On the design of IEEE compliant floating point units

Guy Even* and Wolfgang Paul
Univ. des Saarlandes
66123 Saarbriicken, Germany
E-mail:guy,wjp@cs.uni-sb.de

Abstract

Engineering design methodology recommends designing
a system as follows: Start with an unambiguous specifica-
tion, partition the system into blocks, specify the functional-
ity of each block, design each block separately, and glue the
blocks together. Verifying the correctness of an implemen-
tation reduces then to a local verification procedure.

We apply this methodology for designing a provably cor-
rect modular IEEE compliant Floating Point Unit. First, we
provide a mathematical and hopefully unambiguous defini-
tion of the IEEE Standard which specifies the functionality.
The design consists of: an adder, a multiplier, and a round-
ing unit, each of which is further partitioned. To the best
of our knowledge, our design is the first publication that
deals with detecting exceptions and trapped overflow and
underflow exceptions as an integral part of the rounding
unit in a Floating Point Unit. Our abstraction level avoids
bit-level arguments while still enabling addressing crucial
implementation issues such as delay and cost.

1. Introduction

Background. The IEEE Standard for Floating Point Arith-
metic [1] defines the functionality of floating point arith-
metic. Since its approval more than 10 years ago, the Stan-
dard has been an immense success, and all major Floating
Point Units (FPU’s) comply with it. Unfortunately, most
designs are obtained by first designing an FPU that handles
correctly most of the cases, and subsequent modifications
are made to handle the remaining cases. The drawbacks
of this approach are: (a) hard to predict performance and
cost due to the modifications; (b) longer design process and
complications in designs; and (c) hard to verify designs.

*Supported in part by Graduiertenkolleg “Effizienz und Komplexitit
von Algorithmen und Rechenanlagen”, Universitit des Saarlandes, and in
part by the North Atlantic Treaty Organization under a grant awarded in
1996.

1063-6889/97 $10.00 © 1997 IEEE

54

Previous work. There is a vast amount of literature on
designing FPU’s. The literature falls mainly into two cat-
egories: (a) Fundamental work that describes how FPU’s
are designed but are either not fully IEEE compliant or ig-
nore details involved with the Standard such as exceptions.
Among such works are [2, 3, 5, 6, 7]. (b) Implementa-
tion reports that describe existing FPU’s while emphasizing
features that enable improved performance.
Goals. We set forth the following goals concerning the
design of an IEEE compliant FPU. (a) Provide an abstraction
level that can bridge between a high level description and
detailed issues involved in complying with the Standard.
(b) Identify and characterize essential properties that explain
the correctness of the circuit. (¢) Formalize mathematical
relations that can serve as “glue” for composing the building
blocks together.
Overview and Contributions. This paper deals systemati-
cally with the design of IEEE compliant FPU’s. A key issue
is the choice of an abstraction level. We use an abstrac-
tion level suggested by Matula [4] which enables ignoring
representation issues and simplifies greatly the description
since one can avoid bit-level arguments. The Standard spec-
ifies the functionality but is hard to interpret. We believe
that it is imperative to have a clear and structured specifica-
tion. In particular, we define representable values, rounding,
and exceptions. Modularity is obtained by defining a suc-
cinct property that the output of an adder and the input to
the rounding unit should satisfy so that correctness is guar-
anteed. A rounding unit design is presented that detects
exceptions correctly and deals correctly with trapped over-
flows and underflows. An addition algorithm is presented,
and its correctness is discussed.

All the proofs are omitted and appear in the full version
of the paper.

2. IEEE Standard - representable numbers

In this section we review which numbers are repre-
sentable according to the IEEE Standard. The abstraction
level ignores representation and uses factorings as suggested



by Matula [4]. A factoring factors a real number into three
components: a sign factor, a scale factor, and a significand.
We define the set of representable floating point numbers
and describe their geometry.

Factorings

Every real number = can be factored into a sign factor
(determined by a sign-bit), a scale factor (determined by an
exponent), and a significand as follows:

z=(-1)*-2°f

The sign bit s is in {0, 1}, the exponent e is an integer, and
the significand f is a non-negative real number. Usually the
range of the significand is limited to the half open interval
(0, 2), but for example, intermediate results may have sig-
nificands that are larger than 2. We henceforth refer to a
triple (s, e, f) as a factoring, and val(s, e, f) is defined to
be (~1)* - 2¢ - f. A natural issue is that of unique represen-
tation. We postpone this issue until Sec. 3.1 in which we
define a unique factoring called a normalized factoring.
We need to introduce a factoring of oo as well. We
do that by introducing a special exponent symbol e, and a
special significand symbol f, that must appear together in
a factoring (namely, an integer exponent cannot appear with
foo and a real significand cannot appear with e,). Thus,
the factoring of co is (0, e, foo ), and the factoring of —oo

is (1, eco;s foo)-
Standard’s representable real numbers

In this section we define which numbers are representable
according to the IEEE Standard .

Every format (single, double, etc.) has two parameters
attached to it: (a) n - the length of the exponent string; and
(b) p - the length of the significand string (including the
hidden bit).

The set of representable exponent values is the set of all
integers between epax and emin. The values of emax and
emin are determined by the parameter n as follows:

P Ao .
minimum exponent: e, = 1 — bias.
. a .
maximum exponent: enyax = 2" — 2 — bias.

where bias £ 27! — 1. This range of exponent values
results from the biased binary representation of exponents.

The set of representable significand values is the set of
all integral multiples of 2~(®~1) in the half open interval
{0,2). We distinguish between two ranges: representable
significand values in the half open interval [0, 1) are called
denormalized, and representable significand values in the
half open interval [1, 2) are called normalized.

55

Not all combinations of representable exponent values
and significand values are representable. Specifically, the
denormalized significands can only appear with the expo-
nent value ey . However, the normalized significands may
appear with all the representable exponent values.

The Geometry of representable numbers
We depict the non-negative representable real numbers

in Fig. 1; the picture for the negative representable numbers
is symmetric.

2“min_(P_1) Qemin-(P"‘l)
I Ay
0 2€min 2€min+t1
92—(p—1)
I I [ I
27 2z+1
max— _1
2_6;__’(11 ) Trmax
I I R
2¢max zﬂmax*‘l

Figure 1. Geometry of representable numbers

The following properties characterize the representable
numbers:

(1) For every exponent value z between epin and emax
there are two intervals of representable numbers; [22,27+1)
and (—2°%!, —2%]. The gaps between consecutive repre-
sentable numbers in these intervals are 2¢=®=1),

(2) As the exponent value increases by one, the length
of the interval 27, 2¢ 1) doubles, and the gaps between the
representable numbers double as well. Thus, the number
of representable numbers per interval is fixed and it equals
2r-1

(3) Thedenormalized numbers, namely, the representable
numbers in the interval (—2°mi», 2¢min} have an exponent
value of emin and a significand value in the interval [0, 1).
The gaps between consecutive representable denormalized
numbers are 2¢=i=~(P=1)_ Thus, the gaps in the interval
[0,2¢min) equal the gaps in the interval [2¢min 2€mintl)
This property is called in the literature gradual underflow
since the large gap between zero and 2°=i» is filled with
denormalized numbers.

3. Rounding - Definition

In this section we define rounding in round-to-nearest
(even) mode.



3.1. Normalized factoring

Every real number has infinitely many factorings. We
would like to obtain a unique factoring by requiring that
1 € f < 2. However, there are two problems with this
requirement. First, zero cannot be represented, and second,
we do not want to have very small exponents. (We deal
with large exponents later, during exponent-rounding). A
normalized factoring is a unique factoring which avoids very
small exponents and enables representing zero.

Definition 1 Normalization shift is the mapping n from the
reals to factorings which maps every real z into n(z) =
(s,e, f) so that & = val(n(z)) = val(s,e, ), i.e. valueis
preserved, and the following conditions hold:

L. Ifabs(z) > 2%, then 1 < f < 2. In this case, we
say that the significand f a normalized significand.

2. Ifabs(z) < 2°™ia, then e = ey, and 0 < f <
1. In this case, we say that the significand f is a
denormalized significand.

The sign-bit in the normalization shift of zero is not well
defined. However, the Standard sets rules regarding the sign
bit when the exact result equals zero. For example, (+5) -
(—0) = —0and 5 — 5 = +0. Therefore, we assume that the
rounding unit is input the correct sign bit and the rounding
unit does not change the sign bit. When & = oo, the
normalization shift of « is (s, ecq, foo ), Where s = sign(z),
and ey, foo denote the exponent and significand symbols
used for factoring +co.
We also consider normalized factorings.

Definition 2 A factoring (s, e, f) is the normalized factor-
ing of (s', ¢, f') (respectively z) if it satisfies (s, e, f) =
n(val(s’, ¢, f')) (respectively (s, e, f) = n(z)). A factor-
ing (s, e, f) is normalized if (s, e, f) = n(val(s, e, f)).

We use the term “normalized” for two different purposes:
a normalized significand is a significand in the range [1, 2),
whereas a normalized factoring is a unique factoring repre-
senting a real number. The disadvantage of this terminology
is that a normalized factoring can have a denormalized sig-
nificand.

3.2. Significand rounding

Consider a significand f > 0. Suppose we would like to
round f so that its binary representation has at most p — 1
bits to the right of the binary point (this implies p bits of
precision when f < 2). We deal with rounding in round-to-
nearest (even) mode.

First, we sandwich f by two consecutive integral multi-
ples of 2= (=1 g5 follows:

g-27P V< fF<(l+g) 27D, )

56

Let ¢’ be the even integer in {q,¢ + 1}. The signif-
icand rounding of f, denoted by sig_rnd(f) is defined as
follows: (a) If ¢ - 2=V < f < (¢ + 0.5) - 2-(-1),
then sig.md(f) = ¢-27®~1; b) If f = (¢ + 0.5) -
2=(=1), then sig_rnd(f) = ¢'-2~#=1); and (¢) If (¢+0.5)-
2701 < f < (¢+1)-27?=D, then sigrnd(f) = q -
9~(p~1)

Define the signal SIG.INEXACT as follows:

SIGINEXACT = 1 if sig_rnd(f) # f

The SIG.INEXACT signal is required for detecting the loss of
accuracy.

Note that the rounding modes: round to 4-co and round to
—00, as defined in the Standard, are non-symmetric round-
ing modes. Namely, in these rounding modes, significand
rounding depends also on the sign bit. For simplicity, we
omit the sign bit as an argument of significand rounding.
However, in our rounding unit depicted in Fig. 2, the sign
bit is input to the significand rounding box.

3.3. Post-Normalization

It is important to note that if f € [0, 2), then the result
of significand-rounding, sig.rnd(f), is in the range [0, 2).
The case that sig_rnd(f) = 2 is called significand overflow.
‘When significand overflow occurs, the significand is set to
1 and the exponent is incremented. This normalization shift
takes place only when a significand overflow occurs. There-
fore, post-normalization, denoted by post_norm(s, e, f), is
defined as follows:

(s,e+1,1))
(3,6, f)

iff=2
postnorm(s, e, f) £ { ot}{crwisc

3.4. Exponent rounding

Exponent rounding maps factorings into factorings and
deals with the case that the absolute value of a factoring is
too large. According to the Standard, exponent rounding
is bypassed when trapped overflow exception occurs. We
define only exponent rounding in round-to-nearest (even)
mode.

Recall that e, and fo, denote the exponent and signifi-
cand symbols used for factoring tco. Let 2}, ,, = 2°msx .
(2 — 27?). The exponent-rounding of (s, e, f) is defined as
follows:

(5) €0 ) fOO)
n(val(s,e, f)) otherwise

if2°. f > 2t

exp_rnd(s, e, f) £ {

The motivation for the definition of the threshold of z},,,,
is as follows. Let z,.x denote the largest representable
number, namely, @max = 2= - (2 — 2~=1)_ If we were

not limited by emax, then the next representable number



would be 2°=»* . 2. The midpoint between these numbers is
exactly 7, ... The binary representation of the significand
of Zpax 18 1.11---1. Therefore, the significand is an odd
integral multiple of 2~(P~1), Hence, z* . would be rounded
up in round-to-nearest (even) mode. This is why numbers
greater than or equal to «} .. are rounded to infinity. A
similar argument holds for rounding of values not greater
than —z7}, .. to minus infinity.

Note thatif 1 < f < 2 is an integral multiple of 2~(*~1),
then we can simplify the definition of exponent rounding,

and round to infinity if e > emax.
3.5. Rounding

Rounding is a mapping of reals into factorings. The
rounding of z, denoted by r(z), is defined as follows: Let
(s, e, f) denote the normalized factoring of z,i.e. (s, e, f) =
7n(z), then

@

Therefore, rounding is the composition of four functions:
(a) normalization shift - to obtain the right factoring; (b)
significand rounding - to obtain the right precision (namely,
limit the length of the significand); (c) post-normalization -
to correct the factoring in case significand overflow occurs;
and (d) exponent rounding - to limit the range of the value
of the factoring. Note that r(z) is a normalized factoring.

r(z) £ exp_rnd (post_norm (s, e, sigrnd(f)))

4. Standard’s exceptions

Five exceptions are defined by the Standard: invalid op-
eration, division by zero, overflow, underflow, and inexact.
The first two exceptions have to do only with the strings
given as input to an operation rather than with the outcome
of a computation. Hence, we focus on the last three excep-
tions. The main advantage is that we can use our notation
for short and precise definitions of the exceptions.

Exception handling consists of two parts: signaling the

occurrence of an exception by setting a status flag and in-
voking a trap handler (if it is enabled). We start by defining
each exception, namely, we define the conditions that cause
an exception to occur.
Assumptions:  If one of the operands is infinite or not-a-
number, then the overflow, underflow and inexact exceptions
do not occur. Hence, we assume both operands represent
finite values. Moreover, we assume that the exact result is
also finite. (An infinite exact result genreates a division by
zero exception, an invalid exception, or does not signal any
exception).

4.1. Definitions

Defining exceptions requires two additional definitions.

57

Definition 3 A normalization shift with unbounded expo-
nent range is the mapping 7 from the non-zero reals to  fac-
torings which maps every real x into a factoring (s, €, f) so

-

that & = val(i)(x)), i.e. value is preserved, and f € [1,2).

In other words, () is the normalized factoring of 2 # 0
if there were no lower bound on the exponent range.

Definition 4 The rounding with an unbounded exponent
range is the mapping T of non-zero real into factorings de-
fined by:

-~

() £ postnorm((s, €, sig_rnd(f))), where 7(z) = (s,€,

Notation:  Throughout this section we use z to denote
the exact (finite) value of the result of an operation. Let

n(2) = (s,¢, f), and (z) = (s,%, f).

Overflow. Informally, overflow occurs when the magnitude
of the result is larger than 2max. However, this is not pre-
cise, because significand rounding can lower the magnitude
back into the range of representable numbers. The precise
definition is given below.

Definition 5 Let x denote the exact result, and T,y the
largest representable number. An overflow exception occurs
if

val{F(z)) > &max or val(F(z)) < —Tmax

Note that the definition of overflow is with respect to round-
ing with an unbounded exponent range.

The following claim facilitates the detection of overflow,
since we do not compute 7(z).

Claim 1 Let (s,e, f) denote the normalized factoring
of the exact result. An overflow exception occurs iff
2¢ .sig.nd(f) > zmax on equivalently, iff € > empax or
(e = emax and signd(f) = 2).

Underflow. The definition of underflow in the Standard is
extremely complicated. In the definitions, we follow the
language of the Standard, although some of the definitions
include irrelevant cases. Informally, underflow occurs when
two conditions occur: (a)tininess - The magnitude of the
result is below 2¢miz; and (b) loss-of-accuracy - Accuracy
is lost when the tiny result is represented with a denormal-
ized significand. The Standard gives two definitions for
each of these conditions, and thus, the Standard gives four
definitions of underflow, each of which conforms with the
Standard. Note that the same definition must be used by an
implementation for all operations. However, the Standard
does not state that the same definition should be used for all
precisions.

The two definitions of tininess, tiny-after-rounding and
tiny-before-rounding, are defined below.



Definition 6 tiny-after-rounding occurs if ¢ # 0 and

-~

) < Qemin

0 < abs(7(z)) 2?-sig_rnd(

tiny-before-rounding occurs if
0 < abs(z) = 2° - f < 2°min

In round-to-nearest (even) mode, tiny-after-rounding occurs
iff 2¢min .27P~1 < gbs(z) < 2¢min.(1—27P~1), In general,
tiny-after-rounding implies tiny-before-rounding. *

The two definitions of loss of accuracy are defined below.

Definition 7 loss-of-accuracy-a (also called denormaliza-
tion loss) occurs if £ # 0 and

r(e) # 7(z)

loss-of-accuracy-b (also called inexact result) occurs if

val(r(z)) # &

The Standard is unclear about whether loss-of-accuracy
should also occur when overflow occurs. We have chosen
to define loss-of-accuracy so that the two types of loss-
of-accuracy occur when overflow occurs. However, we
are interested in detecting loss-of-accuracy when tininess
occurs, and not when overflow occurs. In this context,
loss-of-accuracy-b simply means that significand rounding
introduces an error. The meaning of loss-of-accuracy-a is
more complicated: When f is normalized (namely, in the
range [1, 2)), then n(z) = 7j(), and if no overflow occurs,
then loss-of-accuracy-a does not occur. However, when f is
denormalized, then e = e, and the binary rep/{esentation
of f has e — € leading zeros. Therefore, sig_rnd(f) isin gen-

eral different from 2°~¢ - sig_rnd( f), because extra nonzero
digits are “shifted in”. Note that loss-of-accuracy-a implies
loss-of-accuracy-b.

The definition of underflow depends on whether the un-
derflow trap handler is enabled or disabled.

Definition 8 [f the underflow trap handler is disabled, then
underflow occurs if both tininess and loss-of-accuracy occur.
If the underflow trap handler is enabled, then underflow
occurs if tininess occurs.

Note that tininess in Def. 8 means either tiny-after-rounding
or tiny-before-rounding. Similarly, loss-of-accuracy means
either loss-of-accuracy-a or loss-of-accuracy-b.

Inexact. The Standard defines the inexact exception twice,
and the two definitions turn out to be equivalent. The
first definition says that an inexact exception occurs when
the value of the delivered result does not equal the ex-
act result. This has already been defined in Def. 7 as
loss-of-accuracy-b. The second definition is as follows.

1Note that 0 < 2° . sigznd(f) < 2°min in round-to-nearest (even)
mode is equivalent to 2¢min « 27P < abs(z) < 2°min . (1 — 27P).

58

Definition 9 An inexact exception occurs if val(r(z)) # @
or if an overflow occurs with the trap handler disabled.

Since overflow implies loss-of-accuracy-b, it follows that
both definitions are equivalent.

The following claim facilitates the detection of an inexact
exception.

Claim 2 val(r(z)) z Iff sigand(f)
exprnd(s, e, sigrnd(f)) = (s, e, sigrnd(f)).

= = f and

Note that the overflow and underflow trap handlers have
precedence over the inexact trap handler.

4.2, Trapped overflows and underflows

The Standard sets special rules for the delivered result
when an overflow or an underflow exception occurs and the
corresponding trap handler is enabled. We call these cases
trapped overflows and trapped underflows, respectively. In
these cases, the exponent is “wrapped” so that the deliv-
ered result is brought back into the range of representable
normalized numbers. We formalize the Standard’s require-
ments below.

Definition 10 Exponent wrapping in trapped overflow and
underflow exceptions:

1. If a trapped overflow occurs, then the value of the
delivered resultisval(r(z-2~%)), where o = 3-2772,

2. If a trapped underflow occurs, then the value of the
delivered result is val(r(z - 2%)).

The difficulty that this “wrapped exponent” requirement
causes is that we do not have the exact result z, but only
the factoring (s, e, sig-rnd(f)). Our goal is to integrate
these requirements with the computation of rounding. The
following claim shows that this can be easily done in the
case of overflow.

Claim 3 Ler (s,e', f')
where 1(x)

post_norm(s, e, sigand(f)),
(s, e, f). If a trapped overflow occurs, then

r(27% ) = (s,¢' — a, f)

The implication of Claim 3 is that when a trapped over-
flow occurs, the only fix required is to subtract « from the
exponent.

The analogous claim for the case of underflow does not
hold. The reason being that (s, e + «, f) is not the normal-
ized factoring of 2% . z. Recall, that f is denormalized, and
hence, its binary representation has leading zeros. How-
ever, the normalized factoring of 2% - # has a normalized
significand. Therefore, multiplying = by 22 effects both the
exponent and the significand in the normalized factoring.



Dealing with a trapped underflow exception is simple in
addition and subtraction operations since the rounded result
is exact (see Sec. 7.3). Therefore, val(r(2*-z)) = val(s, e+
@, f), and hence, one only needs to normalize f and update
the exponent by adding o minus the number of leading zeros
in f.

Dealing with a trapped underflow exception in multi-
plication relies on the availability of 7j(z). Consider the
factoring (s, €, A) = 7(z). Note that since underflow oc-
curs, it follows that € < epin. We formalize an analogous
claim for trapped underflow exceptions using 7j(z).

Claim4 Let (s, f) N(z), and (s,e,f)
postnorm(s, €, sig-mnd(f)). If a trapped underflow occurs,

then

r(2%-z) = (s,¢ + o, f)
5. Rounding - Computation

In this section we deal with the issue of how to design a
rounding unit. Our goal is to design a rounding unit that also
detects the exceptions: overflow, underflow, and inexact.
Moreover, the rounding unit wraps the exponent in case
of a trapped overflow or underflow exception. Significand
rounding is presented using representatives that require less
bits of precision while guaranteeing correct rounding. We
relate representatives with sticky bits, and present a block
diagram of a rounding unit capable of detecting and dealing
with exceptions.

5.1. Representatives

Definition 11 Suppose « is an integer. Two real numbers
z1 and x4 are a-equivalent, denoted by ©1 = x4 if there
exists an integer q such that ¢y, 9 € (¢27%,¢27% +279)
ore; = &g = q27°,

The binary representations of c-equivalent reals must agree
in the first o positions to the right of the binary point. Note
that in case a number has two binary representations, we
choose the finite representation (for example, 0.1 rather than
0.0111..)). ’

We choose a-representatives of the equivalence classes
as follows.

Definition 12 Let ¢ denote a real number and o an integer.
Let q denote the integer sarisfying: ¢27% < z < (g+1)27°.
The a-representative of , denoted by rep, (z), is defined as

Sfollows:

g2~
(¢ +0.5) -2

ife=q¢q27¢

rep, () ifz € (¢2%, (¢ +1)2%)

59

Note that for a fixed «, the set of all a-representatives equals
the set of all integral multiples of 27%~!, Thus, the a-
representatives have « + 1 bits of precision beyond the bi-
nary point. Moreover, the least significant bit of the binary
representation of an a-representative can be regarded as a
flag indicating whether the corresponding equivalence class
is a single point or an open interval.

The following claim summarizes the properties of repre-
sentatives that we use in significand rounding.

Claim 5 Let f' = rep,(f), then

sigmd(f) = sigmd(f’)
signd(f) = f  iff sigamd(f) = f/
sigmd(f) = f iff f'=q-2707D

Claim 5 shows that one can substitute f with rep,(f)
for the purpose of computing sig_rnd(f). Not only do
they gencrate the same significand rounding, but they also
generate the same SIG_INEXACT signal. Moreover, the
SIG_INEXACT signal can be easily computed from rep, (f)
because SIG_INEXACT = 1 iff rep,,(f) is not an integral mul-
tiple of 2=®=1)_ Since rep,(f) is an integral multiple of
2-(P+1)_ it follows that SIG.INEXACT is the OR of the two
least significant bit of the binary representation of rep,,( f).

The following claim shows a simple and sufficient con-
dition for two reals to have the same rounded factoring. We

heavily rely on this claim for gluing the rounding unit with
the adder.

Claim 6 If n(z) = (sz,6x, fz), 7(¥) = (sy,¢y, fy) and

e "=y, then (a) sy = sy, ez = ¢y and fr & fy; and (b)

r(z) = r(y).

Consider an exact result ¢ and a computed result y.
Claims 5 and 6 imply that the inexact exception is detected
correctly even if we use y rather than z.

Based on Claim 2 we can detect an inexact exception as
follows:

Corollary 7 An inexact exception occurs iff an untrapped
overflow exception occurs or rep,, () is not an integral mul-

tiple of 2~ (=1),
5.2. Sticky-bits and representatives

The common way of “shortening” a significand f whose
binary representation requires more than p — 1 bits to the
right of the binary point is called a sticky-bit computation. In
a sticky-bit computation, one replaces the tail of the binary
representation of f starting in position p + 1 to the right
of the binary point with the OR of the bits in this tail. We
show that the value of the binary string obtained by this
substitution equals the p-representative of f. Thus our use



of representatives captures the common practice of using a
sticky-bit.

Claim 8 Ler f denote a significand and let bin(f) =
fo-fifa ... denote the binary representation of f, namely,

f =3 fi - 27% Define:

OR(fp+1, fo+2,---)

> fi- 277 + sticky-bit(f, p) - 277!
i<p

e

sticky bit(f, p)
sticky(f, p)

Then,
rep, (f) = sticky(f, p)

5.3. The significand-rounding decision

Given the representative of f € [0, 2), significand round-
ing reduces to a decision whether the p most significand
bits of the binary representation of rep,(f) should be in-
cremented or not. The decision depends on: the three least
significant bits of the binary representation of rep,,(f), the
sign bit, and the rounding mode.

The three least significant bits of the binary representation
of rep,, (f) are called: the LSB (whichis p—1 positions to the
right of the binary point), the round-bit, and the sticky-bit.
Using the notation used in defining significand rounding;
the L.SB is needed to determine the parity of ¢, whereas the
round-bit and sticky-bit determine which of the three cases
1s selected.

5.4. Design - Block Diagram

In this section we describe a block-diagram of a round-
ing unit. Obviously other more efficient implementations
are possible and have been implemented. The advantages
of our design are: (a) Well defined requirements from the
inputs to facilitate the usage of the rounding unit for differ-
ent operations. (b) Correct and full detection of exceptions.
(c) Correct handling of trapped underflow and overflow ex-
ceptions. Whenever no confusion is caused, we refer to a
representation of a number (a significand, exponent, etc.)
as the number itself. Fig. 2 depicts a block diagram of a
rounding unit.

Input. The inputs consist of: a factoring (sin, €in, fin),
the rounding mode, flags called UNF_EN and OVF_EN indicat-
ing whether the underflow trap and overflow trap handlers
respectively are enabled.

Assumptions. We assume that the inputs satisfy the follow-
ing two assumptions:

1. Let = denote the exact result. For example, z is the
exact sum of two values that are added by the adder

60

and rounded by the rounding unit. Let (s,€;, fm)
7j(z). Then,

~
P-tax

val(sin, €in, fin) z

. abs(z) is not too large or small so that wrapping the
exponent when a trapped underflow or overflow oc-
curs produces a number within the range of numbers
representable with normalized significands. Namely,

9emin—& < abs(?(a:)) < 9émaxtlta

Output. The rounding unit outputs a factoring
(Sin s €out, four) that equals: (a) r(z) if no trapped overflow
or underflow occurs; (b) »(z - 27%) if a trapped overflow
occurs; and (c) r(z - 2%) if a trapped underflow occurs.
According to Claims 3, 4, and 6, this specification can be
reformulated as (a) r(val(s;n, €in, fin)) if no trapped over-
flow or underflow occurs; (b) 7(val(sin, €in — @, fin)) ifa
trapped overflow occurs; and (¢) r(val(sin, €in + @, fin)) if
a trapped underflow occurs.
Additional flags are output:
SIG.INEXACT. The OVERFLOW flag signals whether an
overflow exception occurred. The TINY flag signals
whether tiny-before-rounding occurred. The SIG_INEXACT
signals whether significand rounding introduces a round-
ing error, and is used for detecting an inexact excep-
tion occutred (according to Coro. 7, inexact occurs iff
SIG.INEXACT OR (OVERFLOW AND OVF_EN)).
Functionality. We describe the functionality of each block
in Fig.2:

OVERFLOW, TINY and

1. The normalization shift box deals primarily with
computing n(val(s;n, €in, fin)). However, it also
deals with trapped underflows and partially deals
with trapped overflows. Defining the functionality
of the normalization shift box requires some no-
tation: Let (Sin, €ln, fin) = 0(val(sin,ein, fin))
and let (sin, €in, fin) = Q{val(sin, fin,€irn)). Then
TINY, OVFy, e®, f™ are defined as follows:

TINY =1 if 0 < 2%". f;, < 2°mi=
OVFy =1 if 2% . f;,, > 9omaxtl

if OVF_EN and OVF,
if UNE_EN and TINY
otherwise

(e:ﬁn —Q, /Q(n)
(Ein + «, fin)
(¢in: fin)

Note that when OVF; and OVF_EN, the values of ¢ and
f7 are not important because ¢,y and fo,; are fully
determined in the exponent rounding box according
to the rounding mode and the sign bit.

(€ f*) =



2. The rep, () box computes f' = rep, (f"), meaning
that the final sticky-bit is computed. Typically, a
“massive” sticky-bit computation takes place before
the rounding unit, and here, only the round-bit and
sticky-bit are ORed, if the guard-bit turns out to be
the LSB.

. The significand rounding outputs f? = sig.rnd(f*)
and two flags: SIG-OVF and SIG_INEXACT. The
SIG-OVF flag signals the case that f2 = 2, known
as significand overflow. The SIG_INEXACT flag signals
whether f2 # f1.

. The post-normalization box uses the SIG-OVF flag as
follows: If f2 = 2, then the exponent needs to be
incremented, and the significand needs to be replaced
by 1. This can be obtained by ORing the two most-
significant bits of the binary representation of f2,
which is depicted in the figure by an OR gate that
is input these two most-significant bits. Note, that
since f2 € [0, 2], the binary representation of f2 has
two bits to the left of the binary point.

. The exponent adjust box deals with two issues caused
by significand overflow: (a) a significand overflow
might cause the rounded result to overflow; and (b)
a significand overflow might cause a denormalized
significand f” to be replaced with a normalized sig-
nificand f3 = 1. (We later show that case (b) does
not occur in addition/subtraction.)

The output OVF; is set to one if €2 = egax + 1. The
output €2 is defined as follows: (a) If OVFEEN and
OVF2, namely, significand rounding caused a trapped
overflow, then €3 = emax + 1 —a. (b) If msb(f3) = 1
and TINY, namely, significand rounding causes a tiny
result to have a normalized significand, then e is
set to the “normalized” representation of ey, . Note
that this case deals with the representation of the ex-
ponent, namely, whether the representation reserved
for denormalized significands should be used or the
representation reserved for normalized significands.
(c) Otherwise, e3> = e?. Note that if an untrapped
overflow exception occurs, then the value of 2 is not
important because it is overridden by the exponent
rounding.

. The exponent rounding box performs exponent round-
ing outputs an exponent and significand (e,ut, fout)
that equal: (a) (¢3, f3) if OVERFLOW or OVF_EN; (b)
(emaz, fmax) if OVERFLOW and OVFE_EN and round to
Tmax; and (€) (€co, foo ) if OVERFLOW and OVF_EN and
round to co. The decision of whether an overflowed
result is rounded to 2max Or to 0o is determined by
the rounding mode and the sign bit.

6l

rounding mode
OVF.EN

€in fin UNFEN

norm, shift
OVFq

eﬂ

Sin

inc

f2
post. .
mux norm,.
-

msh(f3
adjust exp

TINY OVERFLOW

,fout

Cout SIGINEXACT

Figure 2. Rouhding unit

6. Gluing rounding with other operations

In this section we discuss how the rounding unit is glued
with an adder or a multiplier (or other functional units). We
provide some mathematical tools that facilitate this task.

6.1. General framework

How does one design a circuit that meets the Standard’s
requirement that “each of the operations shall be performed
as if it first produced an intermediate result correct to infi-
nite precision and with unbounded range, and then coerced
this intermediate result to fit the destination’s format”? Ob-
viously, one does not perform exact computations because
that would be too expensive and slow. Fig. 3 depicts how
infinite precision calculation is avoided. The functional unit
is typically a fixed point unit, for example, an adder or a
multiplier. Cost and delay is saved by minimizing the preci-
sion of the functional unit. Given two operands, rather than
computing op(a, b) with infinite precision, we pre-process
the operands to bound the precision, and operate on o/ and &',
The bounded precision result, denoted by op(a’, '), satis-
fies r(op(a, b)) = r(op(e’, V'), and thus, correctness is ob-
tained. We guarantee that r(op(a, b)) = r(op{(a’, b’)) by us-
ing Claim 6, namely, by insuring that op{a’, ) and op(a, b)
are (p — e)-equivalent. (When a trapped underflow occurs,



we need more precision, namely, op(a’, ) bze op(a,b),
where € is the exponent in 7j(z)). This succinct condition
greatly simplifies the task of correctly gluing together the
functional unit and the rounding unit.

a b a b
l PREPROCESS
FUNC UNIT T 7]
op(a, b) FUNC UNIT
ROUNDING on(@ 1)
ROUNDING
r(op(a, b))

r(op(a’,¥'))

Figure 3. Avoiding infinite precision

6.2. Mathematical tools

The following claim is used in proving the correctness
of rounding, addition, detection of exceptions, and handling
of trapped overflows and underflows. It enables a symbolic
treatment of the manipulations performed during various
operations without having to deal with the peculiarities of
representation.

Claim 9 Let ¢,y denote real numbers such that x =y
for an integer . Let o < « denote an integer. Then the
following properties hold:

1. rep,(—z) = —rep,(x), and hence, —z = —y.
2. 2%y

3. Forevery integeri : z27¢ ot y27t,

4. ¢+ q2"°‘l Zy+ q2'°’l,for every integer q.

Claim 9 should be interpreted as follows: (1) rep, () can
be computed by computing rep,, (abs()) and multiplying it
by sign(z). (2) Recall that an a-representative has « + 1
bits of precision beyond the binary point. Thus, having too
many bits of precision does not disturb correct rounding,.
(3) If two reals have identical binary representation up to
bit position o beyond the binary point, then after division
by 2¢ (shift right by ¢ positions) they have identical binary

representations up to bit position « + ¢. Conversely, a shift
to the left reduces the precision beyond the binary point.
(4) Adding an integral multiple of 27¢ to two reals whose
binary representations agree up to bit position o beyond the
binary point, does not create a disagreement in these bit
positions.

7. Addition

In this section we present an addition algorithm and prove
its correctness. By correctness we refer to delivering the
correct result and detecting the exceptions. In particular,
we provide a proof that 3 additional bits of precision suffice
for correct rounding. We deal here only with adding finite
valued factorings and ignore the Standard’s requirements
concerning the sign-bit when the exact result equals zero.
The special cases, such as NAN's, infinite valued factorings,
and the sign of zero results are handled by additional logic
which we do not specify. Whenever no confusion is caused,
we refer to a representation of a number (a significand,
exponent, etc.) as the number itself.

7.1. Addition algorithm

The input to the adder consists of two factorings
(81,€1, f1) and (s2,€2, f2) which are normalized factor-
ings. The adder outputs the factoring (s, e1, ¢’), and this
factoring is rounded by the rounding unit which is described
in Sec. 5.4. The algorithm is divided into three stages:
Preprocessing, Adding, and Rounding as follows:

Preprocessing

1. Swap. Swap the operands, if necessary, so that
e1 > es. This step is computed by comparing the ex-
ponents and selecting the operands accordingly. For
simplicity, we assume that e; > eg.

2. Alignment Shift. Replaces f, with f5, where f§ = f,-
27% and § = min{e; — es,p + 2}. This step is
computed by shifting the binary representation of f,
by & positions to the right.

3. Compute Representative. Compute ff £
rep,11(f3). This computation is, in effect, a sticky-
bit computation as described in Claim 8. Note that the
binary representation of f5' has p + 2 bits to the right
of the binary point (namely, exactly 3 bits of precision
are added to the significands).

Functional Unit

Add Significands. Output the factoring is (s, 1, ¢’), where
s’ and ¢’ are the sign and magnitude of (—1)** - fy +(—1)%2-



#/. Note that g’ has p+ 2 bits to the right of the binary point
and 2 bits to the left of the binary point.

Rounding

The Rounding unit receives the factoring (s’,e1,¢') and
additional inputs as described in Sec. 5.4.

Note, that the alignment shift and the representation com-
putation can be performed in parallel since the shift amount
§ = ey — e2 can be computed during the swap stage. More-
over, the width of the shifter equals p + 2, namely, the bits
that are shifted beyond position p -+ 1 to the right of the
binary point are discarded by the shifter. These discarded
bits participate in the sticky-bit computation.

7.2. Correctness

In this section we discuss the correctness of the addition
algorithm.

Let z = val(sy, e1, f1), y = val(sa, ez, fa), and §(z +
y) = (s,¢€, f) Lety” = val(s,, e1, f4). Since the factoring
(s',e1,g') is obtained by adding factorings that represent z
and y”, it follows that val(s’,e1,¢’) = ¢ + y''. Based on
the correctness of the rounding-unit, proving correctness
reduces to proving the following claim.
Claim10 z +y"=" ¢z + ¢’
Note that we need all the 3 additional bits of precision only
if e = e; — 1. In this case, the normalization shift shifts the
significand by one position to the left, and only 2 additional
bits of precision are left, without them correct rounding
cannot be performed.

7.3. Remarks

In this section we point out properties specific to addition
and subtraction.

The following claim deals with the underflow exception
in the addition operation. In particular, it shows that all
four definitions of the underflow exception are identical with
respect to addition and that a trapped underflow never occurs.

Claim 11 Suppose two finite valued factorings are added,
then:

1. tiny-after-rounding occurs iff tiny-before-rounding
occurs.

2. If tiny-before-rounding (or tiny-after-rounding} oc-
curs, then the adder outputs the exact sum, namely,
neither loss-of-accuracy-a nor loss-of-accuracy-b oc-
cur.

63

Therefore, during addition, if the underflow trap handler is
disabled, then the underflow exception never occurs. If the
underflow trap handler is enabled, the underflow exception
occurs iff 0 < f® < 1 where f* denotes the significand
output by the normalization shift box in the roundinng unit.

An interesting consequence of Claim 11 is that the ex-
ponent adjust box in the rounding unit can be simplified for
rounding sums and differences. Since a denormalized re-
sult is always precise, significand rounding cannot cause a
denormalized significand to become normalized (thanks to
Marc Daumas for pointing this out).

8. Multiplication

Multiplication is straightforward. The input consists of
two factorings (s1,e1, f1) and (s2, e, fo) which are nor-
malized factorings. The multiplier outputs the factoring
(s', ¢, f'), and this factoring is rounded by the rounding
unit which is described in Sec. 5.4. The outputs are defined
by s = XOR(Sl, 32), e/ = ey + eq, and f/ = f1 + fa. Note,
thatif f;, fo > 1, then one can avoid having a double length
significand f' by computing f' = rep,(f1 - f2).

Acknowledgments

We would like to thank Marc Daumas, Arno Formella,
John Hauser, David Matula, Silvia Miiller, Asger Nielsen,
and Thomas Walle for many helpful suggestions and discus-
sions.

References

[11 “IEEE Standard for Binary Floating-Point Arithmetic”,
ANSV/IEEE Standard 754-1985.

[2] J.T.Coonen, “Specification for a Proposed Standard for Float-
ing Point Arithmetic”, Memorandum ERL M78/72, University
of California, Berkeley, 1978.

[3] Isreal Koren, Computer Arithmetic Algorithms, Prentice-Hall,
1993.

[4] David Matula, “Floating Point Representation", manuscript,
May 1996.

[51 Amos R. Omondi, Computer Arithmetic Systems: Algorithms,
Architecture and Implementations, Prentice Hall, 1994.

[6] Uwe Sparmann, Strukturbasierte Testmethoden fiir arithmetis-
che Schaltkreise, Ph.D. Dissertation, Universitit des Saarlan-
des, 1991.

[7] Shlomo Waser and Michael J. Flynn, Introduction to Arith-
metic for Digital Systems Designers, Holt, Reiner & Winston,
1982,



