The Half-Adder Form and Early Branch Condition Resolution

David R. Lutz
Bell Labs
6200 East Broad Street
Columbus, Ohio 43213
d.rlutz@ieee.org

Abstract

We present efficient methods to determine the four usual
branch conditions for a sum or difference, before the result of
the additionor subtraction is available. The methods lead to
the design of an early branch resolver which integrates well
with a regular adder/subtracter, adding only a small amount
of circuitry and almost no delay. The methods exploit the
properties of half-adder form. Sums in half-adder form can
be computed very quickly (with the delay of a half adder),
yet they have enough structure so that many of the properties
of the final sum can be easily detected. The reduced latency
for evaluating branch conditions means that an addition
or subtraction and a dependent conditional instruction can
execute in the same cycle, with a consequent increase in
instruction-level parallelism, and improved performance for
both single-issue and superscalar processors.

Index terms: Half-adder form, branch conditions, ad-
dition, subtraction, early zero detection, carry generation
detection.

1 Introduction

Conditional branches and other conditional instructions
negatively impact computer performance. Reducing the la-
tency of the evaluation of branch conditions allows.us to
reduce this impact. The conditions (zero, sign, overflow,
carry, and their variants) are usually evaluated based on a
preceding addition or subtraction operation. In this paper,
we present efficient methods to determine the four usual
branch conditions for a sum or difference, before the result
of the addition or subtraction is available. These methods
lead to the design of a early branch condition resolver which
integrates well with a regular adder/subtracter, adding only a

*This work was done while the author was with the Department of Com-
puter and Information Science at the Ohio State University in Columbus,
Ohio.

1063-6889/97 $10.00 © 1997 IEEE

D. N. Jayasimha*
MS RN2-02
Intel Corporation
Santa Clara, CA 95052

djayasim@mipos2.intel.com

266

small amount of circuitry and almost no delay. The methods
exploit the properties of half-adder form, a new intermedi-
ate representation of sums, by which we can compute most
branch conditions with only slightly more delay than is re-
quired to determine if a word is zero. This means that the
operation on which a branch depends can potentially ex-
ecute in the same cycle as the branch, with a consequent
reduction in branch penalty. This reduction improves the
performance of both single-issue and superscalar proces-
sors and also has positive architectural implications relating
to instruction level parallelism, enhanced instruction sets,
and speculative execution.

The organization of the paper is as follows: The rest of
this section discusses previous work done in this area, and
introduces our notation. Since the half-adder form is so crit-
ical to our method, Section 2 is devoted to its explanation.
Section 3 presents a way to determine whether a sum or
difference is zero before computing the sum or difference.
The remaining conditions all require a fast method to com-
pute whether a sum generates a carry, which we present in
section 4. We then use this method to extend our early zero
detector to compute the other conditions in section 5. The
paper concludes with a discussion of the impact of the work
and problems that merit further investigation.

Prior work on early branch condition resolution has fo-
cused primarily on early zero detection. This is not sur-
prising since “branch on zero” and “branch on nonzero”
are the most frequently executed conditional branch instruc-
tions for most architectures [3]. The value to be tested is
typically the result of an addition or subtraction, and in the
usual implementation, zero detection cannot complete until
after the sum or difference is known. Since detecting zero
requires the examination of n bits, and since most of these
bits are not available until after the sum or difference has
been computed, the zero condition usually has the highest
latency among branch conditions.

The first general solution to early zero detection in sums
is presented by Weinberger [17]. The method is based on
half adders, and results from simplifying the equations for

all possible half-adder outputs that could result in a zero
sum. The resulting expression is quite complicated, but still
faster than addition followed by normal zero detection.

A partial solution to the problem of early zero detection
is given by Losq and Rao {5], who note that determining the
zero condition for subtraction is easy. A subtraction yields
a zero if and only if the original inputs are equal, a condition
that can be checked with n XNOR gates and an n-input AND,

MIPS processors make heavy use of this partial solu-
tion [1]. The MIPS instruction set requires zero detection
less often than most other instruction sets because it has two-
argument branch-on-equal or branch-on-not-equal instruc-
tions. The MIPS approach provides some of the benefits
of early zero detection, but has some significant disadvan-
tages. One disadvantage is that it reduces the number of
offset bits in the the branch statement. Another is that it is
less general than early zero detection — it solves the problem
of detecting whether X — Y = 0 but not the problem of
detecting whether X + Y = 0. Finally, the MIPS solution
is not usable for other existing instruction sets.

Putrino and Vassiliadis designed a branch condition re-
solver that operates in parallel with the adder for IBM main-
frame computers [13] (they also discuss a zero detector
based on the same idea in [16]). Their method is based
on finding a more-easily computed expression that is zero
if and only if the sum is zero. The expression is computed
using full adders and they claim that it is approximately 35%
faster than the adder. Phillips and Vassiliadis later extended
this result to zero detection for 3-input ALUs [12].

More recently, several authors have independently dis-
covered some closely related methods to compute the
more general condition X + Y = T for an arbitrary T
2,15,7, 111

All of these approaches to early zero detection are differ-
ent from the one taken in this paper. Our approach is faster,
simpler, more closely integrated with the ALU, and can be
more easily applied to existing (non-mainframe) instruction
sets. Furthermore, our approach can be extended to include
all of the usual branch conditions, including the conditions
that require carry generation detection.

Notation

We use lower-case letters to represent numbers, upper-
case letters to represent n-bit words, and subscripted lower-
case letters to represent bits. The meaning of other symbols
is given in Table 1.

The low order bit in a word is bit zero. Unless specified
otherwise, logarithms are base two, and # is assumed to be a
power of two. This last assumption allows us to express the
minimum depth of a 2n-input function as logn + 1 instead
of the more correct but less lucid log[2n].

In circuits we use the standard gate notations for AND, OR,

267

Symbol Meaning
A bitwise and
Y bitwise or
&) bitwise exclusive or
Z; not z;
X one’s complement of X

Table 1. Notation

and XOR gates. NOT gates are not part of our representations.
Instead, inversion is indicated by a small circle at the input
or output to a gate. Tristate buffers and 2-input multiplexers
are denoted as shown in table 2.

Symbol Name

X

Meaning

output
| Z
i

tristate buffer

Hlolﬁ?

output
Zi
Yi

two-input multiplexer

Table 2. Representation of tristate buffers and
2-input multiplexers

We measure results with respect to a variation of the
boolean circuit model in which we charge one unit of delay
for: (1) any two-input logical function, or (2) any single
level of tristate buffers. Item (2) allows us to select one
of k inputs when exactly one input is enabled. Of course
this model does not provide precise information about delay,
but it does provide a useful starting point for comparing the
speed of various algorithms. A more complete description
of and justification for the model is given in [8].

2 Background

An n-bit half adder consists of n independent half adders.
It takes two n-bit two’s complement numbers as inputs, and
produces two outputs: an n-bit sum and an n-bit carry.
Let X = zp_y...2120, and Y = yp—1...4170 be n-bit
words with low order bits zg and y,. An n-bit half adder
produces a carry word C' = ¢,..1...¢10 and a sum word
S = 8,-1...818¢ such that

Zi—1 A Y a
2 DY)

i

Ci

84

Note that ¢ is always O, and that C+ S = X + Y
(modulo 2"). The high order carry bit ¢,, is not part of C,
but is sometimes useful as part of a larger calculation.
Definition: (C,S) is in half-adder form (or h-a form) if
there exist X and Y satisfying equations 1 and 2. We write
(C,8) = ha(X,Y).

Numbers in h-a form have a rich set of properties, some
of which we have described previously {6, 8, 9, 10]. One of
the most basic of these properties is the following:

Theorem 1 Let (C,S) be a number in h-a form. Then
C+S5=-1-S5=-1

Proof:

[=1(C,S) is in h-a form, so there exist X and Y such
that X+Y = —1land (C, S) = ha(X,Y). By the definition
of a two’s complement number, X +Y = -1 - Y = X.
Then by equation2,S = X ® X = —1.

[<=] By the definition of h-a form, only one of ¢; and s;_;
canbesetfori=1,...,n—1,50C =0, and C+ S = —1.
[m]

Theorem 1 says that we can detect whether a sum is -1
with the delay of a half adder and an n-input AND. Unfor-
tunately, the same technique does not work when trying to
determine whether X +Y = 0: if S = 0, then this tells us
nothing about C, and almost nothing about C + S. Fortu-
nately, there is a duality to two’s complement numbers that
we can use to our advantage. The trick, which we present
in the next section, is to convert a problem involving zero
detection to an equivalent (or nearly equivalent) problem
involving -1 detection.

3 Early Zero Detection

Observe that for two’s complement numbers, X + Y =
0—- X+Y=~1,andofcourse, X -Y =0~ X ~-Y =
—1. Since complementation is easy, obtaining the correct
sum or difference is trivial once we have the complemented
sum or difference. If the left-hand side of the complemented
problems (i.e., X +Y or X —Y) can be expressed in h-a
form, we can use theorem 1 to detect equality with —1,
which immediately gives us zero detection for the original
problems.

The only remaining problem is finding a fast way to
compute the complemented sum or difference in h-a form.
Ideally, the computation should accomplished using only a
few, simple constant-time operations. The operations that
meet these criteria include complementation, adding two
numbers with a half adder, and adding one to a number in
h-a form. This last operation is fast because if (C, S} is in
h-a form, ey = 0, which allows us to add one to (C, S) by
setting cp = 1.

The following theorem shows how to compute X + Y
using just these “fast” operations.

Theorem 2 For two’s complement numbers, X +Y =
X+Y+1

Proof: The proof of this theorem, as well as the follow-
ing theorem, relies on the property of two’s complement
numbers that —X = X + 1.

X+Y ~(X+Y)-1
= —X-1-Y—-1+1

X+Y+10

1f

The complete procedure for addition and early zero de-
tection using the method of theorem 2 is as follows:

Algorithm 1 Given X and Y, compute X +Y and deter-
mine whether X +Y = 0.

1. Compute (C,S) = ha(X,Y), and set ¢y = 1.
2. Do the following in parallel:

o Compute S' =C® S, andm, = sy AsyA...A
/
Sn—-l‘

. Compute the sum C + S.

3 Ifmy,=1thenX+Y =0. Thesumis X +Y =
C+8S.

The XOR in step 2 of algorithm 1 is required because
when we set ¢g = 1 in step 1, (C,S) is no longer in h-a
form, and hence we cannot use theorem 1 for -1 detection.
We use XOR gates instead of half adders in step 2 because
the result is not used for anything except -1 detection, and
for -1 detection the carry word is not needed.

We might suspect that fewer than 27 bits would have to
be examined in step 2, since (C, S) is so close to h-a form.
The following example shows that there is no shortcut.
Example: There are many representations of -2 in h-a form,
and the “1” bits can be in either C or S. For an example
of a sum whose bits are mostly in C, consider (C,S) =
ha(63, —65), which produces the following:

63 = 00111111
—65 = 10111111
C = 01111110
S = 10000000

For an example of a sum in which the one bits are all in S,
consider (C, 5) = ha(-2,0).

The “difference = 0” problem is easier than the “sum =
(" problem.

Theorem 3 For two’s complement numbers, X —Y

X+Y.

Proof:

X-Y —-(X-Y)-1

X+Yy o
The subtraction procedure is as follows:

Algorithm 2 Given X,Y, compute X — Y and determine
whether X — Y = 0.

1. Compute (C,S) = ha(X,Y)
2. Do the following in parallel:

o Computem, = sgAsyA...A5sp_1.
e Compute the sum C + S

3. Ifthemy, = 1, then X — Y = 0. The difference is
X-Y=C+3S.

The “difference = 0” condition can also be detected by
comparing the original inputs for equality. The problem with
this method is that it is not integrated with the adder, and itis
not applicable to addition. As we will soon see, the method
given above can be integrated into a carry-lookahead adder
with almost no additional hardware. Furthermore, addition
and subtraction and zero detection can be performed with
the same circuit.

A combined n-bit adder/subtracter/zero-detector is given
in figure 1. The “add” bit is set to one if the operation is an
addition, and zero if the operation is a subtraction: it is then
used to select the appropriate input operand, ¥ or Y (this
selection is accomplished using n XOR gates). The selected
operand is then added to X with a half-adder, producing the
sum (C, S). Since (C, S) is in h-a form, ¢o = 0, and so we
can easily add one to the sum by setting ¢y = 1. Since we
only want to add one if the operation is an addition, we set
co = add.

In order to test whether C' + S = —1, we need to have
(C, S} in h-a form. The result of this sum is not used else-
where, and since -1 detection does not require any informa-
tion from the carry word, it suffices to compute S’ = C@ S.
At this point, we can apply theorem 1 to detect whether the
sum or difference is zero. We do this by computing the
n-bit AND of S’. If the output is one, the original sum or
difference is zero.

While we compute S” and the AND of S’, we also compute
the sum of C and S. We have specified a carry-lookahead
adder (CLA), although other adders could be used. The sum
C + S has to be inverted to get the answer to the original
sum or difference.

While figure 1 looks like it contains a considerable
amount of hardware above and beyond the adder, we will

269

1

[}

]

)

[}

]

i

[}

1

]

]

?

1

1

L} -
]

] - 3
. e
1

i

[}

]

[}

’

'

)

1

]

L}

[}

n-bit CLA with
final inversion

C+s

Figure 1. Combined adder/subtracter/zero-
detector

show that most of this hardware is already present in current
ALU:s.

Consider the blocks beginning at the top of the figure.
The XOR gates used to choose the appropriate argument for
addition and subtraction (Y and Y) are required in current
ALUs. The next block is a half adder. The first step in a
CLA (and in many other adders) is to compute propagate
and generate bits p; ; = 2; ® y; and g;; = 2; A y;. This
step can be eliminated for numbers in h-a form, because
pi; = s; and g;; = c;41. The adder itself is unchanged
by our scheme, although we do require a final inversion to
get the correct sum or difference. The remaining hardware
consists of n XOR gates, followed by an n-input AND. The
AND would be required for any scheme doing zero detection.
Thus the only new hardware is n XOR gates and n inverters
to get the correct sum.

The delay for addition or subtraction is virtually un-
changed. All of the hardware that is common adds no extra
delay. In some technologies there may be extra delay due
to one extra fanout for C and S, and the final inversion of
C + S, but this effect is likely to be small, and compensated
for by the fact that the sum C + S does not have to be fed
into a zero detector.

The delay for zero detection will of course be substan-
tially improved. In current implementations, the sum must
usually complete before we can check whether all of the
sum bits ar¢ 0. Since the low-order bits are typically avail-
able before the high order bits, part of the zero detection can

be performed earlier. With the fastest adders, however, a
substantial part of the computation occurs after the the sum
is complete.

The delay for the zero detector in figure 1 is equal to the
delay of two XOR gates, a half-adder, and an n-input AND,
which is log n+3 logiclevels in our model. A typical branch
on zero statement in an existing processor already requires
the n-input AND, so if the relatively small extra delay can
be tolerated, the branch can also use the output of our zero
detector.

4 Carry Generation Detection

Early branch condition resolution for the other conditions
requires a fast method for determining whether a sum in h-a
form (with a carry-in bit) generates a carry. In this section,
we present a method that requires only log n 42 logic levels,
which is asymptotically almost twice as fast as previous
implementations.

This surprising result is based on the fact that if (C, S)
is in h-a form, determining whether or not C' + S generates
a carry depends on only one bit of C, and that the location
of that bit is completely determined by S. Consider the
structure of S: either S = —1, or else it consists of a
sequence of zero or more high order one bits followed by a
zero bit. Suppose this high order zero bit is at position ¢ — 1.
We will show in theorem 4 that bit ¢; determines whether or
not C' 4 S generates a carry: the rest of C can be ignored.
Definition: An n-bit word A is the prefix-and of S means
that for each bit a; of A, a; = 1 if and only if s,—1 =
Sper=...=8 = 1.

Example: If S = 111011, then A = 111000.

Theorem 4 Let (C,S) be in h-a form, and let A be the
prefix-and of S. If A = O then there is no carry-out of
C + S. Otherwise, let i be the lowest order bit such that
a; = 1. Thenc; = 1 — there is a carry-out of C + 5.

Proof: If A = 0, then s,_; = 0 and an easy induction
shows that there can be no carry-out of C' + S.

So suppose that A # 0.

[=]1a; = 1 means that s,y = s,2 = ...
1. Since ¢; = 1, and since the carry propagates through
iy 8i41;s- - -, Sn—1, then there is a carry-out of C' + S.

{<=] By the definition of A, s; = s;41 = ...8p-1 = L.
By the definition of half-adder form, only one of s and
cp41 canbeset, 50 ¢4 =2 = ... = €1 =0, and no
carry is generated at positionsi+1,i4-2,...,n— 1. Since
s;—1 = ¢o = 0, and since only one member of each pair of
bits (¢j,s5-1) for j = 1,2,...,4 — 1 can be set, there is no
carry into position ¢. Since there is a carry-out of position
n—1,wemusthavec; = 1. O
Example: Given X and Y as in equations 3 and 4, then
C, S, and A are given in equations 5, 6, and 7. Note that

= 8§ =

there is exactly one transition from 1 to 0 in A, and that the
carry out from C + 5 (a carry is generated in this example)
is determined by the corresponding bit of C.

X = 1101101100111001 3)
Y = 0010010011001111 4
¢ = 0000000000010010 &)
S = 1111111111110110 ©)
A = 1111111111110000 0]

Given n-bit X and Y, and a carry-in bit ¢;,,, the carry-
generation detection problem is to determine whether or not
there is a carry out from the n-bitsum X + Y + ¢;,. A
straightforward application of theorem 4 leads to the fol-
lowing algorithm to solve this problem.

Algorithm 3 Let X and Y be n-bit numbers, and let ¢;y,
be an optional carry-in bit. To determine whether there is a
carry-out from X +Y + ¢;p, do the following:

1. Compute (C,S) = ha(X,Y).
2. Compute the prefix-and A of S
3. Do the following in parallel:

o ifan_1 = 0 then return c,,.
e ifag = 1 then return c;y.

e Foriinl,2,...,n - 1doinparallel
ifa; N@;_1 = 1 then return c;

Step 1 of the above algorithm can be implemented by a
single-level circuit consisting of n AND gates and n XOR
gates. Step 2 can be implemented in logn levels by using
a parallel prefix circuit[4]. Step 3 can be implemented in
two levels, the first of which computes the logical function
a; A @;_1, and the second of which uses tristate buffers to
select one of the ¢; based on the values obtained in the first
level. This works because by theorem 4, exactly one of
the n + 1 if statements in step 3 is true. The total delay is
logn -+ 3, which is close to the theoretical lower bound of
log n + 2 that is imposed by fanin considerations (including
Cin, there are 2n + 1 inputs).

Figure 2 shows an 8-bit circuit based on this method. To
simplify the diagram, the computation of C is not shown.
S is computed by the 8 XOR gates at level 1. The dotted
box performs an 8-bit parallel prefix-and at levels 2 through
4, the AND gates at level 5 determine the position ¢ of the

270

x4

f
|
4

X3, y3

3

t‘-ﬁ

—I=

53

O—®

&bit
Prefix-
AND

")

a3

a? a5

cf

_%

casry

Figure 2, 8-bit prefix-and carry generation de-
tection

lowest order 1 in the prefix-and and the tristate node at level
6 transmits ¢; to the output. If there is no 1 in the prefix-and
then cg is output.

The prefix-and method as given is not suitable for large n,
but it can be easily adapted to compute subblocks according
to the usual propagate and generate scheme for computing
carries. Details on this partial prefix-and method, together
with comparisons to other methods of carry generation de-
tection, can be found in [6, 8]. These papers also discuss
fanout and several other implementation issues. The partial
prefix-and method also has delay of only logn + 2 logic
levels to determine whether a sum in h-a form will generate

a carry.
5 Sign, Carry, and Overflow Detection

Given fast carry-generation detection, we are now ready
to compute the remaining conditions. In order to simplify
the discussion, we first consider sign, carry, and overflow
for any sum in half-adder form, and only then examine the
relationship of these conditions with respect to the comple-
mented problems we need for early zero detection.

5.1 Sign, Carry, and Overflow in Half-Adder -

Form

Let (C,S) be in n-bit h-a form, as shown in figure 3.
Since we are discussing the carry and overflow conditions,
we need to retain bit ¢,,, the AND output of the high order
half-adder. In order to represent both addition and sub-
traction, we also consider a carry-in bit ¢;,. For addition,
(C,S) = ha(X,Y), ¢in =0,andC+S = X +Y. Forsub-
traction, (C, S) = ha(X,Y),¢;p = 1, andC+S = X -Y.

271

Note that ¢, and ¢;y, are not part of C, but are just extra bits
needed for these computations. Since ¢y = 0, it is conve-
nient to replace ¢y with ¢;, when using C' as an input to a
sum.

Cn Cn-2

Sp—-2

Cn—1
Sp—1

€2
82

C1
81

o
S0

C
S

Figure 3. Example for discussion of condi-
tions

Now suppose that ¢,y is defined to be the carry out of the
low order n— 1 bits of (C, S), including ¢;,, and ¢, —1. Using
one of the prefix-and carry-generation detection methods,
we can compute c,y: in logn + 2 steps. 'We now show
that that the three conditions are completely determined by
Cny Sn—1, and Coyq.

The sign of C' + S is given by s,,—1 @ cout.

The carry condition is made easy by the fact that (C, S)
is in h-a form. '

Theorem S If 5,,_1 = 0 then carry = ¢y, else carry =
Cout.

Proof: If s,_1 = 0, then no carry will propagate past
position 1 — 1, so the only possible carry bit is c,,.
If sp—1 = 1, then ¢, = 0. If cou: = O, then there is no

carry out of C + 5. If ¢ouzr = 1, then there is a carry out of
C + S. Thus the carry condition is given by ¢oy. D

Overflow for the addition of unsigned numbers is given
by the carry out. For signed numbers, overflow occurs when
numbers have the same sign, and the resulting sum has a
different sign. This is typically calculated by taking the
XOR of the carry into the sign bit and the carry out of the
sign bit. This calculation is also made easier by the fact that
(C, S) is in h-a form.

Theorem 6 If cout = 0 then overflow = c,, else
over flow = ¢, AS,_1.

Proof: The carry into the sign bit is coy:.

If ¢oyy = 0, then overflow occurs when there is a carry
out of the sign bit. In this case, the only possible carry out
of the sign bit is given by bit ¢,,, s0 over flow = ¢,.

If cout = 1, then overflow occurs when there is no carry
out of the sign bit. An analysis of all of the three possible
values for the pair (e,, s,—1) shows that there is no carry
out of the sign bit only when ¢,, = s,,.1 = 0. O

5.2 Sign, Carry, and Overflow for Complemented
Problems

In order to use early zero detection, we are computing
X + Y insteadof X +Y (or X — Y instead of X —Y'), and

this affects some of the conditions. Of course the sign bit in
the complemented problem must be inverted in order to be
correct for the original problem. The situation for the carry
and overflow bits is not quite as obvious.

Theorem 7 The carry out of the low order k bits of X +Y
is not equal to the carry out of the low order k bitsof X +Y
forany k € {1,2,...,n}. Similarly, the carry out of the
low order k bits of X — Y is not equal to the carry out of
the low order k bitsof X - Y forany k € {1,2,...,n}.

Proof: For the computation of X + Y, let (C,5) =
ha(X,Y), with ¢;, = 0. By theorem 2, the computa-
tion of the complemented problem is given by (C’,5") =
ha(X,Y), with ¢}, = 1. Let T = C + S + ¢in, and
T = C'+ 8 +c,. Forany k£ < n, {; is expressed as
Sk D Coutk, Where ¢yt 1s the carry out of the low order &
bits of X +Y +cin, and 2, is expressed as s, P ¢y, Where
¢ ,:x isthecarry out of the low order k bits of X +Y +¢f,,, By
theorem2,1; = E Notethat s; = 2:Dyr = Tp®Tr = S},
and so we must have coutr # Clyyp-

For k = n,note that coytn = ¢4V (8p~1ACout(n-1)), and
Coutn = 4 V (Sn—1 A Coyy(n_yy)- Note that s,y = 57, _,
so there are two cases to consider:

Case 1! s, = 8/,_; = 0. Then either 2,1 = Y—1 =
0, in which case ¢, = 0 = ¢/, or &y = Y1 = 1, in
which case ¢, = 1 = ¢/,. In either case, Coutn # Chyin-

Case 2: sp—1 =s,_;=1,andsoc, = ¢}, = 0. As we
proved earlier, ¢out(n—1) # c;ut(n_l), and $O Coutn F Chyin-

For the computation of X — Y, let (C, S) = ha(X,Y),
with ¢;, = 1. By theorem 3, the computation of the com-
plemented problem is given by (C’, $') = ha(X,Y), with
ep =0 LetT=CH+S+cip,and T =C' + 5 +¢,.
For any k < n — 1, t; is expressed as s @ coutk, Where
Coutk 18 the carry out of the low order k bits of X +Y + ¢;y,,
and ¢}, is expressed as 5§ @ Cy,45. Where ¢, is the carry
out of the low order & bits of X + Y + ¢},,, By theorem 3,
iy = ?’,: Note that sy = 2 ® Y = Tk D yx = &}, and so
we must have Coytk # Chysk-

For k = n, the proofis the same as that given for addition.
)

In particular, the carry computed by theorem 5 must be
inverted to apply to the original problem.

Theorem 8 The computation of X + Y overflows — the
computation of X +Y overflows. Similarly, the compu-
tation of X — Y overflows — the computation of X — Y
overflows.

Proof: Let ¢;,, and ¢,y be the carries into and out of the
sign bit in the computation of X + Y or X — Y, and let
¢}, and ¢, be the carries into and out of the sign bit in the
computation of the corresponding complemented problem
(X+Y or X —Y). Recall that overflow is true exactly

when ¢;n, # cout. By theorem 7, cin # ¢}, and cout # Chyss
S0 Cin # Cout — C:In :71; c/out' o

Applying theorems 5, 6, 7, and 8 to figure 1, we get
figure 4. The PG(n — 1) box computes coy¢ using one of
the prefix-and methods. Note that the sign and carry bits are
inverted, and that the zero and overflow bits are not.

Y X

Y XOR add

n-bit HA

overflow
Figure 4. Early branch condition detector

The delay for zero detection is logn + 3 logic levels,
which is unchanged from figure 1. The delay for our new
conditions is logn + 5 logic levels, only two levels more
than are required for zero detection.

6 Conclusion

In this paper, we have presented new methods for per-
forming early branch condition resolution. We have shown
that the methods can be incorporated into existing adders
with very little additional cost and without the need to mod-
ify instruction sets.

To our knowledge, these are (at least algorithmically) the
fastest methods for determining the standard branch con-
ditions. For branch conditions requiring carry generation
detection, our method requires only about half of the num-
ber of two-input logic levels as current methods. For early
zero detection, fanin requirements show that our method is
within one logic level of optimal. For technologies permit-
ting higher fanin, our algorithms (which are dominated by
n-input AND and prefix-and functions) should scale at least
as well as competing algorithms. Of course determining

272

exact speedups will require implementations.

Since conditional instructions figure so prominently in
CPU performance, faster resolution of branch conditions
has a major architectural impact which could result in:

¢ Increased instruction-level parallelism.

o Reduced cycle time for architectures that set condition
codes.

o The possibility of more powerful instructions, e.g., “in-
crement and branch on zero”.

e Reduced hardware requirements for speculative execu-
tion.

For a detailed discussion of these architectural issues, the
reader is referred to [9].

We have quantified some of the architectural benefits of
early branch resolution through simulation [6] using DEC’s
ATOM [14]. Conservative measurements of the speedups
range from three to nine percent for optimized integer bench-
marks on asingle-issue processor. These speedups should be
regarded as preliminary, as they do not account for branch
prediction (which would tend to decrease the impact) or
superscalar processors (which would tend to increase the
impact). We are currently working on extending our simu-
lations to account for these conditions.

Early branch condition resolution is one of a growing set
of applications of the half-adder form. The half-adder form
has also been used to reduce the latency of comparison (8],
modulo-k counting [10], and addition [6]. We are currently
exploring applications to multiplication, division, floating
point addition, floating point dot products, and early iterative
loop resolution.

References

1] P. Chow, editor. The MIPS-X RISC Microproces-
sor. Kluwer Academic Publishers, Norwell, Mas-
sachusetts, 1989.

Jordi Cortadella and Jose M. Llaberia. Evaluation of
A + B = K conditions without carry propagation.
IEEE Transactions on Computers,41(11):1484-1488,
November 1992.

[2

—

(3] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers, Inc., San Francisco, California, sec-
ond edition, 1996.

[4] Richard E. Ladner and Michael J. Fischer. Parallel
prefix computation. Journal of the ACM, 27:831-838,
October 1980.

[5] J.J. Losq and G. S. Rao. Zero condition code detection
for early resolution of bes and bers. IBM Technical
Disclosure Bulletin, 25:130-133, 1982.

[6] David R. Lutz. The Power of the Half-Adder Form.
PhD thesis, The Ohio State University, 1996.

[7] David R. Lutz and D. N. Jayasimha. The power of
carry-save addition. Technical Report 15, Department

of Computer and Information Science, The Ohio State
University, March 1994.

[8] David R. Lutz and D. N. Jayasimha. Comparison of
two’s complement numbers. International Journal of
Electronics, 80(4):513-523, April 1996.

[9] David R. Lutz and D. N. Jayasimha. Early zero detec-
tion. In International Conference on Computer Design,
pages 545-550, October 1996.

[10] David R. Lutz and D. N. Jayasimha. Programmable
modulo-k counters. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications,
43(11):939-941, November 1996.

[11} Behrooz Parhami. Comments on “Evaluation of A +
B = K conditions without carry propagation”. JEEE
Transactions on Computers, 43:381, April 1994.

[12] James Phillips and Stamatis Vassiliadis. Result equal
zero predictor for 3-1 interlock collapsing ALUs. In-
ternational Journal of Electronics, 75(3):379-392,
March 1993.

{13] M. Putrino and Stamatis Vassiliadis. Resolution of
branching with prediction. International Journal of
Electronics, 66(2):163-172, February 1989.

[14] Amitabh Srivastava and Alan Eustace. ATOM: A sys-
tem for building customized program analysis tools. In
Proceedings of the SIGPLAN’94 Conference on Pro-
gramming Language Design and Implementation,June
1994,

[15] Stamatis Vassiliadis, James Phillips, and Bart Blaner.
Interlock collapsing ALU’s. IEEE Transactions on
Computers, 42(7):825-839, July 1993.

[16]) Stamatis Vassiliadis and M. Putrino. Condition code
predictor for fixed-point arithmetic units. International
Journal of Electronics, 66(6):887-890, June 1989.

[17] Arnold Weinberger. High-speed zero sum detection. In
4th IEEE Symposium on Computer Arithmetic, pages
200207, 1975.

273

