On-the-Fly Algorithms and Sequential Machines

Christiane Frougny
LIAFA (LILTP)
4 place Jussieu, 75252 Paris Cedex 05, France.
Christiane.Frougny @litp.ibp.fr

Abstract

It is shown that a function is computable by an on-the-fly
algorithm processing data in the most significant digit first
fashion with a finite number of registers if and only if it
is computable by a right subsequential finite state machine
processing data in the less significant digit first fashion.
Applications to conversion of redundant into conventional
representations and to the canonical Booth recoding are
given. We also indicate some applications to negative or
complex radix number systems.

1. Introduction

Conversion from a redundant into a conventional rep-
resentation is important in Computer Arithmetic because
on-line algorithms require redundant representations with
signed digits [19]. Similarly, in some arithmetic algorithms
such as the SRT division algorithm, the result is generated
most significant digit first (MSDF) in a redundant format. It
is well known that such conversions cannot be realized on-
line, that is to say MSDF digitwise, one output digit being
produced by one input digit after a certain delay, because
there is a carry which propagates from right to left. On-the-
fly algorithms to solve this problem have been proposed by
Ercegovac and Lang [7] and generalized by Kornerup [13]
(see also [15] for application to multiplication). In an on-
the-fly algorithm, data are processed in a serial manner from
most significant to least significant, but the algorithm uses
several registers, each of them representing a correct prefix
of the result, corresponding to an assumed value of the carry.
Using parallel prefix computation, on-the-fly algorithms can
be implemented in time O(log n) (see [13]).

The purpose of this work is not to improve on existing
algorithms, but rather to present a theoretical framework
allowing to easily obtain on-the-fly algorithms whenever it
is possible. We show that a function is computable by an
on-the-fly algorithm if and only if it is computable by a
right subsequential finite state machine. Such a machine is

1063-6889/97 $10.00 © 1997 IEEE

260

a 2-tape finite state automaton of a certain kind: inputs are
deterministically and serially processed from right to left, i.e.
LSDF digitwise, and the output is generated LSDF (see [6]
and [3]). In radix r with non redundant digit set {0, - - -, r —
1}, addition, subtraction, multiplication by a fixed integer
are right subsequential functions. Division by a fixed integer
is a left subsequential function (data are processed MSDF).
More generally, functions which are computable by a 2-tape
finite state automaton are those which need only a finite
auxiliary storage memory, independently of the size of the
data. Note that squaring, multiplication and division are
functions which cannot be computed by any kind of a 2-
tape finite state automaton but they are on-line computable.

On the other hand, with a redundant digit set of the form
{—a,---,a} with /2 < a < r — 1, and following the
Avizienis algorithm [2], addition is computable by an on-
line finite state automaton, which is a particular case of a
left subsequential machine (see {16], [9]).

The paper is organized as follows. First we set some
definitions of computability. We prove that a function is
on-the-fly computable if and only if it is right subsequential.
Every radix » conversion into conventional representations
is right subsequential. We illustrate our method on radix 2
conversion of redundant into conventional representations,
showing how the on-the-fly algorithm of [7) can be derived
from the right subsequential machine. We give applications
to the conversion from radix 4 redundant into conventional
2’s complement, to the Booth canonical recoding and to
conversion in number systems where the base is a negative
integer, or some complex number.

2. Definitions and results

In the sequel, we consider integers as finite strings or
words on a finite digit set X, called alphabet, and real num-
bers as infinite strings on this digit set. Let r be the radix, r
integer > 2. Aninteger pis represented by aword p; -« - py,
of the free monoid X* generated by X, withfor1 < k < m,
pr € X, and such that p = Y"5=7 prr™~*. A real number

z of [0, 1} is represented by an infinite word (2%)x>1 such
that oz € X and ¢ = Y, 5, zxr~F. The leftmost digit is
the most significant one. The empty word is denoted by e.
We expose the results on integers (finite words), but they are
valid for real numbers (infinite words) as well.

Let X and Y betwo finite digit sets, and let 42 be a function
from X™ to Y* (forsimplicity we consider only one-variable
functions, but it is not a restriction). X is the input alpha-
bet, and Y is the output alphabet. Following [19), we say
that p is on-line computable (with delay) if there exists a
positive constant & such that, for y; - - -y, = p(ey -+ - 2m),
to generate yx, for 1 < k < n, it is necessary and sufficient
tohave zy, ..., xx4s available. After the delay, one digit of
the result is produced upon receiving one digit of X. For us,
on-line always refers to MSDF serial computations of that
kind. It is well known that some functions are not on-line
computable, like addition in the binary system with non re-
dundant digit set {0, 1}. Another example is the conversion
function y between radix 2 redundant representations and
2-complement representations

x:{1,0,1}* — {0,1}*.

The conversion is equivalent to a subtraction. This con-
version is not on-line computable: consider two redun-
n

dant representations p = 10---01, denoted by p = 10”1
and ¢ = 10”1, for n > 1. Then x(p) = 010”1 and
x(g) = 001™*1; this shows that the least significant digit as
to be known to be able to output the most significant digits
of the result.

We now introduce an other definition [19]. A function is
said to be on-the-fly computable if the digits of the result are
obtained in a serial fashion in MSDF mode, using a finite
number of registers corresponding to different conditional
forms of the current result. More precisely, let y : X* —
Y* and let N registers So,---,Sn—-1 C Y*. Denote by
S;[k] the content of register S; at step k after having read
MSDF k digits. We say that g is on-the-fly computable with
N registers if forp = p1 -+ P, pr € X for1 < k < m,
Solk] = p(py -+ -px), and if for 0 < 4 < N — 1, S;[k] is
the result of a computation with input p; - - - p; “assuming a
certain condition s; on the beginning of the computation”.
Conditions s; are supposed to be all different for every
0 < i < N — 1. For an example where a condition is
not always a carry, see the Booth canonical recoding below
section 3.3.

Then we need a definition from Automata Theory (see
[6], [3])- A right subsequential machine with input alphabet
X and output alphabet Y, M = (S, X x Y*, E, sp,w),isa
directed graph labelled by elements of X x Y™* :

e S is the set of vertices, called states, which is finite

® EC S x (X xY*)x Sisthe set of labelled edges

o s is the initial state

e w is the terminal function from StoY*. Whenw(s) = ¢
for any s € S, the machine is said to be right sequential.
The machine must satisfy the following property: it is input

i
deterministic, that is to say if s = and s 2% ¢ are two

edges of M, then necessarily ¢t = ¢’ and u = v’.
Awordp = p; - pm, wWithpr € X for1 < k < m, has
g € Y* for image by M if there exists a path in M starting
in the initial state sg

Pmltm Pm—1/tm~ pi/w
§o == 81— - e8me] — Sp

with u; € Y*, and ¢ = w(8m)1 -+~ Up,. A function p :
X* — Y™ is right subsequential if there exists a right
subsequential machine M such thatifp € X* andq € Y*,
¢ = p(p) if and only if ¢ is the image of p by M. For an
example see section 3.1.

The machine is called right subsequential to stress on
the fact that data are processed from right to left (LSDF).
The dual notion, where data are processed from left to right
(MSDF,) and where the terminal function comes as a suffix
of the result, is called a left subsequential machine.

We can now state the principal result. The proof is illus-
trated on an example in section 3.1.

Proposition1 . A function p : X* — Y* with
Domain(p) = X* is on-the-fly computable if and only if
it is a right subsequential function.

Proof. First suppose that M = (S, X x Y*, E, sq,w)isa
right subsequential machine realizing u. Since the function
is total, the machine can be chosen complete, that is to
say, for each state s € S and for each input digit z € X,

there exists an edge of the form s z—/"» t. In addition we
choose a machine which is minimal in the number of states.
Then we derive from M an on-the-fly algorithm computing
MSDF the function p as follows. Let us denote the states
of Mby S = {sg,---,8n-1}. We thus need N registers
denoted by Sy, - - -, Sy—1, register S; corresponding to state
s;, 0 < i < N — 1, Initialization is the following: for
0<i<N-1, 8]0 = w(s;). Letp = py---pm be an
input word and let 0 < k < m — 1; recurrence relations
are determined by: foreach 0 < ¢ < N — 1, for each

Pr+1 € X, ifin M there is an edge of the form s; pii/»" 4,

0<§ < N-1,putSi[k+1] = (5;[k], w) where (S; k], v)
denotes the result of the concatenation of S;[£] and of u (note
that, for a given value of p;41, there is only one possible
edge because M is input deterministic). We claim that for
0<i< N-—1landfor0< k< m,S;[k]is equal to the
output label of the unique path in M starting in s; and with

261

input label py, - - - p1. The proof is by induction on k. When
k = 0, the input is the empty word, and S;[0] = w(s;). Let
us consider the following path in M

p1/u
LA

Prfuk

Pr—1/k-1
8 —— 8 — .

3!

/W(“k)
*Sige i T -

By induction hypothesis, S;,[k — 1] = w(s:,) w1 ug-1.
By construction, S;[k] = (S;,[k — 1], uz), thus S;[k] =
w(si, U1 - - - up—1ux, and we are done. Hence, for each
1<k < m, Solk] = p(pr--pr).

Conversely, let us suppose that p : X* — Y™ is on-
the-fly computable with N registers So, -+, Sy—1 C Y*.
We define a right subsequential machine as follows: let
M = (5,X x Y*, E,so,w) where S = {s0,"*-,5a-1},
each s; corresponding to S;. When the recurrence relations
for pr41 € X are of the form S;[k + 1] = (S;[k], u), for
iand jin {0,.--,N — 1} and u € Y*, we define in £

an edge s; P sj. The terminal function is defined by
w(s;) = S;[0]. Clearly M is input deterministic, and as
above, one verifies that Sp[k] = p(p1 - - - pr) if and only if

there is a path in M

prfuk Pr—1/tk—1 p1/u fw(siy)
0 —* & *Sipo 84, —
with u(py - - -pr) = w(si)ur - - uk. |

Since the number of registers in the on-the-fly algorithm
is equal to the number of states of the right subsequential
machine, itis importantto find a minimal right subsequential
machine, and it is known how to achieve this task [5].

Now we show a general result on conversion in radix r
onto the canonical digitset {0,---,r — 1}.

Proposition 2 . Let r be an integer > 2, let X be any finite
set of digits, and let Y = {0,---,r — 1}. The conversion
P X* — Y* between representations with digits in X
ontor’s complement representations is a right subsequential
function, and is thus on-the-fly computable.

Proof. Withoutloss of generality, one can suppose that there
exists an integer d > 1 such that X = {—d,---,d}. One
defines a right subsequential machine R = (S, X,Y, E,w)
as follows. The set of states is S = {—d — 1,—d,---,d}.
Let s be a state, and let z € X be an input digit.

Ifs+z > 0,let s+ 2 = rt + y, with ¢ being the quotient
and y being the remainder of the Euclidean divisionof s+ 2
by r. Clearlyy € Y. We havet = (s + ¢ — y)/r, and
t < d because s < d,z < dand » > 2. Thus we define the

=18, 4. Ifs+z<0,let—(s-+2)=rt+ybethe

edge s —

Euclidean division as above. If y = 0, we put s = (—1).
Since s + £ > —2d — 1 we get that (—t) € S.

Ify >0, wehave —y = (—r) +(r — y), thus s + z =

262

r{(—t—1)+(r—y). Clearlyr —y €Y. Now, -t — 1 =
(s+z—r+y)/r 2 (-2d-7)/r > —d — 1 and thus
belongsto 5. We let s =y (=t -1).
For any state s, the terminal function w(s) is equal to the
r’s complement representation of s. When s > 0, the input
word represents a positive integer, if 8 < 0, then the input
word represents a negative integer. It is then easy to see that
¢ is realized by R. Note that some of the states may be
useless.]
In on-line arithmetic, the redundant digit set is usually
of the form X = {@,---,a}, withr/2 <a<r—1. In
that case, the right subsequential machine realizing the con-

version onto r’s complement notation has only two states,
independently of the radix.

Figure 1. Right subsequential conversion from
{r—-1,.--,7r— 1} tor’s complement

In Proposition 2, the canonical digitset Y = {0,--,r —
1} can be replaced by a non redundant digit set Z =
{zy,- -+, 2zr—1}, Where z is congruent to ¢ modulo r, for
each 0 < ¢ £ r — 1, and such that any number is rep-
resentable (see [14]). For instance, when r = 3, we can
choose Z = {1,0, 1} (see [12]).

Notice that, in radix 2, addition is a conversion from
{0,1,2} onto {0, 1}, and the corresponding on-the-fly algo-
rithm happens to be the well known conditional sum adding
technique [18]. In that particular case, the right subsequen-
tial machine has only two states, and so only two registers
are needed.

3. Examples and applications

Since there is a natural carry propagation from right to
left in the most usual number systems, a lot of functions are
right subsequential. We mention some of them.

3.1. Radix 2 conversion of redundant into conven-
tional representations

Let x be the conversion function between radix 2 redun-
dant representations and 2-complement representations

X {LO’ 1}* — {Ov 1}*'

Below is a right subsequential machine C realizing x. The
input alphabet is X = {0, 1}, the output alphabet is ¥ =
{1,0, 1}, the set of states is S = {a, b}, the initial state is a,
the terminal function is defined by w(a) = 0 and w(b) = 1.

Figure 2. Right subsequential radix 2 conversion of
redundant into conventional representation

State @ means that there is no carry, and state b means
that there is a negative carry —1. If the computation ends
in state a, then the result must be prefixed by w(a) = 0 and
the machine gives the conversion for a positive number. If
the computation ends in state b, then we prefix the result
by w(b) = 1, to get the conversion for a negative number.
Example. Let us consider 4-digit input integers. Let v =
1101. Then (v); = 3. In the automaton C, v is processed
from right to left

AL

Thus the conversion of v is 00011.
Let w = 1011. Then (w), = —9. We have in the automaton
c

0/1

1/1 in i/o
—a—ra— b —

b — Ll»

b
Thus the conversion of w is 10111, which is the 2-
complement representation of —9.

Following the method exposed in Proposition 1, we ob-
tain exactly the on-the-fly algorithm of [7] for conversion.
We need two registers A and B, corresponding to states a
and b. The initial conditions of the recurrence are

A[0] = w(a) = 0, BJ0] =w(b) = 1.

We then define
pr41 | Alk+1] | Blk+1]
1 | (Alk],1) [(A[#],0)
0 | (A[K],0) | (BIk],1)
1 | (Bl£],1) | (B[K],0)

The result is contained in register A.
Example. The on-the-fly computation to convert 1011 into
10111 is the following one.

k Pk A B

0 0 1
1111 10
210|110 101
311 {1011 {1010
4| 1 | 10111 | 10110

Let’s take the reverse automaton C, obtained in reversing
the arrows of the right subsequential machine C (see Figure
3). In C, computations are done from left to right. It is then
easy to see that, for 1 < k < m, A[k] € Y* contains the
output label of the unique path with input p; - - - p arriving
in state a in € and similarly B{k] for state b.

0/1,1/0

0/0,1/1

Figure 3. The reverse automaton ¢

3.2. Conversion from radix 4 redundant into con-
ventional 2’s complement

The conversion é from radix 4 redundant to conventional
2’s complement is shown to be on-the-fly computable in [7].
Let X ={3,---,3}andY = {0,1}. Then § : X* — Y*
is realized by the minimal right subsequential machine D as
follows.

0/11,1/10,3/01,3/00 0/00,1/01,2/10,3/11

i/11,2/10,3/01

1/00,2/01,3/10
Figure 4. Right subsequential machine D

Applying our method we find exactly the on-the-fly algo-
rithm given in [7].

3.3. Booth canonical recoding

The Booth canonical recoding consists in, given a binary
representation, finding an equivalent one with signed bits,
and having the minimum number of non zero digits {4].
This has important application to multiplication. The Booth
canonical recoding can be obtained by the simple LSDF

263

algorithm: each block of the form 017, withn > 2, is trans-
formed into 10®~'1, and other blocks are left unchanged.
Let X = {0, 1} be the input alphabet and let Y = {1,0, 1}
be the output alphabet. The Booth canonical recoding is a
right subsequential function § : X* — Y™ realized by the
following machine B, which is minimal.

Figure 5. Right subsequential Booth canonical recoding

Example. Let w = 11101101. Then 3(w) = 100010101.

Note that in B, the meaning of states b and ¢ is not the
same, although their terminal functions have the same value.
State a means “no carry”, state ¢ means “there is a carry 1",
and state & means “do as if a 1 has been read in advance and
has not been output”.

From the figure it is clear that, in the output, there are
never two adjacent non zero digits, which implies that the
coded representation can be seen as a radix 4 representation,
with digit set {2, --,2}.

The on-the-fly algorithm to compute the Booth canonical
recoding is the following. Take three registers A, B, and C
corresponding to states a, b, and ¢ of B. Initial conditions
are

A0l = w(a) = ¢, Bl0]=w(b) =1,

Clo]l =w(e)=1.

Using the same notations as above, we define

oo A+ 1] Blk+1] | Clk+ 1]
0 | CATRT,0) | (A[R],01) | (BTF,¢)
1 | (Blkl,¢) | (C[k],01) | (C[K],0)

The result of the computation is contained in register A.
3.4. Other number systems

We know consider less classical number systems, where
the base is anegative integer or a quadratic complex number.
For a discussion of the hardware implementation see [17].

Negative radix

Let » be an integer > 2. Itis known that any real number can
be represented with radix —» and digit set {0,---,r — 1}
without a sign (see [12]). It is also known that one can
perform addition in parallel and on-line, using a redundant
digit set {a, - - -, a} where a is an integer such that r/2 <
a < r—1([17], [8D). On the other hand, the conversion

from {@, - - -, a} to the canonical digit set {0, ---,7 — 1} is
right subsequential [8], and thus can be computed on-the-fly,
with 3 registers. It cannot be computed on-line.

Base i/

Let » be an integer > 2. Every complex number is rep-
resentable in base i\/r and digit set {0,---,r — 1} (see
[12], [11]). Itis possible to perform addition in parallel and
on-line with a redundant digit set {a, - - -, a} where ¢ is an
integer such that /2 < a < r — 1 ([17], [8]). Conversion
from {a,---,a} to the canonical digit set {0,---,r — 1}
cannot be computed on-line, but is right subsequential [8],
and thus can be computed on-the-fly.

Base —1 41

It is known that every complex number has a representation
in base —1 4+ ¢ and digit set {0, 1} ([11]) and that parallel
and on-line addition are possible with digit set {2, - - -,2}
or {3,---,3} ([17], [8D). It has also been shown in [10]
that on-line addition with digit set {1, 0, 1} is theoretically

'possible, but practically difficult. Nevertheless, conversion

in base —1 + ¢ between digit set {@,---,a}, 1 < a < 3,
into canonical digit set {0, 1} is not on-line computable, is
right subsequential [8], and is thus on-the-fly computable.
In [1] it is shown how to obtain the (—~1 4)-representation
of a Gaussian integer from the 2-representation of its real
and imaginary part by a right sequential machine. Hence
this process can be realized on-the-fly.

4. Conclusions

In Computer Arithmetic, on-the-fly algorithms have been
used in cases where one requires that some process be com-
puted MSDF, but where it is not possible to achieve this
task by an on-line algorithm. Our purpose here is to give
a theoretical point of view on this notion, allowing us to
show that functions which are on-the-fly computable in the
sense we have defined are very simple; in particular, they
always stay within the domain of functions computable by
finite state automaton. At the same time, subsequential
functions are quite well studied in Automata Theory, and
some of their properties could be useful for the efficiency
of on-the-fly algorithms. Finally, we believe that our result
provides an easy way to obtain such algorithms, since right
subsequential functions are very natural.

References

[1] J.-P. Allouche, E. Cateland, W. Gilbert, and H.-O. Peitgen.
Automatic maps in exotic numeration systems. Math. Sys-
tems Theory, to appear.

264

[2] A. Avizienis. Signed-digit number representations for fast
parallel arithmetic. IRE Transactions on Electronic Comput-
ers, 10:389-400, 1961.

[31 J. Berstel. Transductions and Context-free Languages.
Teubner, 1979.

[4] A.Booth. A signed binary multiplication technique. Quart.
J. Mech. Appl. Math., 4:236-240, 1951.

[5] C. Choffrut. A generalization of Ginsburg and Rose’s char-
acterization of gsm mappings. In ICALP ’79, number 71 in
L.N.C.S,, pages 88-103, 1979.

[6] S. Eilenberg. Automata, Languages and Machines, vol-
ume A. Academic Press, 1974,

[7]1 M. Ercegovac and T. Lang. On-the-fly conversion of redun-
dant into conventional representations. IE.E.E. Trans. on
Computers, C 36:895-897, 1987.

[8] Ch. Frougny. Parallel and on-line addition in negative base
and some complex number systems. In Euro-Par’96, num-
ber 1124 in LN.C.S., pages 175-182, 1996.

[9] Ch. Frougny and J. Sakarovitch. Synchronisation déter-
ministe des automates a délai borné. 7.C.S., to appear, 1997.

[10] Y. Herreros. Contribution d l’arithmétique des ordinateurs.
Ph.d. dissertation, LN.P.G., Grenoble, France, 1991.

[11] I Kdtai and J. Szab6. Canonical number systems for com-
plex integers. Acta Sci. Math., 37:255-280, 1975.

[12] D. Knuth. The Art of Computer Programming, volume 2.
Addison-Wesley, 1988.

[13] P. Kornerup. Digit-set conversions: Generalizations and
applications. LE.E.E. Trans. on Computers, 43:622-629,
1994.

[14] D. Matula. Basic digit sets for radix representation.
JA.CM., 29:1131-1143,1982.

[15] P. Montuschi and L. Ciminiera. » X n carry-save multipliers
without final addition. In ARITH 11, pages 54-61. LEEE.E.
Computer Society Press, 1993.

[16] J.-M. Muller. Some characterizations of functions com-
putable in on-line arithmetic. 1.E.E.E. Trans. on Computers,
43:752-755, 1994.

[17] A. Nielsen and J.-M. Muller. Borrow-save adders for real
and complex number systems. In Conf. Real Numbers and
Computers, pages 121-137, 1996.

[18] J. Slansky. Conditional sum addition logic. IRE Transac-
tions on Electronic Computers, EC-9:226-231, 1960.

[19] K. Trivedi and M. Ercegovac. On-line algorithms for divi-
sion and multiplication. ILE.E.E. Trans. on Computers, C
26:681-687, 19717.

265

