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Abstract:

In this paper we propose new algorithms for multiple mod-
ular exponentiation operations. The major aim of these
algorithms is to speed up the performance of some crypto-
graphic protocols based on multi-exponentiation. The
algorithms proposed are based on binary-like complex
arithmetic, introduced by Pekmestzi and generalized in this

paper.

1. Introduction

Most number-theoretic cryptosystem [1]-[5] are based
on modular exponentiation (ME) which requires a large
number of processing steps. Therefore, a significant prob-
lem is how to reduce the time needed to perform a modular
exponentiation operation. The problem can be posed as fol-

lows: given A,B and p, compute C=AZ(mod p). Theoreti-
cally, the problem is closely connected to addition chains.
In general, an addition chain for a given positive integer, B,
is a sequence of positive integers ay=1,a1,4;,...,4,=B,
where r is the number of additions and for all i=1,2,...,7, g;
=aj+a;, for some k < j <i. Any addition chain corresponds

to some algorithm for the evaluation of AB(mod p). The
shortest addition chains produce optimal (in terms of the
number of multiplications) algorithms for ME; however,
obtaining at least one of the shortest addition chains for a
given integer is an NP-complete problem [6]. A typical
technique for computing an addition chain with fairly small
length is based on the binary decomposition of B. If
B = (jn—ljn-Z"'jljo)z then we have the following C-

like pseudo-code algorithm:

C=l;

for(i=0; i<=n-1; i=i+1)

{

ifjli] == 1) {C=(C*A) %N ;}
A =(A*A) % N;

J

Obviously the number of modular multiplications (MM)
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strongly depends on the Hamming weight (number of ones
in the binary representation of B). Since the average num-
ber of ones in an n-bit number is equal to n/2, then the
average number of multiplications required is %n .

There are several algorithms that reduce the number of
multiplications to n+0(n), namely, those proposed by Val-
ski [7], Yao [8], Pippenger [9], Yacobi [10] and Kochergin
[11]; the technique by Kochergin [11] requires

L, logn +(o( logn )) MMs, and is the best
logn ~ loglogn loglogn

of the quoted literature. Notwithstanding their optimality,
these algorithms are mainly of theoretical interest, partly
because of their irregular nature, and partly because some
of them assume a ‘free’ complex preprocessing of B (say,
factorizing B before proceeding further [12}).

There are several algorithms based on different (non-
binary) representation of B [13]-[16]. The most popular
are, perhaps, the algorithms using a signed-digit binary
representation of B, that is, representing B in the form:

-1
B = Z d2'  d,e {0,1,-1} (1)
d=0

This general representation is redundant but the canonic
signed-digit binary representation (CSDBR) is unique, and
there are several proofs [14], [17]-[19] showing that, on
average, 2/3 of the digits are zeros. Using a CSDBR corre-
sponds to addition-subtraction chains [20]-[21] with a rule

a; = ajiak inplaceof a; = aj+ak.This idea leads us to

the evaluation of AB using multiplications and divisions.
For integers, division (or multiplicative inverse modulo p)
is a costly operation. However, in some cryptosystems, A is
a constant, so A"l mod p can be precomputed in advance.
Another argument in favour of addition-subtraction chains
comes from so-called elliptic curve cryptosystems [19],
[21]-[23], where the division in Z, is replaced by a subtrac-
tion, which has the same cost as addition.

Recently several cryptographic protocols using multiple
modular exponentiations (or multi-exponentiations) have
been proposed. The main operation here is the computation



k
of z = fo"(mod p), for k>1. Three of the currently

i=1
proposed cryptographics protocols use k=2 [4][5]{24]; an
example with k=3 can be found in [3].
In this paper we concentrate our attention on the case
k=2, that is, given integers m and »n, compute

z= xmy"(mod p), assuming p to be prime. In terms of
addition chains this can be associated with vector addition
chains (VAC), as defined by Strauss [25].

It has been recognized [28] that the separate computation

of powers (z = (x"(mod p)) - (¥ (mod p))mod p) is not
optimal even if one uses optimal algorithms for the compu-

tation of x" mod p and y"mod p - A very simple example

is the following: the computation of z = x2y2(mod P)
based on separate multiplications needs 3 MMs, whereas

the same can be computed as z = (x- y)z(mod p) using
only 2 MMs.

Some algorithms in computer algebra and coding theory
also require at some stages the computation of multi-expo-
nentiations [261{271.

This paper is organized as follows. Section 2 shows
briefly the specifications for the digital signature standard
(DSS) in order to justify the importance of the efficient
computation of multi exponentiation. In Section 3 we
define the problem of finding the VAC, in the language of
Gaussian integers, using an efficient representation of com-
plex numbers [29]. Section 4 introduces the use of signed-
digit complex arithmetic. This number representation has
some features that are significantly different from CSDBR.
Section 5 demonstrates the computation of multi-exponen-
tiations via signed-digit complex arithmetic. Section 6 con-
cludes the paper.

2. The Digital Signature Standard (DSS)

DSS is the proposed Digital Signature Standard, which
specifies a Digital Signature Algorithm (DSA) and is part
of the U.S. government’s Capstone project. It was selected
by the National Institute of Standards and Technology [24],
in cooperation with the National Security Agency, to be the
digital authentication standard of the U.S.government;
whether the government should in fact adopt it as the offi-
cial standard is still under debate.

The DSA makes the use of the following parameters:

1. pis a prime modulus, where 2k-1< p< 2F for
512 < L.<1024 and L a multiple of 64.

2. gqis a prime divisor of p-1, where 219 < g< 2160

3. g= w7 _quodp , where h is any integer with
1<h< p-1 such that h(p—l)/qmodp >1 (ghas
order ¢ mod p).

4. xis arandomly, or pseudorandomly, generated integer

with0<x<gq

5 y= gxmodp
6. kis arandomly, or pseudorandomly, generated integer
with 0<k<g

The integers p, g and g can be public and common to a
group of users. A user’s private and public keys are x and y,
respectively. They are normally fixed for a period of time.
Parameters x and k are used for signature generation only,
and must be kept secret. Parameter k must be regenerated
for each signature.

The signature of a message M is the pair of numbers r
and s computed according to the equations below:

r= (gkmodp)modq and
s = (K {(SHA(M) + xr))modgq

In the above, k_1 is the multiplicative inverse of k, mod
g. The value of SHA(M) is a 160-bit string output by the
Secure Hash Algorithm (SHA), specified in Federal Infor-
mation Processing Standards Publication 180.

The signature is transmitted along with the message to
the verifier. Prior to verifying the signature in a signed mes-
sage, p, g and g plus the sender’s public key y and identity
are made available to the verifier in a secure manner.

Let M, 7 and § be the received versions of M, r and s,
respectively. To verify the signature, the verifier checks to
see that 0 <7< g and 0 <§ < g; if either condition is vio-
lated the signature is rejected. If these two conditions are
satisfied, the verifier computes:

w= (5)-lmodq
u; = ((SHA(M))w)modg

u, = (rw)modq

i
v = (g 'y ‘modp)modg

If v = F, then the signature is verified and the verifier
can have high confidence that the received message was
sent by the party holding the secret key x corresponding to
y.If v # 7 the message should be considered invalid.

In the DSS system, signature generation is much faster
than signature verification. The slowest operation is the
computation of v, which requires multi exponentiation, and
this drives the search for fast multi exponentiation algo-
rithms.

209



3. An Algorithm Based on Gaussian integers

Gaussian integers are complex numbers of the form
a+bi, where a and b are integers. They have been

intensely studied in number theory and find many applica-
tions in digital signal processing algorithms.

The problem of computing z = xmy"(mod p) is equiva-

lent to finding some vector addition chain for the vector
(m,n).In terms of Gaussian integers it can be stated as fol-

lows: given a Gaussian integer o« = m+ ni, find a set of
a0=(1,0)9 a] =(0y1)a

o, = (1,1),.., &, = (m,n), such that for every / there

Gaussian integers

exist integers k and j, | >k 2 j such that oy = o + ;. We

will refer to this as the Gaussian addition chain.Therefore,
the double-exponentiation problem consists of finding a
sufficiently short Gaussian addition chain.

In 1989 Pekmestzi [29] introduced the following ‘binary-
like’ representation of complex numbers:

_ J
z = Zde @
J
where d i€ (0,1, i, 1+ i) . This number representation can

be considered as a binary representation (the base is 2) with
complex digits. Similar representations have been studied
by various authors [30]-[33]. The digit encoding [29] is
shown in Table 1:

Table 1 Digit encoding of complex digits

Complex digit | Binary code
0 00
1 10
i 01
14 11

As an example of using the representation in eqn. (2),
consider s = 4893 + 5096i. We have:
4893 = (1001100011101),
5096 = (1001111100000},
that is s = (1+i, 0, 0, 1+, 14+, 4,4, 4,1, 1, 1, 0, 1). If we use
the above encoding scheme for the complex digits, we will

_ have the following representation of s:
s =(11000011110101011010100010).

3.1. AlgorithmI

Using Pekmestzi’s arithmetic we can proposed the fol-

lowing algorithm for computing z = x"y"(mod P):
Step 1: Find the representation of s = m + ni in the form
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of eqn. (2). Encode the complex digit according to
Table 1. s is represented as a binary string of

length 2h, where b = max(|.logm ], | logn |).
Denote this string as H =(g,,, _ 182, _2---8180) -

Step 2:
Step 3:

z:=1; g=x*y (mod p); ‘
Cycle through the elements of H looking at two
consecutive elements simultaneously.

If (g1 8- 1) = (1,0) then z=z*xmod p
If (g, 8,_1) = (0, 1) then z=z*ymod p
If (g4, 8¢_1) = (1,1) then z=z*g mod p
z=z%z (mod p).
This algorithm produces a corresponding Gaussian addition
chain for a-given Gaussian integer. Using the above exam-
ple (Gaussian integer s=4893+5096i), we have the follow-
ing addition chain requiring 22 modular multiplications.
(0,1),(1,0),(1,1),(2,2),(4,4),(8,8),(9,9),(18,18),(19,19),
(38,38),(38,39),(76,78),(76,79),(152,158),(152,159),
(304,318),(305,318),(610,636),(611,637),(1222,1274),
(1223,1274), (2446,2548),(4892,5096),(4893,5096).
This is considerably faster than the 36 modular multiplica-
tions required if one uses separate modular exponentiations

for computing x4893(mod ), ySO%(mod p) and their
product modulo p.

The complexity analysis of this algorithm is straightfor-
ward: the worst case appears when all of the complex digits
of s = m+ni are nonzero and in this case we have

2h = 2| log(max(m,n))] modular multiplications. On
average 1/4 of the complex digits of s are expected to be

zero, so  the average number of MMs s

7,21
= 4[_10g(max(m, n)J.

4. A signed-digit complex arithmetic

The CSD allows a unique representation without con-
secutive nonzero digits. The complex arithmetic, proposed
by Pekmestzi and used in the previous section, is a starting
point from which we may obtain a signed-digit representa-
tion of Gaussian integers. In Pekmestzi arithmetic, the set
of digits consists of all Gaussian integers having an abso-
lute value smaller than 2 (0,1, and 1+i). Since, in the CSD
binary arithmetic, the set of digits is extended by the digit
‘-1°, a natural generalization of the Pekmestzi arithmetic is

the following:
z= Zd 2
i

die{0,1,i 1+ 1~i,~i,~1+i,=1,-1-i} (3

Clearly, this representation is redundant; however, as we



will argue, it is not trivial to define a minimal (or canonic)
representation.

A most straightforward technique for finding some repre-
sentation of z = x + yi in the form (3) is to find CSD rep-
resentations of x and y and to combine them, that is, if a and
b are the corresponding signed-digits (0,1 or -1) of x and y,
respectively, then the corresponding digit of z is a + bi.
However, as we see in the following example, the direct
combination of the minimal real forms does not guarantee
minimality (in terms of nonzero digits) of the representa-
tion.

Example: Letz = 10+ 5i. The CSD representations of
10 and 5 are (1010), and (0101), respectively, therefore the
corresponding signed-digit representation of z is:

3. . 42 1 . A0
2=1.27+i-2"+1-2"+i-2
which is not minimal, since we can represent z as:

c=+0)-2240-2%+1-0-2"+ =) 2°.  The
existence of reduction rules, such as:
(L,i1L,D)—->1+i,0,1~i,-i) @

is a key point in finding faster algorithms for multi-expo-
nentiations based on this arithmetic.

The above example demonstrates that finding a minimal
representation of a complex number is not a trivial task;
however, a representation based on a single combination of
CSD representations is a good starting point for finding
more sparse representations. The reduction rule of eqn. (4)
is an example of reducing 4 consecutive nonzero complex
digits to 3. If we have a signed-digit complex representation
based on combining the CSD representations of the real and
imaginary parts of a given Gaussian integer, then obviously
there is no possibility of reducing 2 consecutive nonzero
digits to 1, and so we have to analyze the possibility of
reducing 3 consecutive nonzero digits to 2. The total num-
ber of possible triples of complex digits obtained in this
way is 121; a few examples are shown in Table 2:

Table 2 Examples of Gaussian integer CSD triples

-1-i,0,-1-i [-1-i,0,-1  |-1-,0,-1+i |-1-i,0,-i
-1-i,0,1 -1-0,0,1+0 |-1,-i-1 -1,-1,0
-1,0,-1+i  |-1,0,-i -1,0,0 -1,0,i
-1,i,-1 -1,i,0 -1,i,1 -14,0,-1-i
-1+44,0,0 - [-1+4,0,0 -14i,0,1-i |-1+i,0,1
-i,-1,0 -1,0,-1-i -1,0,-1 -1,0,-1+i
-1,0,1- -1,0,1 -1,0,1+i -i,1,-ii
0,-1,-i 0,-1,0 0,-1,i 0,-1+i,0
0,0,-1-i 0,0,-1 0,01+ |0,0,-i
0,0,1 0,0,1+i 0,i,-1 0.i,0
0,1,0 0,1, 0,1+,0 i-1,-i
5,0,-1 ,0,-1+i 5,0, i,0,0
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The following theorem provides the total number of
Gaussian integer CSD n-tuples for a given n.
Theorem 1: :Iet v = {v vy, ..»v,} be a sequence of

Gaussian integers such that |Re(v), Im(v)|<1 for
Re(vy)-Re(v,, ;) =0 and
Im(v,)-Im(v, 1) = 0 for k = 1,...,n—1. Then there

k=1,..,n and let

n+2 n+1.2

2——*'—(:-1—)—-1 such sequences

exist exactly T, = [ 3

forevery n>1.

Proof: Let us denote as w8 the number of the sequences
{v{s v9, .., v, } satisfying the conditions in the theorem
and such that the last element v, is equal to g . Recall that

g belongs 10 the set
{-1-4,-i,1-4,-1,0,1,-1+4i,i,14+i}. Then for the

nine w8 ‘s we have the following recurrence relations:

wl® = wl =D+ wlD + wll 10+ w-h
+w 0+ wlD 4w LD Wl (4D
D = W) w2, 4 g,
oD = W+ w0 i),
WD = W gD D
D = w0y i),
W1 = w0,
w1+ = (0
oD = w0,
W19 = i,
Obviously
WET=0) = =140 = (1= = w(+) = 7 and
wi) = w() = w-D = D = x . Denote w(® as

¥,- Then for x,, y, and z, we have the following sys-

tem of recurrence equations:

Xp = 2xn—l"'yn—l

]

In
2y = V-1

with initial conditions x; = y; = z; = 1. After some

4xn—l +yn—1+4zn—1

manipulations we end up with the following equation for

X,:



xn+1 = 3x”+6xn_1—8n_2 (5)
with initial conditions: x; = 1, x, =3 and x3 = 15.
The solution of eqn. (5) is:

n n
2_'_4_:_(9-_2’)_:_1 , and therefore

4" ea ()" w1

Vn 5 and

i

442" e
n 9 :

The number, T, of sequences we are looking for is

2

" equal to:
n+2 n+1.2

T, = 4x,+y,+4z, = [L;F-é,_i—-] ;

so the theorem is proved.
Q

The first members of this sequence are: 9,25,121 (the case
used in the paper), 441, 1849, 7225,...

Table 2 shows the distribution of the number of nonzero
digits in the complete set of triples:

Table 2 Nonzero digit distribution of CSD triples

Number of nonzero Occurrences
digits in a triple
0 1
- . 24
5 : 80
3 16

An analysis of these triples uncovers the existence of 8
possibilities to reduce a combination of three nonzero digits
to two, namely those given in Table 3. It is always possible
to analyze more complicated reductions; however, we will
restrict ourselves to reductions appropriate for the multi-
exponentiation algorithm.

Table 3 The 8 reduction rules

Combination Reduction
i,1,-i 0, 1+, 1
-, 1,1 0, 1-i,-i
i, -1,-i 0, -1+,
-i,-1,1 0,-1-,-i
1,i,-1 0, 1+i,1
-1,i,1 0, -1+, -1
1,-i, -1 0,1-,1
-1,-i, 1 0,-1-, -1

5. Multi-exponentiation based on the new
arithmetic

We now apply the above arithmetic for computation of
z= xmyn(mod p) . As we have already mentioned in the
introduction, we consider the cases when x_l(mod p) and

y—l’(mod p) are ‘easy’ operations. These correspond to one
of the following situations: '

1  xand y are constants; therefore x—1 (modp) and

y—1 (modp) can be precomputed in advance. Note that
this is exactly the case we have in signature verification
using DSS. .

2. When the operation is executed over an elliptic curve,
where the division is replaced by subtraction.

Let us consider the following algorithm:
Input: m, n, x, y and p: positive integers, p-prime;

Output: 7 = xmy"(modp) ;
Step.1: Precompute a; = xy(modp);

a, xdl(modp); ay = y_l(modp)-;

ay x_ly(modp); as = xy"l(modp);

'y (modp);

il

ag

Step 2: Find the canonic signed-digit representation of m

M N
andn: m = zmj2] and n = Zn]l],
ji=0 j=0

(mj’ n_]) € {0’ ly—'l} 5
Obtain a complex-digit representation of
max(M, N) ]
z=m+niiz = 2 zj2j,where
i=0

Step 3:

= my+n ji ;

set s=1;

Cycle through the complex digits, z;, applying the
following multiplication rules:
ifizj==1)s= s*x (mod p)
if(zj == i) 5 = s*y(mod p)
if(zj==1+i) s = s*a, (mod p)
if(z; == -1) s = 5*a, (mod p)
if(zj == -[) 5 = s¥a3 (mod p)
if(zj == -1+i) s = s*a4 (mod p)
if(zj == 1-i) s = s*as (mod p)
if(zj == -1-i) s = s*ag (mod p)

Step 4:
Step 5:
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s=s*s (mod p) ;
Step 6: Output s
‘Now let us analyze the average and worst case behavior
of the proposed algorithm. As we have already pointed out,
the average proportion of zeros in the CSD representation
of real integers is 2/3 ; therefore the probability that a ran-

domly chosen complex digit, z = m + ni, is zero is 4/9.
The average number of modular multiplications in this case
is 1.55555... log(max(m,n))] which is considerably

better than 1.75| log(max(m, n))|. We can obtain even
more savings, however, using our representation as triples.
From Table 2 it is clear that the probability that a randomly
chosen triple consists of all zeros is 1/121 ; to contain one

nonzero digit is 24/121; two nonzero digits is 80/121

and three nonzero digits is 16/121 . In eight of the cases

we have the possibility of reducing three nonzero digits to
two (Table 3), and this reduces the average number of mod-
ular multiplications to 1.533516...| log(max(m, n))].

We still have the possibility for reduction of the nonzero
digits, so the estimations obtained may not be the best pos-
sible. The application of further nonzero digits reductions
(such as (1,i, 1,i) > (1+4,0,1-i,—-i)) will slightly
decrease the multiplicative constant; however, this is a mar-
ginal improvement for which the price of complex prepro-
cessing of the exponents is too high. We can show this by
using Theorem 1 and some probabilistic considerations.
Analyzing the reduction of three consecutive nonzero com-
plex digits to two, the only finally reducible combinations
of complex digits are:

+i, &1, %0, £, .., £ XL »
(6)
k
and
+1, ki, +1, 44, ..., 21, +i
ooy v e O

k
Therefore, to reduce k consecutive nonzero complex digits
(k=4) to less, we have to check the succession of digits
and apply the appropriate reduction rules. The number of

combinations is 2k According to Theorem 1, we have

k +2 +( 1)k +1.2
T, = [———3——] =5 4t possible combinations

of complex digits. Therefore, the expected total reduction
of the multiplicative constant, based on application of all

possible reduction rules, will be less than
oo % oo
2 9 | S
S = Z 16k—-1—6-2k.2kmth1scase.
k=4k- 54 k=4

Evaluating the sum on the right hand side, yields:

o1y
5= 1 (12-§-§-§Z)_o.014895....

Therefore, the multlpllcatlve constant can be reduced to no
less than 1.518, at the price of very complex preprocessing
of the exponents, which requires exponential time. On the
other hand, the application of the rules given in Table 3
requires only linear time. If we consider, for example, 512-
bit exponents, the applications of these rules will save, on
average, 20 MMs at the price of one cycle of reducing,
where possible, the triple complex digit. The complexity of

this step is definitely less than 1 MM, and therefore it

makes sense to apply this step before proceeding further.
The following example is based on this consideration.

5.1. An Example

We apply to evaluate

8912 9445

the algorithms  proposed

(modp) . The representation of the number
d= 8912 + 9445 in Pekmestzi arithmetic is:

d=(1+10,0,i1,0,1+i1+41i1,0,i0,i).
This representation corresponds to the following vector
addition chain for the computation of z:

(1,1),(2,2),(4,4),(8,8),(8,9),(16,18),(17,18),(34,36)

(68,72),(69,73),(138,146),(139,147),(278,294)

(278,295),(556,590),(557,590),(1114,1180)

(2228,2360),(2228,2361),(4456,4722),(7912,9444)

(8912,9445),
that is, we have 21 modular multiplications.

Representations of d, as previously defined are:

d=(1+i,00,1+i0,-1+40,-1,-i,1,0,40,i) (8
(based on the CSD representation of the real and imaginary
parts) and
d=(1+i001+0,-1+i0,0,-1-i,-1,0,,0,)
(based on eqn. (8) plus the reduction rules of Table 3).

As we can see, the number of nonzero digits decreases,
and so the corresponding vector addition-subtraction chains
will be shorter:

(1,1)(2,2),(4,4),(8,8),(9,9),(18,18),(36,36),(35,37)

(70,74),(140,148),(139,148),(278,296),(278,295)

(556,590),(557,590),(1114,1180),(2228,2360)

(2228,2361), (4456,4722),(8912,9444),(8912,9445)
based on eqn. (8) (20 modular multiplications) and:

(1,1),(2,2),(4,4),(8,8),(9.9),(18,18),(36,36),(35,37)

(70,74),(140,148),(280,296),(279,295),(558,590)

(557,590),(1114,1180),(2228,2360),(2228,2361)

(4456,4722),(8912,9444),(8912,9445)
based on eqn. (9) (19 modular multiplications).

Let us compare the proposed technique with published
algorithms. In all cases the expected number of modular
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multiplications is | log(max(m, n)) ], therefore the major
figure of merit is the constant ¢ . In Shamir’s method (men-
tioned in [3]) it is 1.75. If one uses the method proposed by
Yen, Laih and Lenstra (sliding window) [28] the value of &
varies for the different window sizes. In our technique the
window size is 1. Table 4 shows the values of o for differ-
ent approaches.

Table 4 A comparison between different algorithms

Algorithms for multi-exponentiations | Values of o
separate exponentiations 2.0
Shamir’s method 1.75
Yen-Laih-Lenstra (window size = 1) 1.75
Yen-Laih-Lenstra (window size = 2) 1.625

Algorithm-I 1.75

Algorithm-II (without Table 3 reductions) 1.556

Algorithm-II (with Table 3 reductions) 1.534

The proposed technique can be easily combined with the
‘sliding window’ technique at the price of more precom-
puted values.

6. Comments and conclusions

In this paper we have presented new algorithms for mod-
ular exponentiations based on complex arithmetic represen-
tations. The applicability of the proposed algorithms based
on signed-digit complex arithmetic crucially depends on the
assumption that the inverse elements-of x and y can be pre-
computed in advance. Let us comment on this.

The general formulation of the problem for evaluation
modular exponentiations is: given x, y and z (or x;, r; and z

in the case of multi-exponentiation), compute x’(modz)

(or Hxir"(modz) respectively). In cryptographic algo-

i
rithms, however, some of the parameters are constants (the
keys) and some of the parameters (those forming the mes-
sage) are variables. In the RSA cryptosystem, say, the major

operation is a single exponentiation C = x’ (modz) , where
y and z are constants and x is the message. If one uses an
addition-subtraction chain for computing C, then the time

needed to evaluate x—lmodz must be included in the total
estimation of the complexity of the algorithm. The compu-

tation of x~1mod z is usually performed using the Euclid-
ean algorithm for computing the greatest common divisor,

. - - . - X
or, equivalently, via the continued fraction expansion of .
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The computational complexity of this problem has been a
subject of considerable analysis and it is well-known that
the average number of divisions, necessary to evaluate

21n2

2
s

estimation is due to Norton [34]. For uniformly distributed
integers in the interval [1, N] and any positive real €, the
Euclidean  algorithm  requires an  average of

1
i) €-z
121;12(111]\,_ 1,8 (2)) +T-Ly O{N 6] steps, where

P (modz) is L

Inz +0.06 [12]. The most precise

n 278 2

E(x) is the Riemann &-function and T is the Porters con-
stant. In discrete-log based cryptosystems typically x and z

are constants, therefore the computation of x~1modz can
be performed in advance and excluded from the total run-
time estimation. These considerations are not necessary
when one deals with elliptic-curve cryptosystems, because
the division is replaced by a subtraction. An addition (sub-
traction) formula on elliptic curves does not contain a mod-
ular division particularly when homogeneous coordinates
are used [19].

The technique proposed in this paper is based on signed-
digit complex arithmetic. As we have already pointed out,
the canonic signed-digit representation of the real and
imaginary parts of a given Gaussian integer does not guar-
antee a canonic signed-digit complex representation. There-
fore, in order to obtain an optimal arithmetic algorithm for
modular exponentiation, one has to find an algorithm for
determination of the canonic complex-digit representation
for Gaussian integers. Applying a succession of all possible
reduction rules will reach the minimal representation; how-
ever, it needs exponentially many operations. Hence, the
polynomial-time determination of a CSD complex repre-
sentation is an important open problem.

The generalization of the proposed arithmetic to spaces
with more dimensions is another avenue for possible
improvements. The main results on this subject are still
under investigation.
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