following a normalization,
no symbol in input is accepted, but just the test for pos-
sible further normalizations is performed. Only when
a normalized A4 has been obtained, the architecture is
able to accept other symbols to be compressed.

When a LPS is encountered, the architecture must
deal with the following events:

o the A register has to be loaded with @, {and not
with 4 — Q,);

since the number of shifts which are necessary
for the normalization of A could be larger than
the maximum detectable from NORM and allowed
from the blocks SHIFT (i.e., 1), in the proposed
architecture of Fig, 2, the normalization of A could
take more cycles. Observe that during these “ex-
tra” normalization cycles, the proposed CFQCA
is not able to accept any symbol to encode until
the normalization has been completed.

The extra cycles are accomplished in the following way:
the block NORM produces in output the control sig-
nal h which is set if the number of detected shifts is
1, and which is stored into register H for the driving
of the multiplexers during the next cycle. In such a
case, during the current cycle, a shift of 1 position is
obtained and loaded in A; then, during the next cycle
the contents of A are not updated by presenting A and
a 0 value (through MUX2) in input to CSA1. At this
point, the unchanged A is enabled to pass also through
MUX1 and another inspection by NORM is performed.
This inspection again produces the signal h and the op-
erations continue as previously explained. In order to
obtain for the whole process to operate correctly, it is
necessary for the control signal kA to be forwarded to
the circuitry for updating C, so that also C can be
normalized correctly.

The architecture of the part for updating C is sim-
ilar (see the leftmost part of Fig. 2); observe that the
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block NORM is not necessary, because C is shifted ac-
cording to the values imposed by block NORM oper-
ating on A. The correctness of the operations in the
case of normalization requiring “extza™ cycles, is en-
sured from MUX3 which enables the presentation of
the value 0 to CSA2, thus avoiding the modification of
C (as well as for A during these “extra” iterations). I
is worth to obscrve that the block OTFC is required
80 as to on-the-fly convert into the conventional form
[2] the bytes of C as they are emitted. Moreover, the
block OTFC incorporates also the same hardware for
a correct management of the byte emission and of the
bit stuffing mechanism of the QCA. The analysis of
alternative implementations can be found in [1]. The
simulations (as reported in section 5) have shown that
it is suggested to choose £ > 2 in order to have satis-
factory compression ratios. In the following we present
the implementation of NORM and the correspondent
evaluation for ¢ = 2,

42 Design of block NORM

In the proposed implementation we must be able to
detect and perform single shiits; the block NORM re-
ceives in input the estimate A on 2 integer and ¢ = 2
fractional bits, The block NORM must operate the
generation of the control signal k according to the fol-
lowing rules:

h=1 if A>1
h=0 if A<1 (2)
From equation (1), we have that A < 242~ =
2+ 2-%, and hence the range of Ais 0 < 4 < 24272,

It is worth to observe that the block NORM plays
a similar role as the selection table in several digit-by-
digit architectures [4].

4.3 CFQCA: the decoder

In order to perform a correct decoding, it is nec-
essary for the decoder to operate the same choices of
normalization carried out at the encoder level. This
implies that the part for updating A depicted in Fig. 2
for the encoder is also used in the decoder (since the
same decisions must be taken). On the other hand,
the part on C cannot be carry save (as in the encoder),
since the decisions on the decoding of the symbols must
be taken on precise and full length comparisons of the
code string (in C) and the probability Q,. Therefore,
the same hardware for the part concerning with the
updating of C is used both for the CFQCA. and for the
QCA.



5 Evaluation and comparisons
5.1 Hardware requirements

The proposed encoder requires: two pairs of regis-
ters to store the carry-sum representations of C' and
A; one 1-bit register (H); one carry save adder and one
carry save subtractor (CSA1 and CSAZ2, respectively);
one block NORM; two shifters on 0 or 1 positions
(SHIFT1, SHIFT2); one multiplexer (MUX1); two sets
of AND gates (to implement MUX2 and MUX3).

5.2 Execution time in full-adder delays

The critical path of the proposed architecture passes
through the updating and normalization of A.. Let us
denote with Dp4 the duration of one cycle of the pro-
posed architecture, with d, the delay of block “x”, and
with d,.., the delay for register loading. The global
cycle duration is:

dyuxa +dosar+duuxy +dyorm +
+dsHIPT1 + reg (3)

On the other hand, the architecture based on the QCA,
would have a similar layout as this depicted in Fig. 2,
with the difference in the blocks CSA which must be
substituted with Carry-Propagated Adders (CPA) and
with a different block for testing the normalization
(NORMAL). The cycle delay Dyg of the architecture
based on the QCA, would therefore be:

Dpa

dyuxa + dopar + duux: + dNorRMAL +
+dsHrIFT + dreg (4)

For our comparisons we will consider the CPA as per-
forming an addition on 12 bits [11].

To evaluate the execution time of the proposed ar-
chitecture, we define the execution time in terms of full-
adder delays (dr4). This unit is chosen mainly because
the main components are formed of full adders and be-
cause it is relatively simple to express the delay of other
components using this unit, Although this makes the
evaluation and comparisons relatively independent of
the technology, the results are rough because they de-
pend on the accuracy of the assumptions made. The
evaluations are also rough since data routing delays are
not included and no technology-dependent optimiza-
tion is performed. In the cases in which there is no di-
rect correspondence with the delay of a full adder, we
have used the correspondence for a particular technol-
ogy. In order to determine the delay of the components,
assumptions have to be made about their implementa-
tion; we have used assumptions that seem reasonable,

Dyr
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but some alternatives would also be possible. Specif-
ically, we utilize the family of standard cells from the
ES2-ECPD16 library [5); moreover, for the delay of a
carry-propagated adder we assume a logarithmic delay
[12]). The delays of the components measured in this
unit are as follows [4]: dariyer = dFa, dyux = 0.5dp 4,
dcsa = 0.5dp4, or dosa = dp4, depending on the rel-
ative availability of the 3 operands (3], dy.,; = 1.5dp4.
Since the shifter SHIFT is basically a multiplexer
with a driver on its control lines, we have assumed
dsgiFrT = dariver + dyux = (1 4+ 0.5)dpa = 1.5dp4.
For the implementation of NORM in the ES2-ECPD10
technology we assume (by looking at the boolean func-
tions) to have a delay dvoram < 2.0dp4. Concerning
the delay of the CPA, since it is on 12 bits, we assume
a logarithmic delay [12] dgpy = 4dps whereas for the
block NORMAL in the architecture of the QCA, since
it can be implemented with just one level of logic, we
assume dyormaz < 0.5dp4. By substituting these
values in (3) and (4), we get

Dpg =(.5+.54+.5+2.0+1.54+1.5)dpy = 6.5dp4 (5)

Dyp = (5+4+ S+5+154 1.5)dpA = 8.5dp4 (6)

A comparison of (5) with (8) indicates that the cycle
duration of the proposed architecture is faster of about
26% than the corresponding architecture based on the
QCA and using the same high level organization.

5.3 Compression

To study the compression capabilities of the CFQCA
the size of the code strings obtained by varying param-
eters of the algorithm as ¢ (the number of fractional bit
used in estimating the value of A) and & (the number
of spacer bits inserted in the representation of C) has
been taken into account. For this analysis the 8 test
documents of the CCITT study group XIV scanned
with a resolution of 1728 x 2378 pels have been con-
sidered. As a predictor we use a simple 7 bit predictor
very similar to the one described in [9} and used in [11]
to analyze the performances of the QCA.

The size in bits of the code string output for the
considered input documents and for several values of
t has been reported in Table 1, together with the size
of the code string obtained out of the QCA (the size
of the original test documents is 4,105,728 bits), In
this cage s has been assumed to be equal to 4, as in
the original QCA. However, if £ > 2 the size of the
obtained code string is almost equal to the case when
s = 2 or s = 3. Observe that the compression ratios
vary from a minimum of 9-to-1 (CCITTT) to a maxi-
mum of 57-to-1 (CCITT2), with an average of about



File

CFQCA (estimate of A on 2 integer and ¢ fractional bits)

QCA Comments

t=0 t=1 t=2 t=3

t=4

=5 t=12

CCITT1
CCITT2
CCITT3
CCITT4
CCITTS
CCITTé6
CCITTT
CCITT8

131048

77896
207008
500368
238384
123112
525400
138560

124848

74088
195832
472528
225288
115832
496000
132304

120984

72024
190256
454288
218632
112896
477368
126472

120200

71664
188872
449504
216752
112800
470928
125280

119704

71336
187984
447864
215712
112392
469624
124664

119808

71636
187912
446864
215432
112504
468576
124376

119768

71568
187728
447008
215888
112256
468248
124392

119752

71568
187728
447000
215888
112256
468232
124392

business letter
circuit drawing
French invoice
dense text
math book page
graph

Kanji

memo and sign

Table 1. Coding performances of the CFQCA varying the number ¢ of fractional bits (with s = 4).

File Number s of spacer bits
4 3 2
124848 | 124856 | 124856
74088 | 74088 74096
195832 | 195832 | 195848
472528 | 472536 | 472552
225288 | 225288 | 225304
115832 | 115832 | 115840
496000 | 496008 | 496040
132304 | 132304 | 132312

CCITT1
CCITT2
CCITT3
CCITT4
CCITT5
CCITTé6
CCITTT7
CCITTS8

Table 2. Coding performances of the CFQCA
varying the number s of spacer bits (with t=1).

30-to-1. This implies that, on the average, one normal-
ization takes place every 30 symbols in input: it follows
that the shifts are sufficiently low frequent. Therefore,
our choice to limit the encoder to a single shift per cy-
cle versus the alternative implementations in [1] is well
justified. Table 2 shows the effect of the parameter s on
the size of the code string, evaluated for t = 1. As can
be casily seen the differences in term of the achieved
compression are really negligible. In Fig. 3 the ratio
between the size of the code string obtained by the
CFQCA (assuming s = 4) and that obtained by the
QCA is plotted versus the value of ¢ for the 8 CCITT
test documents. From these plots we can observe that:

1. the architecture depicted in Fig. 2 (where t = 2)
achieves compression ratios which are from 0.5 to
2% worse than the corresponding QCA; the cycle
speedup has been estimated to be about 25%;

. higher compression rates, (less than 0.3% worse
than the QCA) are obtained with a small increase
of t (t = 4); the cycle speedup can be estimated
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Figure 3. Size of the CFQCA coded string for
the 8 CCITT test documents versus .

2

to be about 15%;

3. for t = 5 the same compression ratio is achieved
on the average: this implies that it is not worth
considering ¢ > 5; in this case, the cycle speedup
has been estimated to be about 10%.

From Fig. 3 we can see that the plots of the 8 test
documents are very similar: this implies that our con-
clusions are very general and are not affected by the
choice made of the test documents.

6 Conclusions

In this paper we have studied carry a free Q-Coder
algorithm (CFQCA). We have also presented a possible
implementation of our CFQCA. A comparison between
the evaluation of cycle delays of the the proposed ar-
chitecture with the corresponding architecture based
on the QCA has indicated that the proposed architec-
ture is faster from about 25% to 10% with compression
ratios less than 2% worse.



The price that the proposed architecture has to
pay to achieve such speedup, is mainly identified in
increased hardware requirements and (slightly) lower
compression rates. Concerning the first issue, we can
observe that the increase in required hardware for our
implementation is very small since it is basically identi-
fied in the two pairs of registers instead of just the two
registers for holding A and C, the block OTFC and the
slightly more complex implementation of block NORM.
On the other hand, we decrease the complexity of hard-
ware for additions by using carry free adders instead of
carry propagated ones. Concerning the second issue,
the experimental results (section 5.3), have indicated
that our algorithm achieves compression ratios which
are anyway less than 2% worse than the QCA fort =2
and even better for higher values of ¢. A small increase
in the number ¢ of fractional bits of the estimate A4
improves the compression ratios to values which don’
differ in a significant way from those obtained with the
QCA.

Actually, an increase of £ implies an increase of hard-
ware complexity of NORM, and hence also an increase
of the cycle delay. Therefore, for each specific appli-
cation, a tradeoff among the parameters (compression
factor, area, delay) must be found, which permits the
design of an efficient encoder.

Anyway, the proposed algorithm and architecture
offer an interesting alternative when a fast and efficient
encoder must be designed, implemented and used.
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