A priori Worst-Case Error Bounds for Floating-Point Computations

Walter Krimer
Institut fiir Wissenschaftliches Rechnen
und Mathematische Modellbildung IWRMM)
Universitit Karlsruhe
D-76128 Karlsruhe, Germany

Abstract

A new technique for the a priori calculation of rigorous
error bounds for floating-point computations is introduced.
The theorems given in the paper combined with interval
arithmetic lead to the implementation of reliable software-
routines, which enables the user to compute the desired error
bounds automatically by a suitable computer program.

As a prominent example a table-lookup algorithm for
calculating the function exp(z) - 1 that has been published
by Tang [15] is analyzed using these new tools. The result
shows the high quality of the new approach.

1. Introduction

It is 2 well known fact, that the results of floating-point
computations may be totally wrong: For the numerical so-
lution of the following simple linear system of equations
IEEE double arithmetic {4, 8] is used (64 bit data format,
best possible (semimorphic) floating-point operations). The
components of the true solution of the system Az = b with

64919121 —159018721 . 1

A= (aij) = < 41869520.5 —102558961) » b= (0 >
are given by z1 = axn/(anan — anaa), 2 =

- —ap/(ajaz — anaz). The corresponding floating-
point computations result in the machine numbers z; =
102558961.0,%, = 41869520.5. All computed digits are
wrong! Although the data are exactly representable and
only 5 floating-point operations are done, the computed “so-
lution” has nothing to do with the exact solution’.

Such “numerical catastrophes” are extremely rare in prac-
tice, but to cite Kahan [7]:

Significant discrepancies [between the computed
and the true resulit] are very rare, too rare to worry
about all the time, yet not rare enough to ignore.

IThe solution of the system is =} = 205117922, = 83739041

1063-6889/97 $10.00 © 1997 IEEE

In the present paper a methodology is described, which
allows to decide whether the floating-point computation of
a given real valued expression delivers an accurate result.
Here, the independent variables as well as the parameters of
the expression may vary within given intervals (the width of
which may be large). Then the conclusion drawn from the
application of the new error-analyzing tools will be valid for
floating-point evaluations of the expression with arbitrary
point data for the independent variables and the parameters
lying in their corresponding intervals.

Moreover, the tools which are discussed enable the user to
analyze complete program parts including loops, iterations,
and recursion. Also intermediate results in the underflow
range are treated in a reliable manner.

As an example the result of a rigorous worst-case error es-
timation for an implementation of an accurate table-lookup
algorithm for exp(z)-1 described by Tang [15] is shown.
Finding a reliable worst case error bound for such an al-
gorithm by hand is very cumbersome and error prone. A
lot of different cases have to be analyzed separately. One
must be sure that all different branches are considered when
performing the error estimation?.

2. Some Notations and Conventions

S = S(b,1,¢,%) denotes a floating-point system with
base b, with ! mantissa digits, and exponent e in the
range ¢ < e < 2. 5(2,53,-1022,1023) corresponds to
the IEEE double data format (64 bit). o € {+,—,s,/}
denotes a real operation and B ,0 € {+4,—,e¢,/} the
corresponding floating-point operation (round to nearest).
Notice the implicit priority rules used in the notation

2In [13] Tang proposed a table-lookup algorithm for logarithms. The
user is supplied with a very small over all error bound. Nevertheless, some
constants in the table shown in the cited paper are wrong and must be
corrected! Apparently this fact has not been detected by the error analysis
done by hand. (The correct values for the constants C_lead(j), j=17, 57,
and 73 are 3FBF EC91 31DC 0000, 3FD7 92A5 S5FDD 8000, and
3FDC E1AF 0B86 0000, respectively. Here, the same notation as in
[13], pages 397 and 398 is used.)

64

|aob—a®@b|:= |(ach)—(a@b)|. MinReal isthe small-
est positive normalized floating-point number, MaxReal
the largest floating-point number. For the IEEE double
format these numbers are MinReal:=2.22...- 1073%,
MaxReal:=1.78....10°% _ G, f are quantities computed
in floating-point arithmetic, ¢* means Wilkinson’s epsilon
e = 3b77 e et = 42179 = 1.11022.... 1076 for
the IEEE double format. IRt denotes the set of all pos-
itive real numbers, I IR the set of all closed real (finite)
intervals, IS = {[¢,d]|e,@ € S,a < @} the set of all in-
tervals bounded by floating-point numbers, [A] := max a|

the maximum absolute value, < A >:= min,e 4 |a| the min-
imum absolute vatue and diam(A) := sup(A4) — inf(A) the
diameter (width) of an interval A € IR.

3. Theoretical Results

Let f denote an expression and f(a) its evaluation at the
point e € A € IR. Let f(@) be the result of the corre-
sponding floating-point computations. One is interested in
an a priori error bound A(f) for the maximal absolute error

|£(a) - F@I < A(S)

validforalla € Aand alld = a+ A, withA, < A(a). Here
the interval A and the error bound A(a) for @ are assumed
to be known.

To achieve this, the original expression is broken down
into basic operations like +,—,-,/ and /& for which
the following theorems will give reliable worst case er-
ror bounds. These operations are used as basics because
they are required by the IEEE Standard for Binary Floating-
Point Arithmetic [4]. For the fundamental operations
o € {+,—,,/} this standard guarantees:

A

a,b € S with
la 0 b] € [MinRealMaxReal]

aob—a@b|<€*.
aob =

However, the methodology is not restricted to this set
of basic operations. It can be extended, for example, to a
complete set of operations (functions like sin, cos etc.) as
itis commonly available in a higher programming language
like FORTRAN or C (see Section 6).

It should be emphasized that in contrast to conventional
error estimations also higher order error terms and underflow
situations are treated rigorously by the following theorems.
Using an interval arithmetic as well as directed rounded
operations makes it possible to build subroutines preserving
these properties. Such software tools are supplied by the
PASCAL-XSC module eps_ari (see Section 4).

The following lemma bounds the maximal absolute error
for results lying in the underflow range.

Lemma 1 (Underflow Range) For results lying in the un-
derflow range it holds

/\ |a @b —aobl <MinReal.)

a,be S
|a o b| < MinReal

Proof: sign(¢ & b) = sign(a o b) and
diam([0,MinReal]) = MinReal g.

What follows is a discussion of the error propagation for
the basic binary operations with arguments that are afflicted
by rounding errors.

Leto € {+,—,¢,/}anda€c A€ IR, be B€ IR,

Sod=a+ A, with |A, | < A(a),

538 =b+ Ay with | Ay | < A®D).

It is assumed that the quantities A, B, A(a) and A(b) are
given. The goal is to find a bound A(o) € R* with

A

acA beEB

) - < A)
aob,dob € [-MaxReal,MaxReal]

lb—3] < A®b)

aob—E@Z!SA(o).

The case of addition is treated in

Theorem 1 (Addition) For the additiono := - itholds:

A A |a+b—aaa3|gA(add)
acq |a-7<A()

€% =T <aw
with

A(add) := MinReal +
A+ Bl+(1+e)(Afe) + A(b))

Proof: lLeta € A,b € B,

G=at D€ A+ [A(a), A@)],| Aa| < Ala) and
b=0+A0p € B+[-A(0), AD)),| Ay| < A(b) arbitrary
but fixed.

I) Error bound for [+ % — G @ 5| :

a) @+ b € U, the exact sum of the disturbed argu-
ments lies in the underflow range:

i+beU=—dambelU

Lemma l (5 + 3 — @ @ b| < MinReal

65

b) G+b & U, i.e. the exact sum |Zi+3| is an element
of [MinReal, MaxReal]:

G+bgU=ambgU
= [a+b-amd|
<etfa+b
<e*(|A+B|+A a) + Al)

This holds, because from @ € A+[—A(a), A(a)]
it follows [a| < |A] + A(a) -

II) Error bound for |a + b — (@ + b)) :
It holds: _
ja+b— (@+D)

la — @l + |b—3]
Aa) + Ab)

A

<

Over all error bound:
la+b—d M b

<le+b—G+b)|+|a+b-ambl

1,1
< Afa) + A) +

|

A(a) + A(D) + MinReal,Casc) a)
eM+BLH1+eKA0n+A@D£aﬂw>

MinReal,

e (|A + B+ A + A(b)), Case) b)

Case D) a)

<
< e'lA+Bl+(1+e)(A (@) + A®B)) +Minreal

= A(add). 5
The quantities @, b, @, b have been chosen arbitrarily. This
proves Theorem 1 g

Theorem 2 (Subtraction) The error bound A(sub) for
the subtraction is very similar to the error bound

A(add) for the addition. It holds:
A(sub) := MinReal +

el4=Bl+(1+¢) (2@ +20))

Proof: Use the representation @ — b = a + (—b) and the

66

proof of Theorem 1 g

Theorem 3 (Multiplication) For the multiplication
o 1= ¢ it holds:

A

a~b—5E]z\ < A(mul)

g é la— 3| < A(a)
b — 8] < A(b)
with
A(mul) := MinReal + |A||Ble*+

(1A ®) +1BI1A @+ (@) A @) (1+¢7)

Proof: Leta € A,b € B,
G=a+Ag € A+ [= A(a), @], Aa | < Ala) and

b=b40p € B+[— A (D), AB)], | As] < A(b) arbitrary

but fixed.
I) Estimation for |G -b — @ [] :
)T beU=ambel
Lemma !z .5 — @@ b| < MinReal
b E bgU=[anblgU
= [G-b—-a@b| <ea-b
< et (l4]+ &a))(|BI + A(0))
=" (|A||BI+]A]A(0)+B|A(a)+A(a) AD)).
1) Error bound for |a-b— G- b| :
la-b—G-b
=la-b—(a+ Q)b+ L)l
= la Dy +b Ay + Ay Ay
<A A (D) + |Bl A (a) + A(a) A (b).

Over all error bound: _ _ _
la-b—-2@b<|a-b—a-b|+[d-b—-ab

1.1
<

MinReal
+ Al A (B) + |Bl A (a) + Aa) A (B), 1) a)
(1Al A& (8) + | B[A (a) + A(a) & (B))(1 + &%)
+|Al|Ble™, D b)

< MinReal + |A}|Ble*
+ (A1 A (0) +B| A (a) + &(a) & ())(1 +¢7)
= A(mul) [n]

To prove Theorem 4 below, the following lemma will be
useful:

Lemma 2 (Inverse)

1

/\ ——| £ 1+¢(inv)
N I+7

In|l < 7" <05

with e(inv) := (1 +29*) - n*.
Proof: With || < 7* < 0.5 one gets

1
< < 14 (1420%) -
1n_1+ﬂ_ +(1+27") 7" o

Theorem 4 (Division) In case of the division o := / it
holds:

A A Ia/b —am '5‘ < A(div) with
acd |a—dl< A

€% p-T<aw

A(div) := MinR 1+-——1—'
(div) := MinRea B> -A0)
. B0 A0) 2
(& @+(41+ 2@) - (" + Sz +2A 50
Here we have to make the additional assumption
A< 05- (2)

Assumption (2) means, that the interval B is sufficiently far
away fom zero. In practice this is not a serious restriction.

Proof: Leta € A,b € B,
i=at+D€A+[-A (a), A(a)], Ay < A(a) and
b="b+ Ay € B4[— A (D), AB)], Ay < A(b) arbitrary
but fixed.

1) Estimation for [&/5 — @ (1 5] :

a) GbelU=apbel
Lemma 1 la/b—am b| < MinReal
b) a/bg U= |ambl¢U
= |a/b— G hb| < e[afb|
<e(lAl+ A(a) - zs2am
Here it is used that b € B + [— A (b), A(b)]
yielding
1 1
=< ————
B = -~A(b)

II) Error bound for |a/b — /] :

a (a+d,) 1

w/o — @ =1g -

= 13- L8 (1 gy

= %HIAG+(a+Aa)~sinvl

®» .
< g5 (2@+141+ A@) -e())

}Vith |5i}1V| <e(inv):=(1+2- %%2) . —A<—1§,>b—). The l‘ast
inequality (*) results from Lemma 2 and assumption

).

Over all error bound:
la/b—d @b < la/b—a/b|+ [@/b—a D]

DIy '
= (A(a)+(|A|+A(G)) -6(1nv)) +
{ MinReal, Case I) a)

e* (1Al + &(a) - zgs2xpy, CaseDb)

1

< MinReal + m .
(& @+ A1+ A@) - (¢ +e(inv))
= A(dw) a

In the following theorem the square root function (a unary
operation) is considered.

Theorem 5 (Square root) Let the auxiliary function
h(a) be defined by

Ae) (1 +¢%)

h(a) =¢" — e
(@) =¢e"Va+ N YO 3

with @ € A and a > A(a). Then it holds:
A A Va-VE| < Agsan)

AMa)<a€A la—a| < A(a)
where

A(sqrt) := max{h(inf(A)), h(sup(A))}

Proof: Leta € A, @ = a+ A,, with |A,} < A(A) arbitrary
but fixed. Using the Mean-Value Theorem one finds the
following representation

%:J(;:Aa:\/aJrAa(He\,)

= (\/6+2Aﬁ>(1+e\f)

67

with

¢ = £(a,3) € [min{a,a}, max{a,@)] C A+[~A(a), Aa)].

The square root function is assumed to conform to the IEEE-
754 standard, i.e. |e | < €%, yielding

Va-a| < h(a).

Now the auxiliary function h has exactly one mini-
mum in the range (0,00), i. e. max{h(z)lz € A} =
max{h(inf(4)), h(sup(4))} o

4. Usage of the PASCAL-XSC Module eps_ari

The theorems of the preceding section are coded in
PASCAL-XSC [9] using interval operations. Of course
any other programming language that provides an interval
arithmetic can be used. Five functions named DeltaAadd,
DeltaSub, DeltaMul, DeltaDiv, and DeltaSqrt,
respectively are supplied by the module eps.ari. Calling the
function DeltaAdd in the following assignment

DeltaRes:=

DeltaAdd(A, B, Deltaa, DeltaB);

gives as result a machine number DeltaRes € S with

€4 la-d< M)
€% p-t<ap

|a+b-3@ Y| < Aadd)
a
b
< DeltaRes

(see Theorem 1). Here AC A€ IS, BCBEIS,

A(a) < DeltaA € S, and A(b) < DeltaB € S. The
basic function DeltaAdd supplied by the module eps.ari
looks like

global const Epsilon 1.110224E~16;

{ Upper bound for 2**(-53) which is }
{ Wilkinson’s epsilon for }
{ the IEEE double format }

global const

MinReal = 2.2250738585072013E~308;
{ Smallest positive normalized }
{ floating-point number }

global function DeltaAdd(

A, B : interval;
DeltaA, DeltaB: real): real;
var u, v: real;
begin
if { . some special cases ... }

68

else begin { See Theorem 1)}
u:= Epsilon *> MaxAbs(A + B);
v:= (DeltaA +> DeltaB)*>(1 +> Epsilon);
DeltaAdd:= MinReal +> u +> v;
end;
end;

The symbols +> and *> denote the machine opefations
addition and multiplication with rounding towards +oco. The
operator + in the expression A + Bmeans interval addition.
All these operators are predefined in PASCAL-XSC.

The following simple example shows, how the basic
routines DeltaAdd, DeltasSub, ... can be combined to
compute a worst-case error bound for the evaluation of the
polynomial p(z) = S°7_opizt. As usual the computation
is done according to Horner’s scheme. It is assumed that
r€XEIST=z+A,with|A,| < A(z) < DeltaXx €
S, pi, |Ps € pli] € IS, where X, DeltaX, and p[i]
are known quantities. Of course p;, p; € p[i] implies
|pi — pi] < diam (p[i]), 1. e. A(p;) < diam (p[1]) .

H:= plnl; DeltaH:= diam{ pln]
for i:= n-1 downto 0 do begin
DeltaH:=
DeltaMul (H, X, DeltaH, DeltaX):
H:= H * X;
DeltaH:=
DeltaAdd(H,pl[i}l,DeltaH,diam{pli]));
H + pl[i];

)i

H:
end;
PolX

AbsErr:=

i}

H;
DeltaH;

Now the inequality
lp(z) - P(%)] < AbsErr

holds for all z € X and all

z z + A, with | &, | £ DeltaX. Moreover
p(z) € PolX for ¢ € X and PolX 3 p(z)
(.- (PrBz@Pr-1)E2rEPr—2)DzE ... Bp)BxBPo
for any set of polynomial coefficients p; € p[1],7 = 0(1)n.
Examples producing numerical results are given in [5].

5. A priori Error Bound for an Accurate Table
Method Realizing ¢* — 1

To show that the methods discussed in this paper are rel-
evant for practical purposes an error estimation for an algo-
rithm implemented in ANSI-C which computes the function
e® — 1 is performed. It is assumed that the implementation
of exp(z) — 1 uses operations which comply with the IEEE
standard [4].

Some remarks on the table-lookup algorithm: Only some
parts of the algorithm are described informally. This will

be sufficient to show that an error estimation by hand is
very expensive (many different cases) and error prone. The
detailed description as well as the complete ANSI-C source
code can be found in [5]. The complete algorithm is de-
scribed in {5, 15].

In the range « < In(1 — 1) or In(1 + §) < z one
computes the value ¢ — 1 in three steps. First the argument
is reduced to the interval [In(2)/64,In(2)/64] using the

formula In(2)
. In
z=(32m+j)- 3 T

withm € Z, j € {0,1,...,31} and |7 < In(2)/64. Here
m, j are determined and then r is computed simulating a
higher precision arithmetic (staggered arithmetic). Second,
for the reduced argument r an approximation to ¢" — 1
is computed by the polynomial approximation ¢” — 1 ~
p(r) = r+r? - (ap + arr + apr? + asr® + agr?).

Third, the reconstruction of the result is done in accordance
to the formula

e —1=2m(1? 4 2% —1)) - 1.

The powers 29/32, j € {0,1,2,...,31} are precomputed
values and stored in a table (table method) using two double
numbers for each entry.

Automatic error analysis: Applying the routines of the
module eps_ari gives a worst case error bound for the
algorithm described above. To avoid overestimations in
interval calculations, i.e. to get sharp error bounds, the
argument range has to be subdivided into thousands of small

subintervals (which in fact can be done using an additional

simple loop statement). Again, the complete program for
the automatic error estimation can be found in [5].

With the abbreviation f(z) := exp(z) — 1 one finds the
following over all upper error bound ¢(f) for the relative
error of the accurate table method*:

(exp@) - 1) - (&)
0 ¢/x\e s exp(e) - 1

x causes no overflow
< e(f) :=1302-10" < 1.18 - &*.

“

Notice, that this bound holds simultaneously for all floating-
point arguments which do not cause an overflow error. It
must be emphasized that, in general, already one simple
floating-point operation leads to the bound 1.0 - €*. This
demonstrates the high quality of the factor 1.18 in (4). In-
deed, as already stated by Tang [15], the algorithm leads
to an implementation with near-perfect accuracy. In com-
parison with the result (4) Tang’s original analysis gives a
slightly better error bound in ulps. But see Footnote 2.

3The approximation errors of the different polynomial approximations
have been estimated rigorously using an interval tool described in [11].

69

6. Conclusions

The new technique can be used to get tight and reliable
worst-case error bounds for floating-point computations (al-
most) automatically. In doing a priori error estimations a
lot of error prone hand calculations can be omitted. The
described implementation of the “absolute error arithmetic”
using interval operations leads to bounds that are rigorous,
realistic, and of high quality.

Some improvements and extensions are planned:

— Theoretical foundation and implementation of func-
tions like DeltaSin, DeltalArcSin, DeltaCos,
DeltaArcCos, DeltaExp, Deltalog, ... corre-
sponding to the functions sin, arcsin, cos, arccos, exp,
log ... commonly supplied by higher programming
languages*,

Theoretical foundation and realization of a worst-case
error arithmetic for relative error bounds.

A C++ implementation using an object oriented ap-
proach will simplify the usage of the described error
arithmetic tools even more. Such an approach can also
be done in PASCAL-XSC. Introducing a new data type,

e.g.

eps_ari_type =

record
Enclosure interval;
ErrorBound: real;
end;

allows the overloading of operators and func-
tions for this type. If A denotes a variable of
type eps_ari_type then the record component
A.Enclosure represents an enclosure (floating-
point interval) of A 3 « and the floating-point number
A.ErrorBound is an upper bound for |a — @, i. e.
for A(a).

For quantities of the new. data type the routines
DeltaAdd, DeltaSub, ... can be replaced by op-
erator calls +, —, ..., respectively. This preserves
the mathematical notation of expressions when using
the error bound arithmetic. Horner’s Scheme example
from above could be simplified to (H and X have to be
of type eps_ari_type):

{ Initialization: }
H.Enclosure := p[n];

“The numerical quality of the functions as they are supplied by the
compiler or run-time library must be known (for example in the form: their
accuracy is better than k& units in the last place)

H.ErrorBound:= diam(p([n]);
{ Horner'’s scheme: }
for i:= n-1 downto 0 do begin

H:= H * X + p[i];
end;
{ Range of the polynomial }
{ over X.Enclosure: }
PolX:= H.Enclosure;
{ Worst-case error bound: }
AbsErr:= H.ErrorBound;

The presented error arithmetic can also be used to control
the numerical error of multi-precision computations [10]. If,
forexample, error bounds are known for the steps of an itera-
tive process done in the field of the real numbers, then the ad-
ditional numerical errors introduced by the multi-precision
computations can be estimated rigorously in advance. State-
ments like “An arithmetic using (& + n)-digits with respect
to base b is sufficient to get a relative accuracy better than
b~*% » are possible. Such statements are important for reli-
able multi-precision calculations for example in the field of
computer-algebra.

The new tools are also of great advantage when con-
structing algorithms according to Ziv [16].

Future work will show whether the presented concept of
areliable error arithmetic will give tight results in situations
as discussed in [2, 3] .

For the implementation of the new tools (machine) in-
terval operations are of great advantage. At least directed
rounded operations must be available. It is a great pity that
such features of IEEE 754 lack support in programming
languages and compilers (see the discussion in [8]). In the
so called XSC-languages [9] interval operations are avail-
able via their usual mathematical operator notations. These
languages also support directed rounded operations.

References

[1] Adams, E., Kulisch, U.: Scientific Computing with Au-
tomatic Result Verification, Mathematics in Science and
Engineering, Vol. 189, Academic Press, 1993.

[2] W. E. Ferguson, T. Brightman: Accurate and Mono-
tone Approximations of Some Transcendental Func-
tions, Proceedings to the 10th Symposium on Com-
puter Arithmetic, IEEE Computer Society Press, pp.
237-244,1991.

SDue to pessimism on the part of interval arithmetic, which is caused
by insufficient use of the correlation of different parts of the expression, the
computed bounds may be not tight enough. In such cases more intelligence
(e. g. monotonicity considerations) has to be added to the interval expres-
sion evaluation and/or a suitable subdivision strategy must be applied.

70

[3] W. E. Ferguson: Exact Computation of a Sum or Dif-
ference with Applications to Argument Reduction, Pro-
ceedings to the 12th Symposium on Computer Arith-
metic, IEEE Computer Society Press, pp. 216-221,
1995.

[4] American National Standards Institute / Institute of
Electrical and Electronics Engineers: A Standard for Bi-
nary Floating-Point Arithmetic. ANSI/IEEE Std. 754-
1985, New York, 1985 (reprinted in SIGPLAN 22, 2,

pp 9-25, 1987).
[5

—

Hofschuster, W., Kramer, W.: Ein rechnergestiitzter
Fehlerkalkiil mit Anwendung auf ein genaues Tabel-
lenverfahren, Preprint 96/5 des Instituts fiir Wis-
senschaftliches Rechnen und Mathematische Modell-
bildung, 1996:
ftp://iamk4515.mathematik.uni-karlsruhe.de,
Directory: /pub/iwrmm/preprints

[6] Hofschuster, W. and Kriamer, W. : A Computer Oriented
Approach to Get Sharp Reliable Error Bounds, Reliable

Computing, Issue 3, Volume 3, 1997.

[7]1 Kahan, W. M. : The Regrettable Failure of Automated
Error Analysis. A Mini-Course prepared for the confer-

ence at MIT on Computers and Mathematics, 1989.

[8] Kahan, W. M. : Lecture Notes on the Status of IEEE
Standard 754 for Binary Floating-Point Arithmetic,

June 5, 1995.

[9] Klatte, R., Kulisch, U., Neage, M., Ratz, D., Ullrich,
Ch.: PASCAL-XSC, Language Reference with Exam-
ples, Springer, 1992.

(10] Krémer, W.: Multiple-Precision Computations with
Result Verification, in: Scientific Computing with Au-
tomatic Result Verification ed. by E. Adams and U.
Kulisch, Academic Press, 1992.

[11] Kramer, W.: Sichere und genaue Abschitzung des Ap-
proximationsfehlers bei rationalen Approximationen,
Bericht des Instituts fiir Angewandte Mathematik, Uni-
versitdt Karlsruhe, 1996:
ftp://iamk4515.mathematik,.uni~karlsruhe.de,
Directory: /pub/documents/reports

[12] Tang, PT.P: Table-Driven Implementation of the Ex-
ponential Function in IEEE Floating-Point Arithmetic.
ACM Trans. on Math. Software, Vol 15, No 2, 144-157,
19869.

[13] Tang, PT.P.: Tuble-Driven Implementation of the Log-
arithm Function in IEEE Floating-Point Arithmetic.
ACM Trans. on Math. Software, Vol 16, No 4, 378-
400, 1990.

[14] Tang, PT.P: Table-Lookup Algorithms for Elemen-
tary Functions and Their Error Analysis, Proceedings
to the 10th Symposium on Computer Arithmetic, IEEE
Computer Society Press, pp. 232-236, 1991.

[15] Tang, PT.P: Table-Driven Implementation of the
Expml Function in IEEE Floating-Point Arithmetic.
ACM Trans. on Math. Software, Vol 18, No 2, 211-
222,1992.

[16] Ziv, A.: Fast Evaluation of Elementary Mathematical
Functions with Correctly Rounded Last Bit. ACM Trans.
‘on Math. Software, Vol. 17, NO. 3, pp 410-423, 1991.

71

