Theory and Applications for a Double-Base Number System

V.S. Dimitrov, G.A. Jullien, W.C. Miller
VLSI Research Group, University of Windsor, Windsor, ON, Canada N9B 3P4

Abstract

In this paper we present a rigorous theoretical analysis of
the main properties of a double base number system, using
bases 2 and 3; in particular we emphasize the sparseness
of the representation. A simple geometric interpretation
allows an efficient implementation of the basic arithmetic
operations and we introduce an index calculus for loga-
rithmic-like arithmetic with considerable hardware reduc-
tions in look-up table size. Two potential areas of
applications are discussed: applications in digital signal
processing for computation of inner products and in cryp-
tography for computation of modular exponentiations.

1. Introduction

In many applications the computational complexity of
algorithms crucially depends upon the number of zeros of
the input data in the corresponding number system [1]-[5].
Number systems are often chosen to enable a reduction of
the complexity of the arithmetic opetations; the most pop-
ular are, perhaps, signed-digit number systems [5]. An
analysis of the expécted number of zeros in the tepresenta-
tion of arbitrary integers in the binary signed-digit number
system shows that on average, for long wordlengths, 33%
fewer adders are needed to perform multiplication than
binary {6][7]. In these number systems we need, on aver-
age, O(logN) nonzero digits to represent the integer N.

A number system, allowing as digits only 0,1 and requir-
ing o(log N) nonzero digits, is the double base number sys-
temn (DBNS), using bases 2 and 3; that is, a representation
having the form of eqn. (1).

x=3d, jzisj
i

Clearly the binary number system is a special case (and
valid member) of the above représentation. In this paper we
will deal with canonic (minimal number of non-zero digits)
and near canonic forms for the representation.

The DBNS has an unusually simple 2-D geomettic inter-
pretation, suitable for implementation via cellular automata

M

1063-6889/97 $10.00 © 1997 IEEE

44

[9] for example, and, in this paper, we introduce an index
calculus with which we can perform arithmetic using loga-
rithmic-like computational units.

Arithmetic operations in this number system do not
guarantee that the results are obtained in the minimal, or
canonic form, and the associated problem of conversion
from such a non-canonic form leads to interesting prob-
lems in transcendental number theory. The canonic number
system, however, appears to provide very fast carry-free
addition and is also suitable for multiplication. We illus-
trate our ideas with applications to computing finite
impulse response filter inner products and modular expo-
nentiations.

2. Basic definitions

Following from de-Weger [10], we use the following
definitions:

Definition 1: An'integer X, is called s-integer if all of its
prime divisors are arnong the first s primes.

Definition 2: Let 62’3(x) be the set of 2-integers,
smaller than or equal to X,

The asymptotic behavior of the cardinality of G, 5(x)

can be easily estimated from the inequality 2k3m < x, that
is k-In2+m-In3<Inx. Hence the catdinality of
Gy 3(®) is equal to the number of nonnegative integer co-
ordinates, satisfying eqn. (1). This number is approxi-
82
(log 2%) 1
2-log,3| 3.17
integer; x, has different representations as a sum of 2-inte-
gers. Let us consider a table with [logx]+1 columns

mately |: loggx [11]. Obviously every

and [log,x] + 1 rows, so that in every cell (i,j) the number

2'37 is written. An arbitrary integer smaller than or equal

to 2"3* can be represented as a sum of numbers, which

appears in the first k+[m-log,3]+1 rows and

m+ [k -log;2] + 1 columns. We will refer to the image as
a DBNS-map.

Definition 3: The representation of an arbitrary integer in
the DBNS-map using a minimal number of ones is called
the minimal double-base number representation (MDBNR).

Definition 4: We will call a cell (if) active if it takes part
in the corresponding DBNS-map.
Thus the MDBNR is a DBNS -map with the minimal num-
ber of active cells.

In the next section we discuss techniques for obtaining
near MDBNRs with some results on sparseness.

3. Minimal DBNS and Sparseness

The MDBNR is extremely sparse. It is easy to check,
for example, that 23 is the smallest nonnegative integer,
requiring 3 ones. The smallest integer, requiring 4 ones in
its MDBNR is 431, which is a considerable distance from
23. The smallest integer, requiring 5 ones is 18431 (it has,
however, 219 different minimal representations). The
smallest integer, requiring 6 ones is 3 448 733.

The extreme sparsity of the DBNS is a good measure for
potential implementation of many algorithms. Table 1
shows MDBNRs for two randomly selected small integers.

Table1 A MDBNR for 79 and 110

1 319 |27 1 3 27

o A D] -

79 110
‘We now present some important theorems relating to the
MDBNR. We first determine the average number of non-
zero digits required for a given number; we then show that a
greedy algorithm can be employed to find near MDBNRs in
polynomial time.
Theorem 1: :Any natural number # can be written as a sum

logn)
loglogn)’

of k terms of the form 2a3b , where k = 0(

Proof: The idea is to split the interval [1,n] into two
parts; apply a greedy method to the larger interval, and a
trivial method to the smaller interval. We start with the triv-
ial observation that we can do the job with k = O (log n),
simply by taking the 2-adic and 3-adic expansion. Further,
we shall always assume, that n is large enough. Thus any
number in the interval [1,m] can be written as a sum of

terms 2% 3% with at most O (log m) terms. Tijdeman [15] has
shown that there is an absolute constant C > 0 such that

45

there is always a number of the form 2¢ 3% between

n-

and n. Now we put ng=n, and the Tijdeman

c
(logn)
result implies that there exists a sequence
ne>ny>ny>..>m>n such that
_ A4 b; i ,
n,=23 +n;, ; and n 1< C fori=0,1,.2,..1
(logn;)

Here we choose [=1 (n) so that n;, | < f(n) < n; for some
function f to be chosen later. It follows that we can now
write n as a sum of k terms of the form 2a3b, where

k = l(n) + O(log f(n)) . We now have to estimate I(n) in
terms of f(n), and choose an optimal f(n). Note that if

i<l, then n;>n;> f(n), hence
n n s
ne1 < < ¢ This implies at once that
(logn;)” (logf(n))
f(n)<n< —n_TE , and thus we find
(log f(n))
logn - log f(n)
I(n)< ——_——_Cloglog 7(n) We now take
f(n) = exploi. This function is the largest possible
loglogn

function (apart from constant) to which we can apply our
observation above, to show that any number in the interval

[1, f(n)] can be written as a sum of O(M) terms of
loglogn

the form 2a3b. We want to show that with this function f

logn
loglogn

we also have I(n) = 0(), i.e. there is a constant

1 logn

D >0 such that I(n) < Dioglogn

. Thus it suffices to show

_ _logn
loglogn 1
lc;ggng D

loglogn

rewritten as Dloglogrn + Clogloglogn < Cloglogn + D

which is true if D < C with n large enough. Such a D

exists, and so the proof is complete.

1
8" logn

Dloglogn

that . This inequality can be

Q
We now need an algorithm which guarantees the mini-

mality of the representation. First we analyze the exhaustive
search algorithm, which obviously finds the total set of
minimal representations.

Theorem 2: Let k be a fixed integer. The check whether

eqn. (1) has a solution in 2-integers needs at most
0((logn)2k) operations.

Proof: The exhaustive search over all 2-integers smaller

2
than or equal ton requires O(C (logn) J operations [12],
k

that is 0((logn)2k) which is a polynomial of log 7.
]
For large values of k this approach seems impractical.
Moreover, if k is not fixed then the exhaustive search algo-
rithm requires exponential time.
A natural technique for finding the MBDNR appears to
be the following greedy algorithm.

Input: positive integer Xx;
Output: 2-integers a;, such that

Sa; = .
procedure greedy(x)
if (x > 0) then do
{
find the largest 2-integer w< x;
write(w);
x=xX-w
greedy(x)
}
else exit;
Unfortunately, this algorithm does not ensure the minimal-
ity of the representation. The smallest x, when the greedy
algorithm fails, is 41. It is intuitively clear, however, that the
algorithm provides close solutions to the MDBNR, more-
over it is very easy to implement, while the problem of find-
ing the MDBNR would seem to be NP -hard.
Theorem 3: :The greedy algorithm terminates on average

logx
loglogx

after 0() steps.

Proof: Omitted for brevity.

Qa

Definition 5: We call the representation obtained by the
greedy algorithm a Near-Canonic DBNR (NCDBNR).

To confirm the utility of the greedy algorithm, we gener-
ated NCDBNRs for 1000 randomly chosen 215-bit inte-
gers. Theorem 1 predicts that the expected number of non-
zero digits is 27.75; the occurrence of the number of 2-inte-
gers peaks at about 30, as shown in Fig. 1, which success-
fully demonstrates the efficacy of our algorithm. A variety
of computational experiments shows that the largest 2-inte-
ger, smaller than x, occurs in at least one of the MDBNRs
of x, in about 80% of the cases. This observation along with
Theorem 1 allows an estimate that the greedy algorithm

46

logx
loglogx

returns a MDBNR with probability 0.8
this tends to zero very slowly.

; fortunately

300

200

100

24 25 26 27 28 29 30 31 32 33 34

Fig.1 Occurrence of 2-integers for 215-bit numbers
We also find that the greedy algorithm produces a represen-
logx
loglogx

Theorem 3). This NCDBNR provides a sufficiently sparse
representation of x to make it very useful.

tation requiring, on average, 0() 2-integers (from

3.1. Anindex representation

Since the NCDBNS is very sparse, we can efficiently map
the original 2-D representation of Table 1 into an index rep-
resentation formed by an n-tuple of the 2-integers. As an
example, consider the following 215-bit prime number [2].
Pe5=32769 1329932667 0954996198 8190834461
4131776429 6799294253 9798288533
The greedy algorithm produces 29 2-integers, as below:
(78,86 77,82 75,79 42,95 11,109 35,89 128,26 35,78
132,12 56,54 81,34 76,32 76,28 25,51 48,32 52,25 41,26
22,34 8,35 1,3227,11 4,21 13,107,1115,31,99,1 0,3 1,0)

4. The NCDBNR Transformation

The mechanism of finding the NCDBNR plays a crucial
role in performing basic arithmetic operations. Along with
sparseness, we also require that non-zero digits be non-con-
secutive in our mapping representation; this allows addition
to be mapped to a simple boolean operation. If we once
again consider the geometrical interpretation of the num-
bers in the DBNR, we can find simple identities on special
combinations of active cells that allow removal of adjacent
active cells. For example, Table 2 uses the identity

2'3/ 4273 = 93l +1 to remove consecutive cells
lying in one column. Table 3 demonstrates the application
i+2,]

of the identity, 2374+ 2'37 1 2'**37 | to remove con-
secutive cells lying in one row. This procedure is akin to the
symbolic substitution process used in optical computing.
We can generalize this reduction problem using the purely

exponential Diophantine eqn. (2), where [<k. The prob-

i+1

lem of solving Diophantine equations such as eqn. (2) has
been a subject of investigation over the last two decades
[13], although some interesting results were obtained in the
30’s and 40’s [11].

AU @
= 2"M3" ", Y
Table 2 Column reduction
3i 3i+ 1 31‘ 31‘ +1
2! = o
2i+1 2i+1
Table 3 Row reduction
3i 3i +1 31‘ 3i+ 1
2i+ 1 2i+ I

We need only consider some special cases for k and .

4.1. k=2,l=1

Theorem 4: The Diophantine equation x+y = z where
GCD(x, y,z) = 1 and x, y and z are 6-integers (that is x, y,

z have the form 237577711°13™, with x,20,
i =1,2,3,4,5, 6)has exactly 545 solutions.

Proof: See [10].
a

In our case x; = x, = x5 = xg = 0 and the only solu-

tionsof x+y = z are {1,2,3}, {1,3,4} and {1,8,9}.
Therefore these represent the only 3 cases where we can
replace two active cells with one.

A powerful technique in transcendental number theory
(studies of equations such as (2)), described by Baker [14],
allows one to conclude that eqn. (2) has only a finite num-
ber of solutions. Existing methods for bounding the upper
limits, however, give very large upper bounds; therefore, in
searching for a MDBNR, we are forced to use methods that
do not guarantee exact minimality but rather provide both

47

near minimality, and algorithmic realization.

5. DBNS-Map Addition and Multiplication

5.1. Addition

Let x andy be two integers in the MDBNR. We note that
if x and y contain the element 2/3/, then the element 2! +!3/
does not exist, therefore addition can computed by simply
overlying the corresponding DBNS maps; there will be no
overlapping active cells. In order to prepare for another
addition we ideally perform a reduction into minimal form.
In practice, however, the approach described in the previous
section allows us to find suitable DBNS maps without nec-
essarily requiring a minimal form.

Let I, (i) and 1,(i,j) be the DBNS maps of the integers x
and y, represented in the MDBNR. The image 7,(i,j) of the
DBNS map of the number z = x + y can be obtained using:

Li+1))=1(,j) AND L)) Rule (1)

L)) = 1ij) XOR (i) Rule (2)

Note, using the MDBNR, if /(i) = I(iy) = 1, then (i
+1,j) = [,(i +1,j) = 0 and therefore addition can be accom-

plished using a symbolic substitution technique. To reduce
this result it is sufficient to use the following rules (see
Tables 2 and 3.) In the worst case, DBNS addition requires
37% fewer ‘carries’ (removal of consecutive active cells)
than binary addition.

LG +1)) = LGj) AND LG +1,)
LG +24) = I,(ij) AND Lij +1)

Rule (3)
Rule (4)

5.2. Multiplication:

Let x and y be integers, represented by DBNS maps in
the MDBNR. The MDBNR of their product, z, is an n-tuple

of the elements {2l23]z = 2l"‘+ by 3]"4-1y } , where the

{i,,j,} and {iy, jy} are the 2-integer index locations of

the active cells in the MDBNRs of x and y respectively. It is
clear that the multiplication process simply corresponds to
2D shifts and DBNS additions, in an equivalent way to that
performed using binary arithmetic. The promise here, how-
ever, is that the number of operations is considerably
reduced based on the sparseness of the representation.

6. DBNS Index Calculus

it

The n-tuple, {21‘3Jz= 2'x T glxt Iy }, introduced in

the previous section, immediately leads to an implementa-
tion of multiplication using index addition, where the index
mapping of x, for example, is simply the n-tuple {i , j }.
For cases where we are approximating the reals by fixed
point numbers, it is possible to find a single index MDBNR
for any real number with arbitrary precision. This leads us
to a multiplication technique only involving a single 2D
shift, which corresponds to a pair of index additions. If
only one of the numbers to be multiplied is in the single
logx

loglogx)
addition pairs. The following theorem proves the single
index mapping property.

Theorem 5: Let n and m be integers. The set A, ,, = {2"3™}
is compact over the nonnegative reals; that is, in every inter-
val [8; +8,1(8; 20, 3,>8;) at least one number of the

index form, multiplication will only require O(

form 2"3™ appears.

Proof: The proof follows from the well-known fact that
the set of numbers: {n+m-w}, (mmeZ),
o — irrational is compact over the reals. In our case we
have @ = log,3.

Q
Based on our geometrical interpretation, if we extend the
DBNS map in both directions, then every nonnegative real
number can be approximated with arbitrary small error
using only one active cell. We can show that a single-cell

coefficient can be represented by two (log,n)/2 -bit num-
bers so we have not incurred any dynamic range redun-
dancy compared to the binary representation of the number,
even though our DBNS representation is inherently very
redundant (and sparse). The advantage, of course, is the
ability to use index calculus on the representation.

6.1. Implementing the index calculus
We represent a number, x, as a triple (s o b - tx) , Where

s

. is the sign bit, and b, and r, are integers such that

b, t . .
5,2 737 is an acceptable approximation to x. More pre-

b_t
cisely, if € is the error allowed, then lx— 5,273 f<e.

‘We have a low complexity implementation of multiplica-

tion and division, namely, if: x = (s,b,¢) and
y = (s by, £}, then:
Xy = ((sx+sy)m0d2, bx+by, tx+ty) 3)
x/y = ((sx+sy)mod2, bx—by, t—t) C))

The implementation of addition and subtraction within this

48

index calculus can be performed using the identities:

293t 4 2939 = 993b(1 4 093470y 5
~293°®(c—a,d - b)
2a3b_203d _ 211317(1 _ 20-a3d—b) (6)

=2*3"¥(c—a,d-b)
We will, of course, precompute and store the functions con-
taining the approximation of;

B(xy) = 142737 ~2%P %

Y(xy) = 1-2"3"~273° ®)
Addition (subtraction) of two numbers is now mapped into
the following two steps:
1. Find the corresponding element (o, B) in the table;

2. Add (subtract) (g, b) with (o,).

6.2. Comparison with the Log Number System

It is clear that this index calculus shares some similari-
ties with the Logarithmic Number System (LNS) [16].
Both allow the mapping of multiplication and division to
addition and subtraction, and addition and subtraction uses
an identity requiring the look-up of a unary function (e.g.
eqn. (7) is similar to the LNS unary function

log2(1 + Z(ﬁ'a)) where the input to the table is (- o),
the logarithms of the numbers being added).

There is a fundamental difference in the mapping, how-
ever. Whereas the DBNS mapping is onto, the LNS map-
ping is not. Although the inherent dynamic range
compression of the LNS is often touted as an advantage, it
is not clear that this compression outweighs the non-linear
nature of the error (digital noise) in a system such as a FIR
filter. In the DBNS, if the error of the computations is fixed
to be &, then in approximating some real number, x, we can
expect the size of the integers used to be smaller than the
corresponding fixed-point number in the LNS [21]. There-
fore, the multiplications (divisions) can be performed by
two parallel additions (subtractions) of two small numbers.

A disadvantage of the DBNS is that there is no direct

way to quickly compare two numbers of the form 2%3% and

2c3d. The simplest way seems to be to compare the num-
bers a+b-log,3 and c+d-log,3, which requires one

fixed-number multiplication, one addition and one final
subtraction to obtain the result.

To make a fair comparison between the both number sys-
tems, we have to evaluate the size of the integers used in
representing a given real number, x, and the size of the
look-up tables used. To do this, we use Theorem 3:
Theorem 3: :Given o, P reals and &> 0, then there exist

integers p and g, such that:
1

2
lgo— p-Bl<e and |p, gl <4/Be ~.

Proof: See reference [22].

a

There are many ways to easily find the corresponding p
and g using one of the large variety of approximation algo-
rithms. Examples include the continued fraction algorithm,
LLL reduction, Ferguson-Forcade algorithm, Szekeres
algorithm [15], etc. For our purposes the above theorem is
relevant, because it allows us to estimate the size of the

integers (b,, t,) taking part in the approximation of a real

number, x. Let us assume, that x is represented with preci-

sion € = 2'k, then the above theorem tells us that there

exist integers p and g requiring at most (k/2) + 1 bits and
ensuring the approximation with desired accuracy. The the-
orem also guarantees that the size of the look-up tables will
be the same as the size of the look-up tables in the LNS.
Table 4 summarizes the comparison analysis

Table 4 Comparison between the LNS and the DBNS

Multiplication| Addition/ Comparison
/Division subtraction P
LNS One n-bit addi- [One n-bit one n-bit
tion (subtrac- |addition (sub- | subtraction
tion) traction).
One table.
DBNS Two n/2-bit Two n/2-bit | one n/2-bit
(using parallel addi- |additions multiplica-
index tions (subtractions) | tion two n/2-
calculus)] (subtractions) |One table. bit subtracts.

7. A FIR Filter Example

A FIR filter implements the linear convolution;

Vi = zxk'hi—k

k

(©)

A well established technique to reduce the complexity
of eqn. (9) is to select filter coefficients with a small num-
ber of non-zero binary digits. CSD representations allow a
greater choice of coefficients with no increase in the of
number of non-zero digits. Such an approach, however,
often leads to increases in the filter length to allow a
desired spectral envelope to be matched. The DBNS repre-
sentation typically allows single digit approximations with
much greater coefficient space support than the CSD
approach. There is also the advantage of reduced multipli-
cation complexity, as discussed in the previous section.

We consider the following low-pass filter example to
demonstrate the cfficacy of the DBNS index mapping.

49

1. Passband and stopband edge frequencies of 0.021 and
0.07 radians.

Passband ripple and stopband attenuation requirements
of 0.2dB and 60 dB respectively.

The infinite precision 60-tap filter has a passband ripple
of 0.2 dB and stopband attenuation 61.7 dB; the coeffi-
cients, along with a 10-bit DBNS mapping, are given in
Table $.

Table 5 DBNS10-bit pairs for filter example

hy | Si|a; | b h; Si|a|b;
[0.00378596 |1 [198 |-130 }-0.0566640 |-1 1782 |-496
0.00341834[1 |98 |-67 |-0.0410201 -1 |100 |-66
0.00354156 1 |778 |-496 |-0.01574 |-1_ |-827 |518
0.00268679 |1 |841 |-536 [0.01928687 |1 |-58 |33
0.00097656 1 |-10 |0 [0.06421424 |1 [1012|-641
0.00207487 |1 |-337 |207 [0.11767056 |1 |-729 |458
0.00720243 1 |107 |-72 [0.17966271 |1 |-917 |577
00141662 |-1_|780 |-496 [0.2451056 |1 |-785 |494
-0.0229532 |1 |833 |-529 [0.31444408 |1 |-810 510
-0.0327162 |-1 |255 |-164 |0.38289611 |1 |211 |-134
100420886 |-1 845 |-536 |0.44535403 |1 [972 |-614
00527344 |- |- |3 [0.5015795 |1 |-654 |412
-0.061021 |-1 |-619 |388 |0.5468766 |1 |603 |-381
00649574 |-1 |23 |-17 [0.57795338 |1 [-42 |26
0.0645546 |-1 |-779 |489]0.59443865 |1 |405 |-256

The resulting stopband attenuation is 60.1 dB; still within
specifications.

7.1. An index calculus IPSP

A major building block for DSP processors is the inner
product step processor (IPSP). The IPSP for the index cal-
culus is shown in Fig. 2.

The function implemented is S; = S, |+ (x;Xy;)
where x;=>Y,; and y;=> {,. Each of the mappings pro-

duces a binary and ternary exponent. These exponents are
added to produce the sum exponents. Rather than map back
to the DBNS, we convert to a floating point-type represen-
tation for the accumulation. Noting that the binary expo-
nents simply represent shifts, we only have to look up the
exponent and mantissa for the ternary components. There

are 4 binary adders, a (b/2 + 1) X b' -bit ROM and a barrel

shifter. Typically, &' = b, the dynamic range of the multi-
plication. Note that the DBNS substitutes the normally
required b-bit input ROM with the much smaller ROM and
a barrel shifter. This is a considerable hardware reduction,
The input conversion can be performed with a single
table, providing the input data word-width is not too large.

This is the same restriction as- for LNS implementations,
and still yields many practical DSP applications.

ci —p <

Xi)

Binary + J + Ternary

Yi v
v
yge] yi[m]
Shift

Si—-l —

Fig. 2 Index Calculus IPSP

8. Applications to Modular Exponentiation

The application we now present concerns a question of
crucial importance in modern cryptography. The problem
can be stated as follows: given positive integers A,n and M,
compute C = A" (mod M).

Recently, several papers have appeared which investigate
the problem of reducing the time needed to perform a mod-
ular exponentiation operation when precomputation is
allowed. A typical example is a discrete-log based crypto-
system:where we can precompute some powers of A so that

the evaluation of C = A" (mod M), requires a minimal num-
ber of modular multiplications (MMs). However, in typical
situations, A,n and M are 512 or 1024-bit integers; therefore
the precomputation of all powers is obviously impossible.
Some of the previously investigated algorithms on this sub-
ject [8][19] arc based on the assumption that the number of
precomputed powers of A is O(log n) and rely on a proper
representation of n; the number of modular multiplications,
however, is still O(logn) . The use of the DBNS and a look-

up table of 0((logn)2) size allows us to obtain an asymp-
totically faster algorithm; as shown below:

Step 1: Precompute A”~ (modM) for all i,j such that
2i3j < n and store the values obtained in a look-
up table.

Step 2: Find the DBNR of n via the greedy algorithm; that

50

k
. a4, b; ,
isn = 2 2 '3 . From Theorem 3 it follows
i=1

that k = 0(logn)
loglogn

Step 3: Multiply (modulo M) the corresponding elements
(a1,by), (ag,b7),....(ap.by) from the look-up table.

Because Step 1 is computed off-line, the complexity of this

. . logn
f , = “\loglogn)
algorithm (from Steps 2 and 3), is O(k) 0(loglogn)

3.1. Comparison with published algorithms

To make a fair comparison among the existing tech-
niques, let us consider that the exponent, n, is a 512-bit
integer (the most popular case in practice). The application
of the algorithm, based on a hybrid binary-ternary number
system [8], requires, on average, 173 modular multiplica-
tions. The algorithm based on a ternary-quintary number
system [20] requires, on average, 166 MMs. Our new algo-
rithm requires, on average, 57 MMs, but it also requires
83370 stored values. If this storage requirements is too
severe for a particular application, the algorithm can be
easily modified in order to reduce the memory require-
ments.

To be more precise, let us assume that the exponent » is
3 13 . M 56
written (‘folded’) into the form: n = 22 ny +n,, where

n, and n, are 256-bit integers. Then the computation of

C transformed into

A"(modM) can be

256
27 n +n,

C=2 (modM) = AM(modM)A"*(modM),

256
where A; = A (modM). A, can be precomputed in

advance, so we are in position to precompute two look-up
o, D
tables containing the values of A (modM) and

AP(modM), for every D of the form 2%3% | smaller than

or equal to 2238 Now the total size of the look-up tables is

2
reduced to 2 - ::2,’—5167 = 41347 values. The average number
.. 256
of MMs is increased to 2- ——— + 1 = 65 ; therefore,
log,256

for the price of eight MMs we reduce the size of the look-
up table by a factor of two. Separating the exponent into
more parts (for convenience their number should be
selected as a power of two) we can obtain further reduc-
tions of the total look-up table size. Table 6 gives the

expected number of MMs and the required number of pre-
computed values for our new approach and two other pub-
lished techniques [19][20].

Our computer experiments show us that the time needed
for step 2 (the greedy algorithm) is much less than the exe-
cution time for step 3. For example, for a 512-bit exponent
the execution time for the greedy algorithm is equal to
about 4 modular multiplications; thus this step can be rea-
sonably neglected from the total run-time analysis.

Table 6 Comparison for MMs using precomputations

Algorithms Number of MMs | Storage
Algorithm1 [20] 166 36027
Algorithm2 8] 173 83374
DBNS (unfolded exponent) 57 83374
DBNS (2-folded exponent) | 65 41347
DBNS (4-folded exponent) 76 20673
DBNS (8-folded exponent) 92 10336
DBNS (16-folded exponent) {117 5168
DBNS (32-folded exponent) | 159 2584

4. Conclusions

In this paper we have presented the theory and two
applications of a double-base number system. We have also
introduced an index calculus which provides the same
structure as the LNS without the logarithmic mapping.

We have directed our attention to two possible areas of
application: digital signal processing and cryptography. In
the former, we use the index calculus. An implementation
advantage over the logarithmic number systems is that the
index additions and subtractions are reduced in complexity,
because the binary and ternary operations are completely
independent. In cryptography applications, the DBNS pro-
vides an efficient number representation because of its
unusual sparsity. For every cryptosystem, based on modular
exponentiation with a fixed-base, our proposed algorithm is
an efficient alternative to the existing algorithms.

5. References:

[11 ABorodin and P.Towari, “On the decidability of sparse
univariate polynomial interpolation”, Computational Com-
plexity, vol.1, 1991, pp.67-90

P.Montgomery, “A survey of modern integer factorization
algorithms”, CWI Quarterly, 7, 4, 1994, pp.337-366
Ercegovac,M.D., Lang, T., NashJ.G., and Chow,L.P. “An
area-time efficient binary divider”, IEEE Int.Conf on Comp.
Design, Rye Brook, NY, Oct.1987, pp.645-648

P.Kornerup, “Computer arithmetic: exploiting redundancy in
number representations”, ASAP9S, Strasbourg.

A.Avizienis, “Signed-digit number representation for fast
parallel arithmetic”, IRE Trans. Electronic Computers,

{2l
[3]

[4]
(5]

51

vol.10,1961,pp.389-400

H.Garner, “Number systems and arithmetic”, Advances in

Computers, vol.6,1965,pp.131-194

G.W.Reitwiesner, “Binary Arithmetic”, Advances in Com-

puters, vol.1, 1960,pp.231-308

V.S.Dimitrov and T.V.Cooklev, “Two algorithms for modular

exponentiation using nonstandard arithmetic”, IEICE Trans.

on Fundamentals, 1995, pp.82-87

E.Swartzlander, “Digital optical computing”, Applied Optics,

vol.25,1986,pp.3021-3032

[10] B.M.M.de-Weger, “Algorithms for Diophantine equations”,
CWI Tracts-Amsterdam, vol.65, 1989

[11] G.Hardy, “Ramanujan”, 1940, Cambridge Univ. Press

{12] R.P.Stanley, “Enumerative Combinatorics”, vol.I, Wadsworth
& Brooks, 1986.

[13] T.N.Shorey and R.Tijdeman, “Exponential Diophantine
equations”, 1986,Cambridge University Press

[14] A.Baker, “The theory of linear forms in logarithms”, in Tran-
scendental theory- Advances and Applications, A.Baker
(ed.),Academic Press, pp.1-27, 1987

[15] R.J.Stroeker and R.Tijdeman, “Diophantine equations”, in
Computational methods in number theory, (ed.H.Lenstra and

(6]
[7]
(8]

{91

R.Tijdeman), Math.Centre Tracts-Amsterdam, vol.155,
pp-321-369, 1987
[16] E.E.Swartzlander,Jr. D.V.SChandra, H.T.Nagel,Jr. and

S.A.Starks, “Sign/logarithmic for FFT implementation”,
IEEE Trans. on Computers, vol.C-32, pp.526-534, 1983

[17] A.Brauver, “On addition chains”, Bulletin of the American
Mathematical Society, vol.45,1939, pp.736-739

[18] P.Erdos, “Remarks on number theory III: on addition chains”,
Acta Arithmetica, vol.6, 1960, pp.77-81

[19] E.F.Brickell, D.M.Gordon,K.S.McCurley and D.B.Willson,
“Fast exponentiation with precomputation”, Proc.Euroc-
rypt’92,Lecture Notes in Computer Science,vol.658,pp.200-
207, Springer,1993

[20] C.-Y.Chen, C.-C.Chang and W.-P.Yang, “Hybrid method for
modular exponentiation with precomputations”, 1EE Elec-
tronics Letters, vol.32, 6, 1996, pp.540-541

[21] D. Lewis, “An accurate LNS arithmetic unit using interleaved
memory function interpolator”, Proc. of ARITH-11, Windsor,
1993 pp. 2-9.

[22] L.Lovasz, “An algorithmic theory of numbers, graphs and
convexity”, SIAM Regional Conference Series in Applied
Mathematics, vol.50, 1986

6. Acknowledgments

The authors would like to acknowledge financial assis-
tance from the Natural Sciences and Engineering Research
Council of Canada, the Micronet Network of Centres of
Excellence and workstations and software from the Cana-
dian Microelectronics Corporation.

