CORDIC Vectoring with Arbitrary Target Value *

Tomaés Lang
Dept. Electrical and Computer Eng.
University of California at Irvine
Irvine CA. USA
tomas @ece.uci.edu

Abstract

The computation of additional functions in the CORDIC
module increases its flexibility. We consider here the exten-
sion of the vectoring mode (angle calculation) so that the
vector is rotated until one of the coordinates (for instance
y) attains a target value t (in contrast to the value 0, as in
standard vectoring). The main problem in the algorithm is
thar the modulus of the vector is scaled in each CORDIC
iteration so that a direct comparison of y[j] with { does
not assure convergence. We present a scheme that over-
comes this and in which the implementation consists of a
standard CORDIC module plus a module to determine the
direction of rotation. This improves over a previous pro-
posal in which more complex iterations are introduced as
part of the CORDIC algorithm,

1. Introduction

The computation of additional functions in the CORDIC
module increases its flexibility. Here we consider an exten-
sion of the CORDIC vectoring mode. Specifically, as shown
in Figure 1, instead of rotating the vector (x4, y,) until one
of the coordinates (for example y) is zero, the rotation is
done until vy attains a target value ¢, with the restriction
[t] < M with M = /22 + y2. This extension is consid-
ered in [6], where it is shown that using a standard CORDIC
module it would require three vectorizations. The applica-
tions mentioned are inverse kinematics computations and
the solution of equations of the type bcos@ £ asind = c.
CORDIC modules have been previously proposed for this
application in [4] [9] [11].

The modified vectoring mode also allows the computa-
tion of va? + b2 — ¢ and the angle between two vectors
of the same modulus. In this latter case, using a standard

*E. Antelo was supported in part by the Ministry of Education and
Science (CICYT) of Spain under contract TIC96-1125

1063-6889/97 $10.00 © 1997 IEEE

Elisardo Antelo
Dept. Electrénica e Computacién

Universidade de Santiago de Compostela
15706 Santiago de Compostela. SPAIN.

elisardo@usc.es

Inputs: x,, ¥a, t

y Outputs: 9,xy,
t . Target
ya """':"VI\
0 : :\ Initial vector
' ! \
Xp Xa M X

Figure 1. Extended CORDIC vectoring with
target t.

CORDIC module would require two vectoring operations
and one subtraction. Finally, arcsin and arcos are special
cases. CORDIC-based algorithms for these functions have
been proposed in [10] and [7].

In [2] a method to compute elementary functions is pro-
posed in which the control variable converges to a con-
stant value, dependent on the function to be computed. The
method is applied to the computation of exponentials, log-
arithms, ratios, and square-root. In all these cases, the
constant value is either zero or one. Later, in [1] it was
shown that applying this method to complex numbers re-
sults in CORDIC algorithms. However, the convergence
constant is also zero.

To simplify the description we consider that the initial
vector corresponds to the first quadrant and ¢ > 0. The
generalization to other cases is straight—forward. A more
detailed description of the algorithms presented in this work
can be found in [8].

Consider first an "ideal" rotation—based algorithm for this
extended vectoring. In such a case, the initial vector (24, ¥4)
is rotated until y = ¢ (see Figure 2(a)). If the rotation
is obtained by a sequence of microrotations of primitive
angles oy, and o is the direction of rotation in iteration j,

108

KU]=jl_'lI(] 4272 2
=0

desired
—direction
oo Y SN Target
yll N contrary
irection

\
Ay
N
N

\
A7
M A(([j+)1(]M
K[jiM
(a) (b)

zj]

Figure 2. Rotation-based algorithm (a) and
Effect of scale factor on the direction of mi-
crorotation (b)

then
z[0] =z ¥[0] = va 2[0] =0

-1
0
(2[i + 1), yli + 1]) = ROTI(=[3], yls]), o]

z[j+ 1 = 2[i] + oj0

and

if (y[j] > 1) OR (z[§] £ 0)
otherwise

0]

The angle 8 is accumulated in z. Moreover, the final value

of coordinate z is zp = /22 + y2 — t2.

Now consider the use of the CORDIC algorithm [6]. In
this algorithm, in iteration j the microrotation is by an angle
+ tan~1(277) and the modulus of the vector is scaled by the
factor (1 + 2729)1/2, As a result of this scaling, obtaining
the direction of rotation by expression (1) does not result
in a convergent algorithm, as illustrated in Figure 2(b). To
obtain a convergent algorithm, the scaling can be accounted
in one of three ways:

1. Initializing to the vector (24, ¥4) and determining the
direction of rotation by comparing y[j] with X[j]¢,
where K[j] is the scaling of the modulus introduced
up to iteration j. This approach is used in [10] for the
special case of calculating arcos and arcsin. However,
the determination of K [j]t is complicated, so double
CORDIC iterations are used to utilize X 2[4] instead of
K[j]. This either complicates the implementation of
the iteration or doubles the number of cycles. More-
over, the additional recurrence to compute K 2[4t is
implemented with an adder and a variable shifter.

2. Initializing to the vector (&4, ¥.) and compensating
the scaling factor in each iteration so that the com-
pensated y[j] is compared with ¢. This is used in [6].
Again, to simplify the scaling, microrotations with
double shifts and repetitions are performed, leading
to a CORDIC module which is more complex than
the standard CORDIC !,

3. Initializing the vector to (x4 /K, y,/ K), where K is
the scaling introduced by all iterations, and determin-
ing the direction of rotation by comparing y[;] with
(K[j]/K)t. This is the approach we present here.
As discussed later, this method is advantageous be-
cause it is easy to obtain a reasonable approximation
of (K[j]/K)t. To assure convergence, we combine
an approximation that is simple to implement with a
few repetitions.

We present the algorithm, determine a suitable approxi-
mation of (K[j]/K)t and the location of the required rep-
ctitions, and show an implementation. In contrast to the
previous proposals, this implementation consists of a stan-
dard CORDIC module plus another module to determine the
direction of rotation. It has the following characteristics:

o The CORDIC module can be used for the standard
CORDIC functions.

e The iteration time remains the same as that of the
standard CORDIC module.

¢ The number of iterations is practically the same as
that of the standard CORDIC algorithm. This is true
when the compensation of the scaling factor in the
standard CORDIC is done by a combination of scal-
ing iterations and repetitions (as described in [3] [5]
among others), which is one of the preferred methods
because the compensation can be performed with the
same hardware as the microrotations.

¢ The additional module is simple.

The special case of computing arcos and arcsin was con-
sidered in [7]. Although the general strategy is the same,
the special case allows simplifications, as discussed further
in Section 5.

2. Algorithm

Asoutlined in the Introduction, the ideal CORDIC-based
algorithm we propose is as follows (for the first quadrant):

1The actual algorithm presented in [6], in which the compensation of
y[4] is done by scalings and repetitions, has cases for which it does not
converge.

109

Initial condition
= Za _ Y _

where K is the scaling factor introduced by all micro-
rotations of the actual CORDIC algorithm.

Note that this scaling operation has to be performed
also in the standard CORDIC algorithm, so no ad-
ditional overhead is required. It can be done, for
example, by a sequence of scaling iterations using the
same hardware as the microrotations. Moreover, rep-
etitions can be introduced so that the total number of
scaling iterations and repetitions is minimized.

Iteration. The iteration consists of a CORDIC step with the
value of ¢; determined by the result of the comparison
of y[5] with R[j]¢ (see Figure 3(a)), where R[j] =
K[j]/K and K[j] is the scaling up to iteration j.
That is,

-1
G'j = 1

zlj + 1] = 2[j] ~ 05277 y[J]
ylj + 1] = yli] + 05277 (4]
z[j + 1] = z[j] + oj tan~1(277)
Attheend, y[n+ 1] = ¢ and the angle is z[n+ 1] = 6.

Moreover, z[n + 1] = /22 + y2 — 2.

if (ylj] > RLilt > 0)
otherwise

@

Precision and range. We consider the case in which the
input operands z,, and y, are positive fractions with n
bits, and 0 < ¢ < M < +/2 has n fractional bits. The
results are also given with n fractional bits. The range
of the angle is [—7 /2, 7/2]. Note that because of the
characteristics of the arcsin function, the fact that the
operands are given with n fractional bits reduces the
number of significant bits of the angle in the region
close to 7 /2. This effect is considered further in [7]
for the arcos case.

2.1. Practical algorithm with an approximation of
R{j] and repetitions

The implementation of the ideal algorithm proposed is
complicated because of the need to compute R[j]t. To
avoid the exact calculation, we use a combination of two
approaches, as follows:

1. Use an approximation A[j]t of R[j]t. That is, the
direction of rotation is determined by
L -1 il > A= 0)
771 1 otherwise

€

remainder

dir. of ot wangle

Figure 3. Ideal algorithm (a) and using approx-
imation (b)

2. Introduce repetitions of some CORDIC steps.

When the comparison is done using the approximation
Alj]t instead of the exact value R[j]¢, the situation is sim-
ilar to the case described in Figure 2(b) but the region in
which the contrary direction occurs is reduced. Figure 3(a)
describes the ideal algorithm and Figure 3(b) shows the situ-
ation when using the approximation. To have convergence,
the remainder angle ¢[j] has to be compensated by subse-
quent iterations. We now consider the following items:

e Determine the maximum remainder angle in iteration
J produced by using the approximation instead of the
exact value. This is indicated by £{j] in the Figure.

e Determine a condition on this remainder to assure
convergence.

+ Propose an approximation and repetitions so that the
convergence condition is satisfied. The approxima-
tion should be simple to implement and the number
of repetitions small.

2.1.1. Maximum remainder in iteration j

We now determine the maximum remainder angle E{j].
We first consider this maximum for a given z[j] and then
determine the overall maximum in the range 0 < z[j] <
/2.

We consider separately the cases A[j] > R[j]and A[j] <
R[j]-

1. Flj] = %% < 1. As shown in Figure 3(b), the

maximum remainder for a given z{j] is

4
Eli] = q i b
[1] = #[5] = sin™" (57)
This maximum value corresponds to y[5] = A[j]¢, so

Elj) = <l - sn (L)

110

20 F Fel 20 f F>1
25 cos! (7 25 cos! (1/@_
F| ¢l
210 cos BL_ | guof KT N 9 R
eI -1
215 et By 2 os! (|
L o
220 Fa”” better 2-20 o
A approximation "By better
pp 0 ; approximation

0 2 2 20 7 w0 2075 20 25 m
2[j} z[j]
@ (b)

Figure 4. Variation of the remainder angle with

z[j] for different values of F[j] (example for
j=3).

Moreover, the CORDIC iterations produce y[j] =
R[] M sin z[§] so that

E[j] = #[j] - sin™* (P[] sin 2[4])
This occurs for ¢ = F[§]M sin z[j].

Now consider the maximum remainder in the range
0 < z[j] € #/2 (note that for z[5] < 0 no contrary
microrotation can occur). Since for F[j] < 1 we
have F[j]sinz[j] < 1, the maximum remainder is
produced for z[j] = /2 so that

Efjlmaz = 7/2 —sin™" (F[3]) = cos™ (F[4])
as illustrated in Figure 4(a).

2. Flj] = %ﬁ > 1. Since now F[j]sin(z[j]) can be
larger than 1, the resulting remainder is

E[j] = sin™ ! (min(F [5] sin(z[]), 1)) — =[]

Consequently, for this case (F[j] > 1), as z[4] varies
in the range [0, 7 /2], Figure 4(b) shows that for z[j] <
sin™!(1/F[;]) the behavior is similar to that of the
previous case and thereafter it is linear. The maximum
value is for angle /2 — cos™*(1/F[3]) and

E[flmas = cos™ (1/F{j])
Combining both cases above we get
Eljlmas = cos™ ! (min(F[j], 1/ F[j])) “*
2.1.2. Condition for convergence

The remainder angle has to be compensated by subse-
quent iterations. Consider the case in which the direction
of rotation in iteration j is contrary to that which would
be produced when comparing with R[j]t. The maximum

t | ;
YlRAGIS
RIj]

N X
M

g ~al -

R[j]
Figure 5. Condition for convergence.

remainder before the microrotation j is E[f]mq, and the
rotation angle in iteration j is tan=1(277). Since this rota-
tion is in the contrary direction, the total angle that has to be
compensated is E[f]maz +tan~1(277). This compensation
is obtained as a result of two types of microrotations: basic
CORDIC iterations (that is, one iteration for each j) and
repetitions. The angle for the first type is

Lijl = Z tan~1(27%)

izj+1

since in the worst case after a microrotation in the contrary
direction, all subsequent microrotations are in the correct
direction.

Similarly, for the repetitions,

QUl= >, tan'(279) o)

1€REP[;]

where RE P|j] is the set of indices of the repetitions after
iteration j. Therefore, as shown in Figure 5, the condition
for convergence is

Eljlmes < L] + QU] — tan™)+ U ©

where U is an upper bound on the final error in the angle.
Substituting F[j]mqs We get

cos™ (min(F[],1/F[5])) < L]+ QL) — tan ' (277) + U

Q)

Note that the right-hand side is positive because of two
reasons:

1. L[j] > tan"}279) since tan™'(27%) <
2 tan~1(2- 0+,
2. The introduction of repetitions.

For j = n, a microrotation in the contrary direction can
occur, without further compensation. Consequently, the
bound on the final error is

U = cos™}(min(F[n}, 1/ F[n]))+ tan=(27")

111

2.1.3 Appropriate approximation and repetitions

We now determine a suitable approximation and the re-
quired repetitions so that the convergence condition (7) is
satisfied. There is a tradeoff between the closeness of the
approximation (and therefore, its complexity of implemen-
tation) and the number of repetitions. Namely, if the ap-
proximation is sufficiently close, no repetitions are needed
whereas for a "coarset” approximation more repetitions are
required. Consequently, we are concerned with a suitable
tradeoff between these two aspects.

Since A[j]t tends to t we define B[j] such that A[j]t =
t — B[j] and we implement the iteration

I

278 Blj] + C[4]
2-°CIj]

Bli +1]
Cli+1 =

in which b and ¢ are constants to be determined. As we
show in Section 4.1 this iteration is simple to implement.

So let us now determine an’ approximation of this type.
From the definition of R[j] we have

Apw R = S0 = Tlave)72 T o)

$=j i€ REP[3}

where, as before, RE P[] is the set of indices for the repe-
tition iterations after step j.

For the approximation, we consider only the first product.
That is, we develop an approximation which is not depen-
dent on the repetitions. This simplifies the approximation
and, as we see later, still allows convergence with a small
number of repetitions.

Taking the first three terms of the Taylor series expansion
of (14 27%)~1/2 we get

n

R{jl =~ TJ(L— (/2277 + (3/8)27%)

i=j

Keeping only the terms which are cross-multiplied with 1,
we get

n—j n-j
R[jlm 1= (1/2)27% Y27 4 (3/8)27% 9=
k=0 k=0
Since Y324 27 & 1, we get

n—j
R[j]=1— (1/2)27%[) 277 — (3/4)27%]
k=0

For the implementation form discussed above, we want to
have an approximation with only the first two terms. How-
ever, since the third term has different sign than the second

and has relative weight 2~ %, instead of just eliminating the
third term, a better approximation is

min(j,n/2)

Z 9~2k

k=0

Al =1-(1/2)27%

Moreover, with this approximation we obtain

) min(j,n/2)
Blil= (4t Y oty
k=0
so that the iteration is
. _ 2"2B[j] +27527%¢ ifj < n/2
Bli +1]= { 27%Bl[j] otherwise

To avoid a variable shifter we implement

. 272B[j] + C[j] ifj 2
Bli+1] = { 2“23[;% d (:thjerivizg,
Cli+1 = 27C[j]

The initial conditions are B[0] = (1/2)¢ and C[0] =
(1/32)t.

Now we need to determine the repetitions required for
convergence. The introduction of repetitions has two con-
tradictory effects: it aids towards convergence because it
increases @ (see expression (5)), but it might go against con-
vergence because it might make the approximation worse.
The application of the following procedure shows that, for
the approximation chosen, the first effect prevails.

Since for convergence at a particular iteration index j,
only the repetitions with index larger than j have an ef-
fect (both on the quality of the approximation and on the
value @), we begin from j = n — 1 and advance towards
J = 0. For each j, we determine whether the condition
of convergence is satisfied (including the effect of the rep-
etitions already placed for ¢ > 7). If the condition is not
satisfied, we include a repetition with index j + 1. This
will satisfy the convergence for index j and also might help
for convergence for smaller values. This process produces
the minimum number of repetitions. It is formalized by the
following algorithm, in which the meaning of the variables
is as defined before.

1. Initial values:

Rln] = (1+27°") 772, Fa] = R[n}/A[n]
Lln] =0,Q[r] = 0.
2. Fromj=n—-1toj =0

¢ Actualizations:
A+

Bl = s
F] = RU)/AU]

L) = L[j+ 1]+ tan? (270D
Qll = Qli+1)
Elflmaz = cos™ (min(£[5],1/F[4]))

112

| Precision || 16 | 24 | 32 |
[Repetitions][1,2, 4,8 | 1,3,6,12 [1,2,4,5,16 |

Table 1. Repetitions for n=16, 24, 32,

o Test of convergence:
if E[jlmaz > L[3]+ QU] — tan™1(277) + U
— Repeatiteration j + 1. Add j + 1 to the set of
indices of repetition iterations.

— Actualizations:
. R[]
Y
QL1 = Qi)+tan™"(27U*Y)

As seen before, the final microrotation leads to a final er-
rorin the angle of U = E[n]maz+tan~1(27"). Thus, tore-
duce the number of repetitions, in the test for convergence of
the previous algorithm we have considered that a remainder
of E[jlmas < L[j]+Q[j]—tan=1(27")+tan~1(2-(»=1)
leads to a convergent algorithm. Then, the error in the angle
is bounded by U = tan~1(2-(*=1)),

Table 1 shows the repetitions obtained for different pre-
cisions. Figure 6 shows that the convergence is achieved
with these repetitions for the case n = 24, since for every
J the remainder is not larger than what is required for con-
vergence. On the other hand, the Figure also shows that for
the case without repetitions the algorithm does not converge
since for j < 12 the remainder is larger than what is required
for convergence.

As can be seen, the position of the repetitions follows a
regular pattern. First of all, it is necessary to repeat iteration
1 because of the approximation in iteration 0. Then, repeti-
tions appear in positions n/2¢. From this we conclude the
following:

1. Iteration O can be eliminated because the rest of it-
erations, including the repetitions, cover the range
[0,7/2). This has been already done in the im-
plementations of conventional CORDIC in which
the scale factor compensation is performed by scal-
ing and repetitions, as discussed in the next Sec-
tion. Since we begin in iteration 1 the initial con-
ditions are (1] = z,/K, y[l] = y./K, z[1] = 0,
B[1] = (5/32)t and C[1] = (1/512)t. Similarly, the
value of K begins with j = 1.

2. The required number of repetitions is small.

3. Furthermore, as we show in the next section, there is
only a very slight increase in the number of iterations
with respect to the conventional CORDIC in which
repetitions and scalings are used to compensate the
scale factor.

2 0
Convergence condition—
25 Max. remainder angle---
K] -0}
:%0 2
2 -15
2 =200
2 -25
1234567 8010111213 141516171815 20212323724
Iteration
()
2 L]
Convergence condition—
25 Max. remainder angle--.
@ 50
5) 2
215
2 -20
2 25 | ST

N
T1233456678910111212131415161718192021222324
Iteration

(b)

Figure 6. Convergence for n=24 (a) without
repetitions (no convergence) (b) with repeti-
tions.

3. Scaling

The initial scaling by 1/K is performed by scaling iter-
ations. It is well-known that the combination of scalings
and repetitions reduces the number of total iterations ([3] [5]
among others). In our case, the repetitions introduced have
to assure convergence, but the set of repetitions for this is
not unique. Thus, we want to find a sequence of repetitions
that both assures convergence and reduces the total number
of iterations, including the initial scalings.

We have performed a complete search of the sets of repe-
titions that produce a convergent algorithm and determined
for each set the minimum number of scalings. Table 2 shows
the best set of repetitions and scalings obtained for preci-
sions n = 16 and n = 24. In the same Table we show
for the standard CORDIC algorithm the optimal repetitions
and scalings obtained in [S], as well as the scalings required
without using repetitions. Note that in the case of the ex-
tended CORDIC vectoring we need only one more iteration
than in the standard CORDIC case.

4. Implementation

We now describe an implementation of the algorithm
presented. This can be either word-serial or pipelined. As
shown in Figure 7 it consists of the following two blocks:

113

Algorithm n | Basic shift seq. | Repetitions Scalings Total
Standard CORDIC || 16 0,1,...,16 - GDHE2ES)E8)10) T 22
(no repetitions) 24 0,1,..,24 - GDE2YES)HB)(10) | 34

(+,16)(+,18)(+,19)(-,23)

Standard CORDIC || 16 0,1,...,16 - G, DH2ES)8)(10) | 22
(with repetitions) 24 1,2,...,24 1,3,5,6 (~2)(+,6)(+,17) 31
["Extended CORDIC || 16 1,2,...,16 1,3,5,6,8 (-2)(+.,6) 23
vectoring 24 1,2,...,24 1,3,5,6,12 -2)(+,6)(+17) 32

Table 2. Scaling and repetitions for the standard CORDIC and for the CORDIC with extended vectoring.

¢ A CORDIC module for coordinates z, y, and z.

e A module to compute the direction of rotation by
comparing y[j] with A[j]¢. For this module we con-
sider two alternatives: a directimpiementation and an
implementation based on a residual.

I T T
cornic UM coMPUTATION
MODULE | __ OF g

J
i

Figure 7. Block diagram of implementation.

ylil -+t Bl[i] C]U]
22 24
Adder
Y B[j+1] C[j+1]

%

Figure 8. Direct implementation of #; module.

4.1. Direct implementation

This implementation is shown in Figure 8. We need to
compute A[7]¢ = ¢ — B[j] and determine the sign of

yli] — Aljlt = yls] — ¢ + B[]

This is performed by the 3-2 carry-save adder and by the
sign detector. Moreover, as described in the Section 2.1.3

2-2B[j] + Clj]

Blj+1] = { 2-2B[] ifj <n/2

otherwise

Initial values: x4 = 0.250000,y, = 0.750000,¢ = 0.350000

fed y
Scaling: (—, 2) 0.187500 0.562500
Scaling: (+, 6) 0.190430 0.571289
Microrotations

j @] vl 2D B(j] @llt.e;
1 (0.190430, 0.571289, 0.000000) 0.054688 (0.275977, -1)
1 (0.476074, 0476074, -0.463648) 0.054688 (0.180762, -1)
2 (0.714111, 0.238037, -0.927295) 0.014355 (-0.097607, 1)
3 (0.654602, 0.416565, -0.682317) 0.003632 (0.070197,-1)
3 (0.706673, 0.334740, -0.806672) 0.003632 (-0.011629, 1)
4 (0.664830, 0.423074, -0.682317) 0.000911 (0.073984, -1)
S (0.691272, 0.381522, -0.744735) 0.000228 (0.031750, -1)
5 (0.703195, 0.359920, -0.775975) 0.000228 (0.010147, -1)
6 (0.714442, 0.337945, -0.807215) 0.000057 (-0.011998, 1)
6 (0.709162, 0.349108, -0.791591) 0.000057 (-0.000835, 1)
7 (0.703707, 0.360189, -0.775968) 0.000014 (0.010203, -1)
8 (0.706521, 0.354691, -0.783780) 0.000004 (0.004694, -1)
8 (0.707907, 0.351931, -0.787686) 0.000004 (0.001935, -1)
9 (0.709281, 0.349166, -0.791592) 0.000001 (-0.000833, 1)
10 (0.708599, 0.350551, -0.789639) 0.000000 (0.000551, -1)
11 (0.708942, 0.349859, -0.790616) 0.000000 (-0.000141, 1)
12 (0.708771, 0.350205, -0.790128) 0.000000 (0.0002053, -1)
13 (0.708856, 0.350032, -0,790372) 0.000000 (0.000032, -1)
14 (0.708899, 0.349946, -0.790494) 0.000000 (-0.000054, 1)
15 (0.708878, 0.349989, -0.790433) 0.000000 (-0.000011, 1)
16 (0.708867, 0.350011, -0.790402) 0.000000 (0.000011, -1)

Output: #[17] = 0.708872, y[17] = 0.349999, 2[17} = —0.790417

1Tl = [l - (¢ — BGD

Table 3. Simulation of direct implementation
(n=16).

Clj+1] = 274C[j)

The initial conditions are B[1] = (5/32)t and C[1] =
(1/512)t. The initialization of B requires an addition. This
can be done with the available adder.

An example of the execution is given in Table 3 for
n = 16. The algorithm for the direct implementation was
simulated using double precision for n = 16 and n = 24,
We generated a uniform distribution of 100 initial vectors
with at least one normalized component and, for each of
these vectors, the algorithm was simulated for all possible

114

values of £.

As can be seen, this implementation is quite straightfor-
ward. The effect of this module on the cycle time is different
for the word—-serial and the pipelined case. In the former,
the 3-2 addition and the sign detection can be overlapped
with the variable shifters in the CORDIC module, so that
the cycle time is similar to that of the CORDIC algorithm.
On the other hand, in the pipelined implementation, since
there are no variable shifters, the cycle time increases by the
delay of the 3-2 adder and the sign detection. To avoid this
increase, we consider the next implementation.

4.2. Implementation based on residual

We want to determine the direction of rotation immedi-
ately at the beginning of the iteration. For this, we define
a residual and determine the direction from the sign of the
residual. That is,

vlj] = 27 (y[j] — AllY)
U._{ ~1 ifv[j] >0
PZ0 41 ifu[i] <0

We now develop a recurrence for v,
o[+ 1]—20[j] = 27 (yli + L —ylj) - (Al + 1] - A
From the CORDIC recurrence and defining

D[j] = 2 +(Al] - Alj + 1))t

we get
v[j + 1] = 2v[5] + 20;2(5] + D] ®

Further details of this implementation can be found in [8].

5. Comparison with the arcsin(t) case

The calculation of arcsin(t) is a special case, which can
be obtained by putting as initial value (2., y.) = (0, 1/K).
However, it is also possible to design a special algorithm
for this case, as was done in {10] and [7]. In the latter,
we have used the same approach as here, but the special
case has allowed for some simplifications in the algorithm
resulting in fewer iterations. Moreover, for these functions
it is possible to use a 2n-bit target ¢ to achieve a precision of
2~ ™ in the whole angle range, using a datapath width similar
to the standard CORDIC.

6. Conclusions

In this work we described an algorithm for the CORDIC
vectoring mode with arbitrary target value. The approach
assures convergence by the use of a simple approximation

of the scale factor remaining after iteration j, combined
with the inclusion of a few repetitions. The resulting im-
plementation consists of two separate modules, a standard
CORDIC module and a module to obtain the direction of
each microrotation. We present implementations suitable
for word—serial and pipelined architectures. Although we
have introduced some repetitions, the number of total it-
erations remains practically the same as the conventional
CORDIC, if repetitions and scalings are used to compen-
sate the scale factor. Consequently, the performance of the
standard CORDIC functions is not affected.

The implementation presented here introduced a sig-
nificant improvement compared to the implementation de-
scribed in [6] and to the extension of [10].

Acknowledgments: We thank the reviewers and Joseph
Cavallaro for their useful comments.

References

[1] H. Ahmed. Signal processing algorithms and architectures.
Ph.D. dissert., Dept. of Electrical Engineering, Stanford Uni-
versity, Stanford, CA, 1982.

[2} T. Chen. Automatic computation of exponentials, loga-
rithms, ratios and square-roots. IBM J. Res. Develop.,
16:380-388, July 1972.

[3] J.-M. Delosme. VLSI implementation of rotations in
pseudo-Euclideanspaces. In Proc. IEEE Int. Conf. on ASSF.,
pages 927-930, 1983.

[4] R. Harber, J. Li, X. Hu, and S. Bass. The application of
bit-serial CORDIC computational units to the design of in-
verse kinematics processors. In Proc. IEEE Conference on
Robotics and Automation, pages 1152-1157, 1988.

[5] D.Konigand J. Bohme. Optimizing the CORDIC algorithm
for processors with pipeline architecture. In Signal Process-
ing V: Theories and Applications, pages 1391-1394, 1990.

[6] C.Kriegerand B.Hosticka. Inverse kinematics computations
with modified CORDIC iterations. IEE Proc. Comput. Digit.
Tech., 143(1):87-92, January 1996.

[7]1 T.LangandE. Antelo. CORDIC-based computation of arcos
and arcsin. Technical report, Dept. Electrical and Comput.
Eng., University of California at Irvine, Irvine, USA, 1997.
Available in http://www-gpaa.dec.usc.esinthe 1997 reports.

[8] T. Lang and E. Antelo. CORDIC vectoring with arbitrary
target value. Technical report, Dept. Electrical and Comput.
Eng., University of California at Irvine, Irvine, USA, 1997.
Available in http://www-gpaa.dec.usc.esin the 1997 reports.

[9]1 C. Lee and P. Chang. A maximum pipelined CORDIC ar-
chitecture for inverse kinematic position computation. JEEE
Journal of Robotics and Automation, 3(5):445-458, October
1987.

[10] C. Mazenc, X. Merrheim, and J. Muller. Computing funce
tions cos™? and sin™! using CORDIC. IEEE Trans. on
Computers, 42(1):118~122, January 1993.

{11} 1. Walker and J. Cavallaro. Parallel VLSI architecture for
real-time kinematics of redundant robots. In Proc. IEEE
Conference on Robotics and Automation, pages 870-877,
1993.

115

