Design and Implementation of An RNS Division Algorithm

Ahmad A. Hiasat
Elect. Eng. Dept.
Princess Sumaya University

PO Box 1438, Amman 11941, JORDAN

Email: aahiasat@rss.gov.jo

Keywords: Division, Residue Number System, Frac-
tional Representation, Hardware Implementation.

Abstract: In a recent publication [1}, we introduced
the main outlines of a new algorithm for division in
Residue Number System, which can be applied to any
moduli set. Simulation results proved that the algo-
rithm was many times faster than most competitive
published work [2]. Determining the position of the
most significant nonzero bit of any residue number in
that algorithm is the major speed limiting factor. In
this paper, we customize the same algorithm to serve
two specific moduli sets: (2¥,2¥ — 1,2¥=! — 1) and
(2% +1,2%,2% — 1), and thus, eliminate that speed lim-
iting factor. Based on this work, hardware needed to
determine most significant bit position has been re-
duced to a single adder. Therefore, computation time
and hardware requirements are substantially improved.
This would enable RNS to be a stronger force in build-
ing general purpose computers.

1 Introduction

A basic feature of Residue Number System (RNS)
(redundant or nonredundant) is being an unweighted
(nonpositional) numbering system [3]-[4]. Thus, digits
in a RNS have no ordering significance. Furthermore,
in addition, subtraction and multiplication, any partic-
ular digit of the resultant depends solely on the corre-
sponding digits of its’suboperation. This parallel prop-
erty of RNS makes it capable of performing carry-free
addition and multiplication operations, and borrow-
free subtraction. Moreover, multiplication is executed
in a single step without partial products. Therefore,
RNS usage has been limited to some digital signal pro-
cessing computations, where addition, subtraction and
multiplication are the only needed operation. This is
due to the known difficulty of residue operations like
division, sign and overflow detection.

The moduli sets (2%,2%—1,2%¥=1—1) and (2%+1,2F,2%—

1063-6889/97 $10.00 © 1997 IEEE

240

Hoda S. Abdel-Aty-Zohdy
Elect. & Sys. Eng. Dept.
Oakland University
Rochester, MI 48309, USA
Email: zohdyhsa@oakland.edu

1) are particularly importan in applications which re-
quire high degree of precision [4]. The properties of
this set become more apparent in hardware consider-
ations because most moduli are powers or diminished
powers of 2, so residue addition is the carry-add type,
and multiplication by a power of 2 is equivalent to left
rotation. Moreover, residues are encoded with, almost,
full efficiency. Therefore, they can play an increased
role in implementing a Residue Number System (RNS)
arithmetic unit for computers.

2 Notation

The following notational convention has been adopted
for this paper:

,mn} , moduli set of N relatively prime
positive integers.

M= Hiv:l m;, dynamic range.

For any integer X € [0, M), residue representation of
X = (r1,72,
7; = |X|m,, least positive remainder when dividing X
by m;.

— M
m;—m—‘

mi

l7lm:, multiplicative inverse of (i.e.

[|;hl;|mi|mi =1)

Define a function h(I) such that:

1 +{logs I| ,ifIis an integer > 0
hI)=1{ 0 L I=0
Lloga I) Lif0<I<1

3 Residue To Binary Conversion

In order to decode a residue number system into a
weighted number system, there are two approaches [3]:

Chinese Remainder Theorem (CRT) and Mixed-Radix
Conversion (MRC). CRT will be introduced here, since
new implementation of this theorem [5]-[6] makes it
faster for conversion purposes than other conversion
techniques which are based on mixed radix system [4].
For an N moduli set, CRT utilizes one level of N RAMs
and one level of adder(s) [5]-[6].

Chinese Remainder Theorem: Many techniques
can be found in literature which decode RNS into an
equivalent Binary system. The basic theorem which
governs this decoding scheme is given by CRT, ex-
pressed as [3]:

(1)

ge=1

In 1985, Van Vu [6] developed two conversion tech-
niques based on the CRT. The first technique adopts
the fractional representation of X/M, which is useful in
applications when the sign and general magnitude in-
formation about X is needed. This technique was ear-
lier proposed by Soderstrand [5] and then modified by
Van Vu[6]. The modification was regarding the num-
ber of bits for accurate representation of the fractional
value. The other technique, introduced by Van Vu, is
useful where the representation of X as an integer value
is required. To have this paper self-contained, the first
technique will be introduced briefly.

Fractional Representation Technique: Eq.(1) can
be rewritten as

2

where p is a non-negative integer. Dividing both sides
of eq.{2) by M or by M/2 for unsigned or signed con-
version respectively, yields:

N

X 1 Ti

i W I I 3

M ;mi ﬁli P ()
N

X 2 |r

= = il PN 4

M Zmi ﬁ'l,' P ()
=1 m

Unsigned integers are considered in this paper, how-
ever, the same concepts still apply for signed integers,
using the proper equation of fractional representation.
Hence, the value of '1)\(7 can be obtained by evaluating
the right hand side of eq.(3). This is basically done by
letting each z; addresses a table which stores ——-I—J- ms -

The output of these N tables can be added using mul-
tioperand adder . Any integer overflow resulting from
this adder is disregarded since it represents the value p

241

(multiplies of M). The fractional value stored in tables
should be expressed using t bits where t > [logaM N]
if M is odd and t > [logsM N — 1 otherwise [6].

4 Division Algorithm:

Assume that X, Y and Q are non-negative integers
such that Q = L%J,Y # 0, then the following steps
introduce the basic idea for division in RNS [1]:

1.
2,

Set Quotient Q to zero; Q = 0.

Find the position of the most-significant non-zero
bit in the divisor Y , say k, that is k& = A(Y).

. Find the position of the most-significant non-zero
bit in the dividend X , say j, that is j = h(X).

4. If § > k, then:
QI — Q + 2j——k—1
X' =X-20"%14Y
Q=Q, X=X
Go To Step 3.
5. If j = k, then:
=X-Y

I=hX"),s0ifj' <jthenQ@Q=Q +1
Otherwise, Q is unchanged. End procedure.

6. If j < k, then Q is unchanged. End procedure.

This basic algorithm can be used efficiently and effec-
tively with RNS division arithmetic. An important fea-
ture of this algorithm is the selection of the quotient to
be 2/=*=1 hence, the quantity X — (2/~*~1xY) is guar-
anteed to be non-negative as long as X > Y. Unlike
other algorithms, this will eliminate all hardware and
execution time needed for difficult residue operations.

5 Realization Of The Algorithm In
RNS

The realization of this new algorithm is still based
upon converting the residue representation of the div-
idend and the divisor to a weighted code in order to
derive some information regarding the position of the
most-significant non-zero bit contained in a residue
number. In this paper, two different realizations are
introduced for the new algorithm. The first realization,
henceforth called Realization I, is most useful for small
dynamic ranges. The other realization, called Realiza-~
tion II, is based on Soderstrand and Van Vu Fractional
Representation Technique. This scheme is suitable for
large dynamic ranges.

5.1 Realization I:

This realization is quite useful for small and medium
dynamic ranges where all the bits of residue digits
can be applied to a single RAM in order to evalu-
ate h(I). Moduli sets like (7,11,13,15), (31,32,33), and
(11,13,15,16) are among many possible candidates for
such a realization.

Realization I can be described by the following steps:

1. Set Quotient Q to zero; Q = 0.

2. Apply Y to a RAM (referred to as RAM 1 in
Fig.(1)) to obtain k = h(Y), where k is expressed
in r bits, r = [loga(logaM)] .

3. Apply X to RAM 1 to obtain j = h(X), j is also
expressed in r bits.

4. Apply j and k (or the difference j-k) to a RAM
(referred to as RAM2 in Fig.(1)) or a PAL that
produces @);, where @Q); is the residue representa-
tion of 29=%=1 if j > k. However, for the case
j = k, RAM2 will produce the residue represen-
tation of 1. Otherwise, the procedure is stopped.
The size of this RAM is 22" or 2"(depending on
whether j and k or their non-negative difference
is used). It is worth mentioning that RAM2 can
be replaced by a PAL or a simple combinational
circuit.

A residue multiplier will then multiply Q; by Y.

The output of the multiplier , i.e. Q;Y, is sub-
tracted from X to produce a new remainder. In
parallel with the multiplier or the subtractor,
a residue adder will accumulate the outputs of
RAM2, i.e Qs to produce the quotient Q.

. Whenever j = k, the output of RAM2 (PAL)
for this case is 1. The new remainder would be
X' = X ~Y. The residue adder in this case may
need to be incremented by 1 depending on the fol-
lowing: the value of X' is applied to RAM1, if
the output of this RAM produces j' where j' > j
, then this indicates that an overflow has taken
place, and the residue adder should not be incre-
mented. However, if 7' < j, then the residue adder
should be incremented by 1 (see Theorem 1). Af-
ter either case, the iterating procedure is stopped.
The output of the adder is Q.

. For the case j < k, then X < Y. Procedure is
stopped.

242

This realization requires logs Q) iterations . Each itera-
tion consists of two consecutive memory cycles followed
by two consecutive residue operations. The realization
is very attractive for many digital signal processing ap-
plications which utilizes small and medium dynamic
ranges.

Proof Of Correctness Of The Algorithm (Real-
ization I):

Before proving the algorithm, the following theorem
has to be introduced:

Theorem 1 For any residue integers X,Y € [0,M),
for which j = {(X) , k = h(Y) and j = k # 0 then
X>2Yifj>j4,and X <Y if j > j, where j =
MX-Y).

proof:
Since j = k, then X and Y can be expressed as:
X=2"14qandY =21 40
where: 0 < a,b <2171 -1
For the case X >Y (ie.a>b):
X —Y|y=X-Y>0,then X —Y =a—b, but
since0<a—-b<2i—t —1,
then j' = (X —Y) =h{a-1) < j.
For the case X <Y (le. a<b):
X-YMy=M+X-Y
F=h(M+X-Y)=hM+a-b).
The minimum value of j' happens whena =0, b =
(27! = 1) and M = Y + 1. Upon substituting these
values: j' > h(29~! +1) = j , or equivalently: j' > j.
The proof of the algorithm as given in Real-
ization I is as follows:

e Forthe case j > k,and since Y < 2¥+! and X > 2J
then £ > 21=%~1 = Q; (i.e Q; is the ith partial
quotient). Hence the estimate of the quotient in
each iteration is guaranteed to produce a positive
remainder. Assume there are v iterations which
satisfy the condition j > k, then the total partial
quotients resulting from this case is (), where: @ =

21@;1 Qi

For the case j = k, (i.e. (v -+ 1)th iteration), two
possibilities are expected:

1. X < Y: This case is detected according to
Theorem 1 by evaluating j' = h(X - Y).
Hence, if 7' > j then the quotient should not
be updated. Q.41 = 0. Procedure is then
stopped.

X > Y: This case is detected according to
Theorem 1 by evaluating 7/ = A(X - Y).
Hence, if j' < j then the quotient should be
incremented by 1. @u41 = 1. Procedure is
then stopped.

e For the case j < k, it is obvious that X < Y,
consequently, Q is unchanged and procedure has
to be stopped.

Therefore, the Quotient would be:
Y1 Qi + Qo4 , where:

Q

1%

1
0

Qpay = y i Jo1 > §'

vl , otherwise
Ju+1 = h(X), in the (v+ 1)th iteration (i.e. when j=k).
5.2 Realization II:

This realization is concerned with large dynamic
ranges which cannot be decoded using a single table.
Hence, the fractional representation mentioned earlier
will be adopted here to evaluate h(Y) once, and then
to evaluate h(X) iteratively.

This realization can be described as follows:

1. Apply the residue digits of the divisor Y to the
fractional representation circuit to obtain Y/M.
This requires a memory cycle followed by a multi-

operand addition (see Fig.(2)).

. Obtain k using a proper combinational circuit like
a priority encoder (not shown in Fig.(2)). &
h(Y/M)

. Apply the residue digits of the dividend (remain-
der) to the fractional representation circuit to ob-
tain X/M. A memory access cycle and a multi-
operand addition are also needed here. Obtain j,
where j = h(X/M)

Apply j and k (a total of 2r bits), or their differ-
ence, to a RAM or PAL that will produce @;. Q;
is the residue representation of X, /Y., where: X,
is an estimated value of X given by: X, = 2/ M.
Similarly, Y. is an estimated value of Y given by:
Y. = 281 M. Or equivalently Q; = 29-*%-1,

. The output of the table, Q;, is applied to a residue
multiplier to compute ;Y.

. The output of the multiplier (Q;Y) is subtracted
from X using a residue subtractor.

. The output of the residue subtractor is applied
again to the fractional representation circuit. (i.e.
step 3 above) as long as j > k.

. Whenever j = k, the output of the RAM (PAL)
for this case is 1. The new remainder would be
X' = X — Y. The residue adder will or will not
be incremented depending on the following: the

243

value of X' is applied to the fractional represen-
tation circuit to produce j’, where j/ = h(%).
If j/ = -1, then an overflow has taken place,
and the residue adder should not be incremented.
However, if j' # —1, the residue adder should be
incremented by 1. After either case, the iterative

procedure is stopped. The output of the adder is
Q.

9. For the case j < k, then this implies that X < V.

Fig.(2) shows the main hardware components of this
realization.
Proof Of Correctness Of The Algorithm (Real-
ization IT):

Before introducing the proof of the algorithm, the
following theorem has, also, to be proved:

Theorem 2 In RNS, for any fractional representa-
tions 7, % where X,Y € [0,M), j = h(£) , k =
R(EL)andj=Fkthen X >Y ifj’ # -1, and X <Y
if ' = —1, where j' = h(g(_&_y_)

proof:
Since
that is:
2 < 3% <27t | and similarly 2/ < X < 29
For thecase X 2 Y : (X -Y|y=X-Y 20,
then:

% and X are of the same order (i.e j = k)

0 < X < 2

R(X7X) < j , or equivalently; j' < j.

Since the highest value of j is -1, then: j' < -2

Note that for the special case, X;[Y = 0, then by
definition h(0) = 0.

Consequently, if X > Y then j' # —1.

For the case X <Y :

X =Yy =M - (Y - X), then j' = h(MEE=L),
or j' = h(1 - LX),

but since X < Y, then: 0 < X2 < 29, or j' >
h(1 —29),

Since X,Y < M, then the maximum value of j is -1.
Therefore, 0 > j' > h(3). Or: j' = —1.

The proof of the algorithm as given by Real-
ization II is the following:

Hence, 7'

e For the case j > k:

J
Z b2

i=—n

X
W (5)
where by ; are the binary bits of the variable, and

n = [loggM]. Hence the estimated value X, of
X given by X, = 27 M is guaranteed to be less or

equal to the actual dividend (remainder) X. Simi-
larly:

k
%;— = Z b2t

t=—n

(6)

where the estimated value Y, of Y given by Y, =
2k+1 M is guaranteed to be greater or equal to the
actual divisor Y.

Thus, & > L%J. In other words, the remainder
is guaranteed to be non-negative.

e For the case j=k, two possibilities are expected:

1. X < Y. This case is detected according
to Theorem 2 by evaluating j’. Hence, if
j' = —1 then the quotient should not be in-
cremented. Procedure is then stopped.

2. X 2Y. If 5 # —1 then the quotient is in-
cremented by 1. Procedure is then stopped.

e For the case j < k, it is obvious that X < Y.
Procedure is stopped.

Therefore, (following the same approach given in the
proof of Realization I):

Q= L%J = Qi+ Qun

i=1
Qv = {1 i #-1
v+ =1 0 , otherwise

6 FEwvaluation

The most recent work was introduced by Lu in 1992
[2]. It does NOT use MRC, however, it utilizes the idea
of fractional representation of X/M to detect the parity
of a residue number, and hence to check if an overflow
has taken place. Lu’s algorithm requires 2logy @ steps,
where Q is the quotient. Each step consists of several
residue additions and subtractions, one residue mul-
tiplication, two memory access cycles and one multi-
operand addition (in fact, in parts IT and IV of Lu’s al-
gorithm, more than one multioperand additions might
be needed). Realization II of the new algorithm re-
quires log, @ steps where each step consists of one
residue multiplication (Q;Y") , one residue subtraction
(X —Q;Y) that is performed in parallel with one residue
addition (@ = @ + Q;), one multioperand addition and
two memory access cycles: one to get the fractional
representations of residue digits, while the other is to
obtain Qi-

Following the literature prevalent method of measuring

244

Table 1: Simulation Results
Modul MORO MOMA
Set Our’s | Lu’s | Our’'s | Lu’s
M1 2.68 | 10.34 0 0
M2 2.67 | 10.36 | 3.041 | 5.496
M3 2.72 | 10.39 | 3.089 | 5.504

execution time for residue arithmetic algorithms, the
mean of the basic residue arithmetic operations needed
by each algorithm is computed, while memory accesses
are not counted. The basic residue operations are: ad-
dition, subtraction and multiplication.

To compare performances of this algorithm and Lu’s
algorithm, computer programs simulating both algo-
rithms have been developed to calculate the Mean
Of Residue Operations (MORO). The Mean Of Mul-
tioperand Additions (MOMA) has been calculated
and compared, where it applies. For simulation pur-
poses, three moduli sets were selected to serve dif-
ferent dynamic ranges. These sets are: M1
(7,11,13,15) , M2 = (11,13,15,19,23,29,31) , and
M3 = (29,31,43,47,53, 55,59, 61, 63).

For instance, moduli set M1 was selected to have
a small dynamic range (M < 2'4). Moduli set M2
was selected to have a large dynamic range (M < 2%9).
‘While dynamic range of M3 was chosen to be very large
(M < 2°1). None of the moduli was chosen to be even,
since that is not consistent with Lu’s algorithm. How-
ever, no such condition is imposed by the new algo-
rithm. The results are listed in Table 1. For moduli
set M1, the results are exact. All possible combinations
of dividends and divisors were simulated. However, for
M2 and M3, a sample of 200 million randomly gener-
ated numbers within the dynamic range defined by each
moduli set were simulated. The simulation of the new
algorithm is based on Fig.(1) for M1, and on Fig.(2) for
M2 and M3. Simulation of Lu’s algorithm is based on
the flowchart given in [2]. Since signed numbers had to
be converted first to positive numbers, the simulation
was conducted assuming unsigned integers.

For the moduli set M1, Table 1 indicates that the

new algorithm is four times faster than Lu’s algorithm,
This conclusion applies to every moduli set where all
the bits of residue digits can be applied simultaneously
to a single RAM.
For other moduli sets like M2 and M3 which has very
large dynamic ranges, the new algorithm is still four
times faster regarding the number of basic residue oper-
ations. Moreover, the average number of multioperand
additions needed is almost half that needed by the
other algorithm.

7 Speed and Hardware Considerations

The implementation of either Realization I or II is
relatively a simple operation. The speed of Realization
IT is determined by evaluating, the bottleneck func-
tion, h(X). However, as densities and speed of RAMs
increase, the use of larger look-up tables would be ad-
vantageous. Since, no implementation of a RNS divider
has been published yet; the proposed ones (Fig.(1) and
Fig. (2)), would allow for feasible, practical and ben-
eficial RNS dividers. Improved memory density, will
further, enhance the speed and expand the range of
an implemented divider. For instance, a RAM of 1Mb
can be used to implement the function A(X) for mod-
uli sets with dynamic ranges of 20 bits in the form of
Realization 1. This dynamic range would be very satis-
factory for many applications. Moduli sets of 32 bits or
less would require two 64k RAMs, along with a binary
adder of two operands.

A moduli set with a dynamic range of 51 bits is very
suitable for computer applications, The hardware re-
quirements to build a RNS divider for such a range
would mainly consist of: three memory tables each of
128k, one three-operand binary adder, a 4k RAM (or a
table of 51 locations only if j —k is used), a residue mul-
tiplier, subtractor and adder. However, if smaller mem-
ory sizes are to be used, then a larger multioperand
adder should be considered.

8 Evaluating h(I) for the moduli set
(2k,2F — 1,261 1) .

In this paper, we are customizing this fractional rep-
resentation approach to serve a particular moduli set,
namely, (2%,2% — 1,2%5—1 _1). This customization re-
sults in reduced hardware requirements, and thus, de-
coding time.

8.1 Decoding Analysis:

Defining my = 2%, my = 28 — 1, mg = 2%-1 — 1,
Therefore, 1y = (25 —1)(2¥~1 - 1), 1y = 25(2F-1 1),
s = 2%(2% — 1). The residue representation of X is
(r1,72,73). Three new multiplicative inverses for i,
7ha, and g are introduced here; these are: 25=1 41,
2% — 3, and 2*—2 respectively. For a three moduli set,
the CRT is given in the form [3]:

T

1,

- Mp (M)

mq

Substituting the corresponding values of ; and their
multiplicative inverses in (7), and dividing both sides

by M, then:
X 1 -
Y= |25 + 1)r |0 +

1
9k _ 1 |(2k - 3)r2l2k—1

2k—2r3|2k—1_1 —-p (8)

1
+ormr 1 |

Since X < M, then £ < 1. Hence:

1 -
= FRAC(@' I(Zk ! -+].)7‘1'2,c +
1
2k —1

1 _
+'2",;'_—1—_'_—1 l2k 27°3|2k_1_1) 9)

X
M

2" - 3)7'2]2"—1

where FRAC(---) denotes the fractional part of the
operand. In the following analysis, a significant prop-
erty [3] will be used. It states that modulo (27 — 1)
multiplication of an integer by 2", where p and n are
positive integers, is equivalent to n-bits circular left-

, 3—bits 4

shift. (e.g. |28(27)],, " 3"V TT0T1= 11110 *7 30).
Therefore, to simplify the terms on the right hand

Side (RHS) of (9), we proceed as follows:

o Evaluating 5 [(25=1 + 1)ry],.:

Assuming that the binary form of 7y is given by:

bi(k~1)b1(k—2) - - - b1 1o, then,

{262 + D)r, = |26 + 11
(k—1)zeros
o

[b1(k—1)b1(k=1) - * - b11b10 00 - - - 000 +

b1(k—1)b1(k—1) - -~ b2b1bo ok

binary

Recalling that for mod 2%, only the Least
Significant (LS) k bits are significant, then
[(2F-1 + 1)ry lzk = baby(r—2) '+ + brabro, where b, =
(b10 XOR by(x-1)).

Now, let R; represents the binary form of
% |27 + 1)ry |, then Ry is obtained by mul-
tiplying the binary form of % by that of
|(2¥* + 1)71|,.. That is:

Ry = 0.bzbi(k—2) - - - b1abio (10)

o Evaluating 55 |(2% - 3)ra),_:
Assuming that the binary form of 75 is given by:
bak—1)ba(k—2) -+ - barbao, then, |(28 —3)ral,, |
[2675 — 373, _, - But since [2673,, | = [ralge_y,
then, |(2¥ — 3)r2|,u_, = |—(2r9)lox_,. Based on

binary

the circular left-shift property: |—(272)|5% _;
| = (ba(k—2)ba(k—3) - - - barbaoba(e—1)) | po _; -

245

Or equivalently,
| = (ba(k—2)b2(k—3) * -

k—ones(=2*—1)

A
(11-+-111) —(bo(k—2)ba(k—3) *-

b21b20b2(k—1))l2k_1

-ba1b20b2(k-1))

" Thus h(

2k—1

Assuming s # 0, then:

l(2'°—3)7'2|2,¢_1 hrgE Ba(k—2)ba(k—3) - - Ba1baobage-1)

where b denotes the complement of the bit b.
However if r = 0, then |(2’“ - 3)’“212k_1 =0.

On the other hand, the term 5 can be writ-
ok

ten as ;Z5-x. Recalling that any fraction in the
form 1L, where |g| < 1, can be expanded in a

power series form as: L = Zz_l q*. Therefore:
o~k

e =27k 427 2k+2 3k+2—4’°+ . Based
on error analysis introduced in [4], then the MS
(3k + 1) bits are the only significant bits in our
computatlons Let Ry represents the binary form
of —,;——l (2% — 3)r2|2k ,» then Ry is obtained by
considering the MS (3k + 1) bits of multiplying
i1 by |(2F — 3)r2|,._,. That is:

k bits
A

Rz = 0 52(k—2)52(k—3) . '52152052@—1) *
© k bits

52(k—2)52(k-3) e -52152052(1@—1) ¥

k bits
e

Ez(k_g)gg(k_s) o 521320320:—1) E?(k—z) (11)

where * implies that terms are concatenated.

Evaluating sr=r— |2 7%rs)gua_y:

Assuming that the binary form of r3 is given

in (k — 1) bits by: bak—2)bsk~3) - bs1bso,

then based on the circular left-shift property:
bi

[25=2rg| sy bobsck- 2)b3(k ~3)*++ba1

On the other hand, the term 5,,—_-171 can be written

as -2—2(;k7,,—17 Thus, it can be expanded in a power
series form as: T%}—)—IY = 9—{(k-1) 4 9-2(k-1) 4

2~3(k—1) 4 9—4(k=1) 4 Now, let R3 be the
binary form of s=i— |2¥~%rs|,._,_,, then Ry is
obtained by consuiermg the MS (3k + 1) bits of

multiplying s=— by |2*~%rs|,._,_,. That is:
(k—1) bita (k—1) bits
Ry = 0.53063@—2) e ba2b31‘330b3(k—2) - Baabar *
(k—1) bits 4 bits

baoback-2) - - - baabar baobak—2ybak—nbage—4) (12)

246

Therefore, (9) can be rewritten as:

%’ = FRAC(Rl + Ro +R3)

(13)
#£) is nothing but the position of the MS
nonzero bit of 3.

Example: Consider the mouli set {16, 15, 7}. To
find A(%) where X = (8,12,4), (ie. X = 312 and
M = 1680), then:

r1 = 8 "8V 1000, so R; = 0.1000

re =12 ’""‘"y 1100, so Ry = 0.0110 0110 0110 0
ry = 4""“‘”’ 100, so Rg = 0.010 010 010 010 0
Therefore, FRAC(R; + Ry + Rs3)
.001011111000

Since the underlined MS nonzero bit is in the third
location, then A(£)= -3.

8.2 Hardware Implementation:

To implement (13), one three-operand binary adder
is needed. A Carry-Save Adder (CSA) followed by a
carry propagate adder (CPA) can realize the addition
of the three operands. On the other hand, if h(3) is
to be evaluated using the implementation proposed in
[3]-[4] and [1], then two ROM:s of size (2* x 3k), another
ROM of size (2¥~! x 3k) and one three-operand adder
are needed. In our new implementation, the decoding
time is also reduced by the memory access cycle time;
which is very significant compared with the delay time
of an adder.

9 Evaluating A(I) for the moduli set
(2F +1,2F, 2k — 1):

In this section, we are customizing the same RNS
division approach to serve a particular moduli set,
namely, (2 4-1,2%,2% — 1). This customization will
reduce the complexity of evaluating h(I).

9.1 Decoding Analysis:

The residue decoder introduced by Sweidan and Hi-
asat [7] has the advantages of reduced hardware re-
quirements, and extremely wide fixed-point dynamic
ranges since its upper bound is not limited by a mem-
ory size. Moreover, it requires a total of only four 2k
bit binary adders, which makes it very attractive com-
pared to other published decoders {8]-[9]. In this paper,
we propose a hardware layout that can decode regidue
digits of the moduli set (2* + 1,2%,2% — 1) into binary

equivalent. The new layout is an improvement of that
presented in [7]. In this new contribution, we are re-
ducing the number of adders needed for the decoding
operation from four 2k bit binary adders into one 2k
bit three-operand binary adder.

To have this paper self-contained, we briefly restate
the analysis in [7]. Based on that, the contribution of
our modified algorithm is introduced.

Using the basic definition of a residue system (3],
and for any Xe¢[0, M):

X
X =|3)2+m (14)
However, it has been proved in (7] that:

X
'.g;.l =|A+B+C —rilpm_, (15)

where:
A= l(22k—1 + 2k-1)7‘3|22k_1

B = |(2% - 2% — Urayon_,
C = ,(22k—1 + 2k—1),,.1 '2%_1

That is, if 71, 7o and r3 has the following binary for-
mat:

1 = bigby(k—1) -+ bi1bro
T2 = ba(p-1)ba(k—2) - * - b21b20
3 = bg(x_1)b3(k—2) * - - b31b30

Then using circular left-shift property; A , B and C
can be expressed as in [7]:

A = byobg(k—1) - - * b32b31b30b3 (k1) - - - 32031

B = By(k_1)bar—2) - - Db 1 --1
k ones

C = bigby(k-1) * - -b12b11b1zby(g—1) - - - br2bu
where: blm = blO OR blk-

By redefining R'; = A,

R’z =B - T

and

R'3 = C, then (15) can be rewritten as:

X
[ﬁ'] =|R'1 + R's + Rslgm_, (16)

e Case I: Since R’y = A, then the binary represen-
tation is the same:

R’y = b3obg(k—1)b3(k—2) - - - bagbas *
b30b3(k—1)b3(k~2) * - - b32ba (17)

¢ Case II: Since R's = B — rq, then for the case
r1 < 2%, and using the 2’s Complement notation,
R's = B+ (1's Complement of r;) + 1. Noting
that the LS k bits of B are all ones, then the LS k
bits of the result of the subtraction is simply the
1’s Complement of r; and an overflow of 1 at the
(k+1)*» bit. Based on 2’s Complement, this over-
flow indicates that the result of subtraction is pos-
itive, hence it can be disregarded. However, when
Irllzk = ry = 0, then R’y = |22k - 11221.__1 = 0.
Therefore, R's can be expressed in binary format
as:

0
_ _ ,_if l_rli2" =Ty = 0
bak-1)ba(k—2) - - - barbaox (18)
brk~1)b1(k~2) * * * b11b1o
, otherwise

Rlz =

e Case III: r; = 2F. In this case, the (k + 1)** bit of
ry is 1, thus, the values R's and B are the same
because in the computation of R's we used the
LS (k — 1) bits of ry, which are all zeros in this
case. Therefore, the format of R’s is not changed.
However, to take care of this nonzero (k + 1)** bit
of 71, it has to be subtracted from R's. Therefore

brebi(k—1) -+ D12b11bizbi 1) - - b12bu1

Rla = _ - . ,ifrlr,é2k
37) Buobiroy) - Brabribiabi(p—yy - - brabu
y 1 = 2k
(19)

9.2 Hardware Implementation

Realizing (16) is simply accomplished by adding R',
R’ and R's. The output should then be incremented
by any overflow-carry [7]. Nevertheless, any overflow
resulting from this adder can be neglected as long as
the output does not have the value (2" — 1), where
0 < m < 2k. This can be justified by the fact that
h(I) = h(I+1)if I # (2" ~1). However,if I = 2" -1,
the overflow would be significant and the priority en-
coder proposed in implementing the residue divider can
take care of this special case.

A single carry-save adder can add these three operands.
Few logic gates are also needed to detect the (k + 1)th

247

bit of r; and to select the proper format of R's.

Moreover, if the same moduli set is to be decoded us-
ing the implementation proposed in [3]-[4] and [1], then
two ROM:s of size (2% x 2k), a ROM of size (25+! x 2k),
and one three-operand adder are needed.

Example: Consider the mouli set {17, 16, 15}. To
find h(X) where X = (11,11,2), (i.e. X = 827), then:

ry = 11""%Y 01011, so R's = 1101 1101

ry = 11 ™4™ 1011, so R’z = 0100 0100

rs = 28 0010, so R’y = 0001 0001

Therefore, Adder Qutput = (R'; + R’y + R'3) =
0011 0010, where the overflow has been neglected.
Based on (14), h(X) = h(0011 0010 1011) = 10 (i..
10" position).

10 Hardware and Speed Considera-
tions

Figure (3) shows the new proposed hardware real-
ization of a RNS divider for the moduli sets (2¥,2% —
1,281 — 1) and (2* + 1,2*% 2% — 1). The operation of
this divider is self-explanatory. The propagation de-
lay in Fig.(3) , as compared with that in Fig.(2), has
been reduced by a memory access cycle per iteration.
Recalling that memory access cycle is very significant
compared with the delay of other components, and that
division is an iterative procedure, then this reduction
will, eventually, be more and more significant as the
number of iterations per division problem is increased.
This implies that the new proposed realization is much
faster for these particular moduli sets. Moreover, the
reduction in hardware requirements is another substan-
tial improvement.

11 Conclusions

This paper introduced a new general division algo-
rithm customized to serve two moduli sets: (2% 2% —
1,281 — 1) and (2% + 1,2%,2% — 1). The proposed re-
alization of the algorithm requires less hardware and
processing time. A RNS divider would then require a
binary adder, priority encoder, ROM, residue adder,
residue subtractor, and residue multiplier only. The
reduced hardware requirements and processing speed
qualify the new realization to be very practical for
many computing applications, and therefore, enable

RNS to play an increased role in designing arithmetic
logic units for general purpose computers.

References

{1] A. Hiasat, and H. Abdel-Aty-Zohdy, “High-Speed
division algorithm for residue number system ,” in
the Proceedings of 1995 IEEE International Sym-
posium on Circuits and Systems, vol. 3, pp 1996-
1999, May 1995.

(2] M. Lu, and J. Chiang, “A novel division algo-
rithm for residue number system,”. IEEE Trans.
Compu., C-41, pp 1026-1032, Aug. 1992.

[3] N. Szabo, and R. Tanaka, “Residue Arithmetic
and Its Applications to Computer Technology,”.
McGraw Hill, New York, 1967.

{41 M. Soderstrand, M. A., W. Jenkins, G. Jullien,
F. Taylor, Eds. “Residue Number System Arith-
metic: Modern Applications in Digital Signal Pro-
cessing,”. IEEE Press, New York, 1986.

[5] M. Soderstrand, C. Vernia, and J. Chang, “An
improved residue system digital-to-analog con-
verter,”. IEEE Trans Circ. and Sys., CAS-30, pp
908-907, Dec. 1983.

[6] T. Van Vu, “Efficient implementations of chinese
remainder theorem for sign detection and residue
decoding,”. IEEE Trans Compu., C-34, pp 646-
651, July 1985.

[7] A. Sweidan, and A. Hiasat, “New efficient memo-
ryless, residue to binary converter,”. IEEE Trans.
on Circuits and Systems, CAS-35, pp 1441-1444,
Nov. 1988.

[8] B. Bernardson, - “Fast memoryless, over 64 bits,
residue to decimal converter,”. IEEE Trans. on
Circuits and Systems, CAS-32, pp 298-300, March
1985.

[9] K. Ibrahim, and S. Saloum, “An efficient residue
to binary converter design,”. IEEE Trans. on Cir-
cuits and Systems, CAS-35, pp 1156-1158, Sep.
1988.

[10] A. Hiasat, and H. Abdel-Aty-Zohdy, “Design and
implementation of a fast and compact residue-
based semi-custom VLSI arithmetic chip,”. in the
Proceedings of 1994 IEEE MidWest Symposium on
Clircuits and Systems, vol. 1, pp 4{28-431, August
1994.

248

Y

RAM J R A2M

Residue
Adder

Fig. (1): Proposed Implementation of Realization I.

/

4

71
» RAM
g 1
Ty X
> R‘%M Y Residue Residue
Multip. Subtrac.
T E
5] RAM x | ol .
3 v C J
Adder g » RAM >
a1
r
k Residue
Adder }—-—-* Q
"™~ I rRAM
N

Fig. (2): Proposed Implementation of Realization II.

<
<

Residue
Subtrac.

R: E
R w |l
R2 Adder il o RAM >
3 d
d
r k

Residue
Adder

Fig.(3): Proposed Implementation of the division
algorithm customized for moduli sets:
(2%,2% — 1,21 1) and (2% +1,2%,2% - 1).

249

