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Abstract

In this paper, we introduce a new type of arithmetic oper-
ation that we have called “fast rotations” or “orthonormal
W-rotations”. These are methods for orthonormal rotation
over a set of fixed angles, with a very low cost in implemen-
tation, basically a few shift and add operations as opposed
to lengthy Cordic operations. We also present the underly-
ing theory for the construction of such fast rotation meth-
ods. Furthermore, we give examples where fast rotations
have been applied successfully in a wide variety of appli-
cations. These include the low-cost and robust implementa-
tion of FIR filter banks for image coding, the generation of
spherical sample rays in 3D graphics, and the computation
of the Eigenvalue decomposition (EVD) and singular value
decomposition (SVD).

1. Introduction

Fast rotations[3], also called orthonormal pi-rotations[1],
are arithmetic methods for performing orthonormal rotation
at very low cost in implementation. Related to Cordic[9,
10], they form a viable, low-cost alternative to the more
expensive Cordic arithmetic for certain applications., Al-
though fast rotations exist only for certain angles of rota-
tion, they form a sufficient set to efficiently implement any
orthogonal operation.

Fast rotations have already been applied in a number of
applications in signal processing, image processing, com-
puter graphics and array processing. All with very promis-
ing results, as their application has in some cases led to a re-
duction of the computational complexity by more than one
order.

1.1. Outline of this paper

In section 2, we define the fast rotation, and present the
first few fast rotations methods, along with their properties.
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A taxonomy of the different classes of fast rotations is given
as well. In order to get a better understanding of the under-
lying theory, we introduce a polynomial representation for
fast rotations in section 3 and also present the relationship
to hyperbolic fast rotations. In section 4, we present meth-
ods of construction that produce new, higher order fast ro-
tations of arbitrary precision. Finally, in section 5 we give
a brief overview of some of the applications where fast ro-
tations have been used, with great success, and where they
have led to drastic reductions of the computational complex-

ity.
2. Fast Rotation Methods

A fast rotation over an angle o is given by the matrix F

as. N
F=[C ’;], 1)

where (&, §) is a pairwise approximation of a (cosine, sine)
pair, with the magnification factor m given by:

m=\e&+8 , @)
the rotation angle o given by:

o = arctan(é, §), 3)
and satisfying the following conditions:

1. close-to-orthonormal
The magnification factor m, which is the norm of F, is
close to unity, i.e. m = 1+¢. The error € falls well be-
low the precision of the number representation. Hence,
this error is negligible compared to that of rounding-off
the data, making the operation in practice orthonormal.
We also call € the magnification error.

2. low-cost implementation
The fast rotation F is cheap to implement in terms of
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hardware cost, in the order of a few shift and add oper-
ations. This cost is a function of the magnitude of the
angle of rotation and of the required precision.

In the subsequent sections we present the first few fast ro-
tation mgthods and a generalization for a subset of these fast
rotations.

For the sake of simplicity in the formulas, we will cur-
rently assume positive rotations in the first quadrant only,
with &,§ > 0.

2.1. Method I fast rotations

The simplest of the fast rotation methods is identical to
the standard Cordic{9] micro-rotation, with the approxima-
tion pair given by:

o @

Tty O

where the parameter x is a non-positive integer and, due to
its nature, is also called the angle exponent. Both the mag-
nification factor m and angle of rotation « are functions of
this angle exponent and, after substitution of (4) into Equa-
tions (2) and (3), are given by:

m=/1+22 (5)

and
o = arctan(2). ®)

Obviously, given a required precision, not all values of
the angle exponent x are suitable. For small enough val-
ues of «, the error in magnification becomes negligible, and
hence any additional scaling is unnecessary. We aim to use
these rotations only in that domain for which this indeed oc-
curs.

In most cases, we let the finite word length in the com-
putations determine the required precision of the fast rota-
tions. We assume the size of the mantissa to be Npap bits,
with the weight of the least significant bit given by Isb =
2~Nuant, When employing rounding-to-nearest, the error due
to rounding is given by €0y5¢ = Isb/2. For rounding down,
the error is given by €nop = Isb. For the sake of simplic-
ity, we will assume the rounding-down model, and base our
results on it. Equivalent results can be found for the round-
to-nearest model.

For a fast rotation to be considered orthonormal, the mag-
nification factor m must satisfy the condition:

1—€chop < m < 1+ Echop - )]

By inspection of Equation (5), it follows that m > 1, so
we need only consider the right side inequality. Substitution
of m, and squaring of both sides results in:

14 2% < 1+ 2€chop + Echop” - ®

Subtracting 1 from both sides, and tightening the condition
by removing the gy > term on the right-hand side, we arrive
at: .

2% < 2echop < 2€chop + Echop - ©®

Substituting gcpop by 27Mman | and writing out the left hand
inequality of (9) in terms of the exponents only, we arrive at
the upper bound K, of the angle exponent as:

~Nmant + 1
—

This result is well known from Cordic literature, where
the “tail” of micro-rotations with k < k, do not influence the
magnitude of the scaling factor any more.

Additionally, we can also define a lower bound for the an-
gle exponent. The largest shift which has to be accounted for
is the term 2¥ in &, which is not allowed to exceed the width
of the mantissa. This leads to the lower bound x; for the an-
gle exponent in;

k<K, = (10)

K> K = —Nmant . (11)

For values of the angle exponent K beyond this bound, the
fast rotation degrades to the identity operator.

The implementation of the fast rotation is illustrated by
the rotation of the vector [vy vy]7 over the angle o to the vec-

tor [V, v;]T in:
vl v
Fl=F- " 1. 12
[ Y } [ Vy ] (12

Writing out the separate equations for the resulting vector
[viv;), and substituting (4) leads to the classical Cordic

equation.
{ le :
%

It is plain to see, and well known from Cordic literature[9],
that this operation can be done in direct form with two shift-
and two add operations.

We prefer to express the cost of implementation in terms
of shift-add pairs, as the computation in (13) can be per-
formed pairwise for v}, v}.

K.
vy —2%vy

vy + 2%, (13

i

2.2. Method II fast rotations

The next fast rotation method is based on the more accu-
rate approximation pair:
= 1- 221(—-1
= 2

Ly

(14)

The magnification factor m and rotation angle o follow from
substitution of the ¢, § pair of Equation (14) into (2) and (3),
and are given by:

m=/1+2%2 (15)
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and
K

a:arctan(szz—K_T). (16)

Note that, for the same angle exponent X, this method pro-
duces rotations over angles of similar magnitude, but with
a higher precision, in terms of how close m is to unity, as
compared to Method I with the approximation pair of Equa-
tion (4). .

Note also that, in writing out m? as the sum of the squares
of é and §, all terms cancel out except for the lowest power
1 and the highest power 22, We call such fast rota-
tions maximal, as the maximum number of terms cancel out
against each other. The term with the highest power of of 2%,
is the only term remaining that is a function of the angle ex-
ponent k, and hence the smallest possible error € is attained.
The Method I fast rotations, although trivial, are also maxi-
mal.

We can use this rotation method, given the same required
precision, for larger values of the angle exponent x than the
previous method. The upper bound x, for the angle expo-
nent follows from a similar derivation as in Equations (7)
to (11) as:

an

The lower bound ¥; for this method follows from the limit
value of the angle exponent ¥ for which the term 22! in &
vanishes, given a mantissa size of Nyane. This happens for

~Nmant+1

K> K = )

(18)
Note that this lower bound is the same as the upper bound
of Method I. At this boundary, the term 22! in & vanishes,
and the method automatically degrades to the Method I fast
rotation.

Concerning its implementation; writing out Equa-
tion (12), substituting (14), leads to:

¥

/
Vy
The cost of implementing this fast rotation is hence 4 shift-
and 4 add operations, or two shift-add pairs.

ve—2%vy — 221y,
Vy 4 28 =221y,

(19)

2.3. Method III fast rotations

The next fast rotation method, Method IT1, is yet more ac-
curate, and is given by the approximation pair:

1— 22K-—1
2K _ 23)(—3 .

(2}

(20)

Ly

The magnification factor m and rotation angle o are given

by:
m=+v1 +261<—6

@n
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and
2K _ 231(—3

o, = arctan( (22)

1 —22¢-1
Note that this is, due to the form of m in Equation (21), also
a maximal fast rotation.

The upper bound x, for the angle exponent for this

method follows from an analogous derivation as of Equa-
tions (7) to (11) as:

—Nmant + 7
——-————6 .

The lower bound x; follows in a similar way as for the pre-
vious methods as:

Ky = (23)

~Nmant + 3
K = T .

(24)
which shows a slight overlap to the upper bound of the
Method II fast rotations.

Concerning the implementation; writing out Equa-
tion (12), substituting (20), leads to:

{

The cost of implementing this fast rotation is three shift-add
pairs. Note that the cost in shift-add pairs for the direct form
implementation of all the fast rotations is equal to the sum
of the number of terms in & and § minus one, to account for
the term 1 in é. From the trend of the fast rotation methods
presented so far, we can see that a higher accuracy at a fixed
order of magnitude of the angle rotation, or a larger angle
of rotation at a fixed accuracy both naturally imply a higher
cost of implementation.

v,

P

%

Vg 2Kvy - 221(-1 ve+ 231(—3 vy

vy + 2K{}X —22r-1 vy— 231(—3 vy (25)

2.4. Higher order fast rotations

These first three simple forms of fast rotation have been
found by solving for ¢ and § having a fixed number of power-
of-two terms, and constraining m so that maximal fast rota-
tions are found, While this is possible for a small number of
terms, it becomes unmanageable for higher order fast rota-
tions. Moreover, they do not always exist for certain com-
binations of the number of terms.

In the case when ¢ and § have three and two terms respec-
tively, no maximal solution is found. Instead, we propose
the Method IV rotation as given by the approximation pair:

1— 221(—1 — 241(—3

(o}

n

2K 251(—4

Ly

(26)

The magnification factor m and rotation angle o are given

by:
m=/1+4 28x=64 210x-8

27



and
2x_ 25|<—4

o = arctan( 28)

1—22x-1_24x-3 ) :

Note that this is not a maximal fast rotation as we can see by
the form of m in Equation (21).

Likewise, we propose the Method V rotation, which
again is maximal, as given by the approximation pair:

1— 22K—1 + 241(—3

o
i

§ = 28-2¥3 055 29
The magnification factor /m and rotation angle o are given
by:
m=+/1+210x-10 (30)
and 3x-3 | 95x-5
2K_2 K- +2 X

A general expression exists for a subset of maximal fast
rotations, parameterized in N, with the approximation pair
given by:

A5
il
z

23, (=) -1

0

Loy
1!

x(zﬁ(-xz)i-(-xZ)N) , ()

i=0

where the variable x is introduced both for sake of simplicity,
and to illustrate the possibility of a polynomial representa-
tion. Substituting x = 2% for N =0, and x = 21 for N> 1
leads to fast rotation methods, expressed as a function of the
angle exponent K.

The magnification factor m follows from substitution of
é,§ of Equation (32) into (2) and by successive elimination,
and is given by

V1 +0N+2 , (33)

which shows that the method is indeed maximal.

When implemented in a direct form, the cost of this gen-
eral method is equal to (2N + 1) shift-add pairs. In practice,
it does not pay to go beyond Method III (N = 1) with direct
form implementation, as more efficient factored implemen-
tation schemes exist for certain higher order fast rotations,
as we shall see in the following sections.

The previously presented Methods I, III and V are the
first three members of this series for N = 0, 1, 2 respectively.
Note well that the terms in ¢ and § do not follow the Tay-
lor series expansion of cos(x) and sin(x). The fast rotation
methods generated by Equation (32) only form a subset of
the possible maximal fast rotations.

H

2.5. Taxonomy

So far, we have seen fast rotation methods which, when
applicd only in a specific domain of the angle exponent, are
considered orthonormal within a given precision. No addi-
tional scaling was used to bring them to this precision.

We can classify this group, and also others, according to
the taxonomy shown in Figure 1. The aforementioned group

/\

orthonormal non-orthonormal
no additional additional embedded  non-embedded
scaling scaling
exact within multiplicative ~ scaling by
precision scaling rotations

Figure 1. Taxonomy of fast rotations

would be classified as: Orthonormal, no additional scaling,
within precision.

We will not treat all classes in detail, but we will try to
give a flavour of some of them. Our main interest goes to-
wards the orthonormal class. The non-orthonormal class
contains methods which are used outside of their range of
being orthonormal, in the special case that the application
allows it. We will currently leave this class out of consider-
ation.

Of this orthonormal class, we have a further dichotomy
into methods without additional scaling and those with.

¢ no additional scaling Methods belonging to this class
require no further scaling to bring them to a required
precision. The choice of the &, § approximation pair
already gives accurate enough methods. One further
dichotomy is made into methods which are exact and
those that work within the precision.

— within precision These are methods like the ones
that we have already shown. They are only used
in a certain domain of the angle exponent, such
that the magnification error falls well within the
round-off error, making the method in practice or-
thonormal.

- exact These are methods for which € = 0 under
all conditions, i.c. they are already orthonormal
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by themselves. For circular rotation, these meth-
ods are trivial rotations over ’%‘ However, for hy-
perbolic rotation, there are non-trivial solutions,
such as Walther’s[10] method to extend the range

of hyperbolic Cordic.

¢ additional scaling Methods belonging to this class
have in common that they are the product of a base ro-
tation, which is not accurate enough by itself to be a fast
rotation, and a necessary scaling operation to bring the
whole to the required precision. The scaling operation
is performed as either:

~ multiplicative scaling The scaling occurs with
multiplicative scaling steps, decomposed as a se-
quence of shift-add operations.

— scaling rotations The scaling occurs with (a se-
quence of) extra rotations, of which the magni-
fication error compensates that of the base rota-
tion, such that the overall magnification factor is
within the required precision.

‘We will present methods of construction in section 4 that
are related to some of the above classes.

3. Polynomial representation

‘We have already seen an example of a polynomial repre-
sentation for the maximal fast rotations of Equation (32).

‘We will use a polynomial representation as it facilitates
the representation of fast rotations, simplifies the proofs, and
allows us to gain more insight into the underlying theory.

The polynomial representation of an approximation pair
¢,§ is given by two polynomials in x: ¢(x) and s(x), where
the powers of the angle exponent in 2* are replaced by pow-
ers of the parameter x.

For example, the polynomial approximation pair for the
fast rotation Method I is given by:

cx) = 1

) = x (34)

Likewise, the polynomial representation of the magnifica-
tion m(x) and angle of rotation o(x) are given by

m(x) =V 1+x2 (35)

and
ox) = arctan(x) . (36)

The relation between the approximation pair é,§ and the
polynomials ¢(x), s(x) is given by:

(2]

@
it n

c(2%)

o2 &1
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We can state that the polynomials ¢(x) and s(x) generate
approximation pairs for the rational points x = 2%,

The polynomial approximation pair ¢(x),s(x) of Equa-
tion (34) is canonic. This means that the term with the low-
est power of x in s{x) is x itself. The polynomial approxima-
tion pairs that we will work with are not necessary canonic,
but can be made to be with a simple transformation. How-
ever, we do adhere to the convention that the lowest power
of x in s(x) must be 1.

As a second example, the polynomial representation of
the fast rotation Method II is given by:

c(x) = 1-22

s(x) = 2x

m(x) = V1+dd : (38)
a(x) = arctan (172;}7)

Note that this representation is on purpose not canonic, so
as to avoid fractional coefficients in the polynomials. The
qu.iations (14) to (16) are obtained by substitution of x by
PANR

The polynomial representation of the fast rotation meth-
ods I through to V are presented in Table 1.

To aid further discussion, we introduce the auxiliary
polynomial Un(x) as being

N
Un(x) =Y. %. (39)
i=0

We will use this polynomial extensively in the next sections,
both to aid a compact representation, and to simplify proofs,
using the set of rules below.

(1-x)Uy(x) = 1-x"*! U.y
Un(x) = 1‘1’51 - U2)
(A+MUn-1(x) = Usnva(x) (U.3)
(I+@Waa(d) = Upey(x)  (U4)
Up_y(x) = ﬁ1+x(2’) (U.5)
Un-1(0)Up1 (") = Z]:;N—l(x) U.6)

For the sake of brevity, we omit the proofs for the above
rules.

‘We are now able to compactly represent the maximal fast
rotations of Equation (32) as:

c(x) = 2Un(-x?)-1
s(x) = «x (ZUN(—xZ) - (—xZ)N)

mx) = +/1- (—x2)AT . (40)
(2 YWV (2 N+
o(x) = arctan (xlz_(_:z) = _’;2 ): )



method c(x) s(x) m(x) canonic | maximal | substitution
I 1 x V14 yes yes x=2F
I 1-2x2 2x VI+4aA# no yes x =21
I 1-2x2 2x—x VI+i8 no yes x =21
v 1-2:2-2x4 22-28 | V1443 4+4x0 | no no x =21
A 1-22 424 | 2x-22+1° V1 +x10 no yes x=2¢1

Table 1. Polynomial representation of fast rotation methods I through to V,

The formula for o(x) follows from multiplying both nu-
merator and denominator with 1 — (=x*), and applying
rule (U.1).

3.1. Hyperbolic fast rotations

We define cp,(x),sp(x) as the hyperbolic approximation
pair, and the hyperbolic fast rotation F, as given by:

sn(x) ] ,

Ch (x)

)= 56

with the hyperbolic magnification factor mj(x), and the hy-
perbolic angle of rotation oy, (x), given by:

(41

my(x) = 1/ cx?(x)—s2(x) 42)
and )
= arctanh(222) |
ah(x) - t h( c;,(x) ) (43)

The relationship between the circular and hyperbolic
functions are well known. From[11] they are given for the
hyperbolic sine and cosine as:

cos(ix)
—isin(ix) °

cosh(x)
sinh(x)

(44)

where i2 = —1.
A similar relationship holds between circular and hyper-
bolic fast rotations in:

c(ix)
—is(ix) *

cn(x)

sa(x) ; (45)

Due to the nature of the circular polynomial approximation
pairs that we have seen so far, with ¢(x) and s(x) being even
and odd functions respectively!, the relationship (45) results
in cp(x) and sp(x) having real coefficients. Hence the hyper-
bolic fast rotation Fj is realizable.

Note well that c(x) and s{x) being even and odd functions is not a nat-
ural consequence for fast rotations. There exist polynomial approximation
pairs that do not fit this pattern, and hence have no realizable hyperbolic
counterpart.

Substitution of the relationships of (45) in Equations (42)
and (43) leads to the further relationships between the hyper-
bolic and circular counterparts in:

my(x) = 2(ix) +s%(ix) = mlix)
oy(x) = mctmh(—i%) —ioix) .  (46)

The relationships (45) and (46) can be applied to obtain
the dual, hyperbolic forms of the fast rotation methods pre-
sented so far, as well as for most of the fast rotations which
are obtained with the techniques described in the next sec-
tion.

As an example, the hyperbolic fast rotation Method IITh,
given below, is given by application of the above relation-
ships on the circular fast rotation Method I11.

ch(x) = 142x?

sp(x) = 20+

mu(x) = V1-x0 47)
oy(x) = arctanh( —12%2’;3 )

4. Constructing higher-order fast rotations

Note that, for the maximal fast rotations of Equation (32),
the cost of a direct implementation grows with the increase
of the precision and the magnitude of the rotation angle, al-
though very slowly. Inspection of Equation (33) shows that
the magnification error is an exponential function of the cost
of implementation.

In this section we will present construction methods
and implementation schemes that perform even better, and
where the magnification error is a hyper-exponential func-
tion of the cost.

These methods aim at generating new fast rotations by
simple construction rules. One of such methods of construc-
tion is to take a known fast rotation method, and scale it to
attain a higher precision. This scaling can be done either as
multiplicative scaling, or extension with special scaling ro-
tations as we shall see in subsections 4.1 and 4.2.
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4.1. Multiplicative scaling

Using the multiplicative scaling method, a fast rotation ¥
is expressed as the product:

F = Foase* S, (48)
where Fiase is the so called base rotation, having the same
form as (1), but with the base approximation pair Cpase, Sase-

This base rotation is scaled to the required precision with
the scaling operator given by the matrix S as:

s=[ o A

where the scaling factor A is cheap to implement, basically
a short sequence of shift-add operations.

Although it is theoretically possible to take one of the fast
rotations of Methods I to V as the base rotation, practical
experiments show that convergence to a higher precision is
slow, due to the square root in the formula of m.

Instead, Gotze[2] uses scaled rotations with a base ap-
proximation pair given by:

A0

0 A “9)

1-— 221(—2
2K

6base
8 base

_ (50)
In effect, this is the fast rotation Method I of (4) applied
twice, and hence the magnification factor my,, is square-
root free. Due to this property, a quadratic converging scal-
ing sequence exists to bring the fast rotation method quickly
to the required precision.

Switching to a polynomial representation, substituting x
for 2%}, we arrive the polynomial base approximation pair:

1-x2
2x ’

Cbase (x)

Sbase (x) 6D

with the magnification factor mpaee(x) and the angle of rota-
tion Olpase(x) given by:

Mpase(¥) = 1+ 27, (52)
and
Olpase (x) = arctan( - %;2) =2arctan(x).  (53)
We define the scaling steps A;(x) for i =0 as:
Mitx) = (14527, (54)

and also define the overall scaling A = Az (x) as the product
of the L scaling steps fori = 0,1,...,L-1:

ITiz0 M(x)
Upy(x)

AL(x)

il

(55)
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The latter formula follows directly by substitution of (54) in
the above and application of rule (U.5).

Multiplicative scaling of the base rotation with the first
scaling step Ag(—x*) = 1—-x2, results in an overall magnifi-
cation of (1+x%)(1-x2) = (1-x*), which is clearly much
closer to unity. Continued scaling results in fast rotations of
arbitrary precision.

The complete fast rotation, being the rotation with the
base approximation pair of (50), followed by L consecutive
scaling steps, is given by:

c(x) = coase(®)A = (1-x*)Ar(—x?) (56)
5(x) = spase(X)A = (20)AL(—?)
The overall magnification factor follows from the product of
the scaling factor Az(=x?) and the base magnification factor
of Equation (52) via application of rule (U.1) as:
m(x) = 1-(=2)@). (57)

The overall angle of rotation is the same as that of the base
rotation, 0(x) = Olpase(X), as the scaling operator S does not
alter it.

It is without doubt that this is a very powerful method.
It is particularly useful in constructing fast rotations of arbi-
trary precision for large values of the angle exponent. The
cost of implementation of the base rotation is two shift-add
pairs, that of the scaling steps is L shift-add pairs. The over-
all cost is hence L+ 2 shift-add pairs, while the magnifi-
cation error g(x), found by inspection of (57), is a hyper-
exponential function of L.

4.2. Extended rotation

For the extended rotation method, the fast rotation F is
expressed as the product:

F = Fpase - Fext (58)
where F,5, again a base rotation, as in the previous subsec-
tion. This base rotation is followed by an extension rotation
Fext, also having the same form as (1), but with the extension
approximation pair éex, §ext. The magnification factor mex
is tailored such that it compensates that of the base rotation,
Mpase, resulting in a higher precision fast rotation for F.

We treat the scaling by extended rotation only for the case
of maximal fast rotations, although the method is applicable
for other types as well.

For maximal fast rotations, the specially tailored exten-
sion rotations, parameterized in M, are given by the approx-
imation pair:

Un(—x%)
xUM_l(—xZ) ’

Cext (x)

Cex[(x) 9



with the magnification factor and angle of rotation resulting

n:
mext(x) = UZM(_XZ); (60)

14 (=2)M
1+ ()M ) :
The derivation of the present compact form of the above for-
mulas is left out for the sake of brevity.

Notice the special form of the magnification factor
in (60). This rotation is itself not suitable as a fast rotation,
but its purpose will be revealed next.

We state that the magnification factor of any maximal fast
rotation, so also for mp,ge, allows itself to be written out in
the following form:;

and

Olext = arctan (x (61)

Mpase(x) =/ 1— (_“2) ) (62)
and that such a u, expressed in x, can indeed be found.

‘We take advantage of this fact, constructing the fast ro-
tation as F(x) = Fpase(x) - Fext (). The overall magnifica-
tion then follows as the product m(x) = mpase(x) * Mmex(1t)
which, when substituting (62) and (60) into it, and applying
rule (U.1), leads to:

m(x)

VIECAVOD

1— (<22 ’

which shows a (2M + 1)-fold increase in precision. Note
that the resulting fast rotation F is also maximal, hence the
method of extension can be applied recursively. The overall
angle of rotation is given by:

0(x) = Olpase (X) + Otext(1e) - 64)

To illustrate the extension method, we take for the base
rotation Fyee the fast rotation Method III, with:

Chase(x) = 1-242

Spase(X) = 2x—x 6
mbase(x) = /1 +x6 ; ’ (65)
Opase(x) = arctan( %—f—fsz )

and for the extension rotation the most simple form of (59),
for M = 1, with:

cext(x) = 1-x2

cext(x) = x 66)
Mmexe(x) = UZ(_XZ) =V1-x2+x* (
Oext(¥) = arctan(yZy)

Note that the cost of implementation for this extension is two

shift-add operations.
The magnification factor my,se(x) is expressed in the re-

quired form of (62), by taking u = 6x°>, with g e {~1,+1}.

Note that there are two solutions for u, depending on the
choice of ¢. This parameter ¢ is equivalent to the direction
of rotation for the extension rotation. This method yields
two new fast rotations F over the (different) angles o(x) =
Ofpase (¥) + Oext (0x3). The scaling factor is independent of o,
and follows from the derivation:

m{x) Mipase (x) - Mext(0x° )
V1 +x6\/ U2(0'x3)
V1438V 1-x0 4512 °

— ,/1+x18

The total cost of implementation is for this case only five
shift-add pairs, of which three are for the base rotation, and
two for the extension. Note that the cost of this new fast ro-
tation is the same as that of Method V, while attaining a far
greater accuracy for the same values of the angle exponent.

Recursive application of L levels of the method of exten-
sion yields 2F new, very high accuracy, fast rotations.

In practical cases, only the extension of type (59) are used
recursively with M = 1,2, and for the initial base rotations
Methods II and III. Extension of Method I is not applied in
practice, as it leads only to Method I1I (at the same cost), and
a non-canonic version of Method I itself.

(67)

5. Applications

Fast rotations have already been applied in a wide range
of applications. We will briefly present a few of these below.

5.1. Hemisphere ray tracing

The impetus to the development of the maximal fast ro-
tations has been the problem of high resolution hemisphere
sampling in the radiosity algorithm([3, 8]. Here, an artificial
3D environment is sampled by a large number of spherical
rays r; j, defined in the local coordinate system of the sam-
pling hemisphere as:

0
ri,jZR((‘Piaej)' 0 3 (68)
1

where the 33 rotation matrix R is given by two consecutive
embedded 2 x 2 rotations as:

[ cos(9) —sin(p)
R(¢,0) = | sin(p) cos(y) |
- cos(0) sin(0)
1 , o (69)
| —sin(B) cos(0)

and where the angles ¢;, 8 ; that determine the location of the
ray in spherical space, are both uniformly distributed with
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the angular increments A@, A as:
¢ =

0, (70)

Since we are dealing with a sampling problem, we are
free to choose our spherical sampling “frequencies”, the an-
gular increments A, A6, in which case we chose them to
be one of the fast rotation angles, possibly oversampling
the environment slightly. It turned out that the fast rotation
Method II was sufficient for the range of the angular sam-
pling frequencies, indexed by the angle exponent K, that was
required by the application.

The most time consuming operation of the hemisphere
sampling is the generation of a spherical bundle of rays, and
computing the inner product of these with the vertices of a
patch, which is necessary in the computation of the intersec-
tion points of the rays with that patch.

In[3] we take advantage of the facts that Ag, A can be
chosen to be fast rotation angles, and that the rays r; ; allow
an efficient incremental computation scheme using fast rota-
tions, to reduce the cost of of the most time consuming op-
eration. Both the generation and the inner product can be
computed with only one fast rotation of Method II, requir-
ing only 2 shift-add pairs, and which is performed in only
one clock cycle.

The alternative way for computing this would require no
less that 11 multiplications and 6 additions for the two em-
bedded 2 x2 rotations and the inner product, not even taking
into account the computation of the sine and cosine for the
angles, which is a problem to itself. As such, through the
application of fast rotations, we have achieved a reduction
of the arithmetic complexity by more than one order.

A dedicated ASIC[5], capable of computing intersection
points using the new technique, has been fabricated. It in-
corporates a hardware unit that performs Method II fast ro-
tations every clock cycle (at 25 MHz), to 24 bit precision,
and over a large domain for the angle exponent.

5.2. Eigenvalue Decomposition (EVD) and related
algorithms

In[2, 1] fast rotations are applied to lower the computa-
tional complexity of the Eigenvalue decomposition (EVD)
of symmetric matrices.

The EVD of a symmetric nXn matrix A is defined as:

A=QAQT, (71)
where Q is an orthogonal matrix, and A is a diagonal matrix
of the eigenvalues. In the iterative cyclic-by-rows Jacobi al-

gorithm for the EVD, this matrix Q is built up out of a regu-
lar sequence of embedded 2 x 2 rotations gj;, j, of which the
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angles of rotation are chosen such that the matrix A is diag-
onalised to A in each step.

(72)

where S is the number of sweeps for the algorithm to reach
convergence.

In[1], a set of approximating angles is built up, for
Nmane = 32-bit precision, with the maximal fast rotation
Methods I, 11, and III, and with the multiplicative scaling
method for those angles for which the angle exponent x is
larger than the upper bound for Method III in (23). Taking
advantage of the fact that the EVD is an iterative algorithm,
that converges to the solution A, we approximate the exact
rotations gy,;, ; with the approximate g ; ; which is the em-
bedding of the fast rotation from the set which is the closest,
in terms of the angle of rotation, to the exact rotation. De-
termining which fast rotation is the closest is done on-line.

Even though the convergence, expressed in the num-
ber of sweeps S, is slower, the new method does converge.
However, when comparing the actual cost, measured in
shift-add pairs, as compared to the cost of exact rotations us-
ing Cordic, the new method outperforms the other by a fac-
tor of more than 7, which is an improvement of almost one
order.

The same idea can be applied to singular value decompo-
sition (SVD), the QR decomposition, and the dadaptive ver-
sions thereof as well.

5.3. Orthogonal FIR filter banks

In the above application for the EVD, we have seen that
an orthogonal matrix Q can be represented as a regular se-
quence of embedded fast rotations. In[4, 7] we have devel-
oped a greedy algorithm that approximates an orthogonal
matrix Q by Qr, implemented as a sequence of T embedded
fast rotations g;, keeping the total cost as low as possible.

T
or=[]a, (73)
t=1

where the embedded fast rotation g works on the indices
(¢, f)s, with the angle of rotation o.

The greedy algorithm chooses the g; at each step such that
Qr converges as quick as possible to the required Q, and can
be seen as a successive approximation of it. The network of
fast rotations that implements Qr is hence often irregular.
Note that Qr by itself is orthogonal at all times, and can be
used as an orthogonal approximation of Q.

In[7, 6] we have applied such approximations for the effi-
cient orthogonal implementation of large image transforms,

such as the lapped orthogonal transform (LOT). The LOT is



decomposed recursively into a network of orthogonal ma-
trices of decreasing size and butterfly operations. Applying
the above approximation to the orthogonal matrices leads
to a low-cost, but very robust, implementation of the LOT.
In[6], we report an implementation for a 16 x32 LOT (512
elements, full matrix) requiring only 776 shift-add pairs. A
direct implementation, with less desirable numerical proper-
ties, would require 512 multiplications, so again we achieve
an improvement of almost one order. The same technique
has been applied to other image transforms, such as the
DCT, with promising results. A prototype chip[7] harbour-
ing a number processors with a 4 stage fast rotation pipeline,
is fabricated to prove the advantages over multiplier-based
DCT and LOT implementations.

6. Conclusions

We have presented a formal definition and classification
of fast rotations, as well as methods of construction to obtain
them.

We have shown a number of applications in which fast ro-
tations have been successfully applied, in some cases lead-
ing to a reduction of the computational complexity by more
than one order, as compared to traditional methods. In fact,
already two ASICs[5, 7], both relying heavily on the appli-
cation of these fast rotations, have been fabricated.
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