Pipelined Packet-Forwarding Floating Point: 1. Foundations and a Rounder *

David W. Matula
Dept. of Computer Science and Engineering
Southern Methodist University
Dallas, Texas
matula@seas.smu.edu

Abstract

This paper presents the foundations for a packet for-
warding floating point format and the design of a rounder
ensuring compatibility between packet forwarding format
and the standard binary IEEE 754 floating point format.
The packet forwarding format and related addition and mul-
tiplication algorithms described in this series propose a
new ALU pipeline paradigm for handling data hazards in
pipelined floating point operations. The execution phases
for the adder and multiplier packet forwarding pipelines
are illustrated by a proposed implementation having four
stages. The latter two stages in each pipeline employ the
rounder described herein.

The stages of the execution phase are intended to map to
logic designs with only some fifteen logic levels per stage,
allowing stages to be mapped to reasonably short cycles.
The packet forwarding format provides for input and out-
put in packet format with only two cycle effective latency
between cooperating adder and multiplier pipelines. The
designs we propose cut the effective latency in half and re-
duce the stall cycles by a factor of three compared to con-
ventional forwarding pipelines processing data dependent
operations. The speedup is realized with preservation of
IEEE 754 binary floating point compatibility.

1 Introduction and Summary

The foundations for a temporally partitioned floating
point representation a = (—1)*2°(f + ¢2P~1) are devel-
oped in support of a packet forwarding pipeline paradigm.
The pipeline is designed to accept the principal part packet
f and carry-round packet ¢ of the significand as inputs in
successive execution stages of the pipeline, and similarly to

*This work was supported in part by a grant from Cyrix Corporation
and by the Texas Advanced Technology Program Grant 003613013, and
grant no, 5.21.08.02 from the Danish Research Council.

1063-6889/97 $10.00 © 1997 IEEE

140

Asger Munk Nielsen
Dept. of Mathematics and Computer Science
Odense University, Denmark
asger @imada.ou.dk

generate the output significand packets ' and ¢’ in succes-
sive stages. Herein we utilize f and c to denote digit string
packets and f = ||f|| and ¢ = [|¢|| to denote their val-
ues. This provides for discussing the redundancy in the digit
string representation. Without loss of generality, s and ¢ are
used for values and packets as they are assumed uniquely
encoded.

The packet forwarding floating point format and cooper-
ating packet forwarding multiplier and adder pipelines con-
stitute a proposed new ALU paradigm for handling data
hazards in pipelined floating point implementations.

(sef)e

standard format —=| Al | A2

(she'f)

RI

R2 }——> standard format

¢!

standard format _>[Al |A2
(s e f7)

RI| R2 i*» standard format

e

standard format —=| M1

M2 I RI l R2 }———v standard format

Figure 1. Cooperating packet forwarding
pipeline operation.

The cooperating adder and multiplier pipes illustrated
in Fig.1, employ a four stage execution sequence with the
latter two stages of each being the rounder phase. Both
pipelines accept one operand in a standard format at the start
of stage one. Both pipelines accept the packet forwarded
operand in packets at the start of stages one and two, and
output the result in packets after stages two and three. The
output of stage four is the identical valued result in the stan-
dard binary floating point IEEE 754 format for retirement
to a register. The example of Figure 1 reduces effective la-
tency from four to two stages (cycles). Recent research [9]
has documented the high frequency of dependent multiplies
and additions in floating point intensive applications. Re-
ducing the effective latency is the best way to reduce stalls
and allow improved super scaler performance.

In the papers of this series we investigate stages of
rounder, adder [2] and multiplier pipeline designs where
each stage can be implemented in a single short cycle of no
more than fifteen logic levels. The two stage (cycle) rounder
is common to both adder and multiplier pipelines.

Rounding plays a central role in the IEEE 754 standard
for floating point arithmetic [1]. Standardized rounding pro-
cedures can make numerical software predictable as well
as capable of providing accurate and reliable approxima-
tions and bounds. Although relatively simple in concep-
tion, floating point rounding is surprisingly involved. It is
not uncommon that rounding accounts for half the latency
in pipelined floating point units for addition and multipli-
cation. Our proposed rounding algorithm deviates from
previous algorithms [4, 5, 6], by accepting redundant in-
put and producing redundant as well as standard rounded
output. Our algorithm employs novel circuitry for comput-
ing the normalization and sticky digits needed for round-
ing. The procedure allows that the principal part packet
can be forwarded to another functional unit before round-
ing, with a follow-up carry-round packet forwarded after
just one rounding operation stage. The rounding procedure
in general has a latency of two stages to produce the IEEE
754 standard format output.

In Section 2 we explore floating point factorizations to
provide the foundation for alternative compatible floating
pointrepresentations. Our principal result in Section 2 is the
establishment of prenormalized floating point factorizations
utilizing borrow-save and carry-save encodings, which can
host standard binary IEEE 754 compatible numeric results,

Section 3 defines standard and packet forwarding
operand formats of double extended precision, and illus-
trates the packet forwarding paradigm with these particular
operands.

Section 4 provides a high level design of the two cycle
rounder. The main result in Section 4 , is an efficient al-
gorithm and circuitry for determining the positive, negative
or zero sense, termed the signed sticky digit, of a borrow-
save encoded number. This circuit is the key to determining
both normalization and rounding information for the float-
ing point results at less cost than the usual 2-1 compression
initiating normalization and rounding computations.

The logic for determining the carry-round packet co-
ercing compatible output values for the packet forwarding
and IEEE 754 standard outputs is described in Section 5.
The principal result there is the formulation of the round-
ing table, giving the carry-round packet as a function of
the guard, round, normalization and sticky digits and the
rounding mode. The remainder of Section 5 describes the
second rounding stage (cycle). That stage is divorced from
the packet forwarding computation and is the only stage of
the full adder (or multiplier) pipeline where a time and area
consuming 2-1 compressor is needed.

2 Floating Point Factorization, Normaliza-
tion and Number Systems

A binary number is a rational with a binary rational fac-
torization @ = 424, with i, j integers. A binary floating
point number is a binary number with a floating point fac-
torization (fp-factorization).

a= ("1)328”dmdM—1 “'dl“; 4]
comprising sign, scale and significand factors where

o s € {0,1} is a sign bir determining the sign factor
(=17,

e ¢ is an integer exponent determining the scale factor
2¢,

¢ f = dndm-1---d; is a digit string, termed the sig-
nificand, determining a binary significand factor

F = 1A= e - dil = 3" 42 @)
!

according to a prescribed fixed point format.

Prescribing the significand format determines the fixed
point range and granularity of the significand factor. A sig-
nificand factor f is termed normalized when it is in the half
open binade 1 < f < 2. More particularly,

FEF()= {145 10Si<? 1) ©

is a p-bit factor with precision p, range [1,2 — 2~(~1)] and
granularity 2= (P=1),

Regarding the significand digit string format itself, a
standard p-bit significand f = bg.biby - - - bp_1, has dig-
its (bits) b; € {0,1} for 0 < i < p — 1, with f normalized
when by = 1 and denormalized when by = 0.

Observation 2.1 Every binary number a # 0 has a unique
Sfp-factorization with a normalized significand factor (the
normalized fp-factorization):

a=(-1)2°f,1< f<2 @

where e = [loga |a]|. Every binary number a = i27 with
1 < |i| < 27 — 1 has a unique fp-factorization with a p-bit
factor f (the standard p-bit fo-factorization):

a=(-1)°2°f = (=1)°2°||[Lbsbs - -bpall, (5)
where the p-bit factor f is given by a standard normalized

p-bit significand f = 1.b1by---b,_1, and each bit b; €
{0, 1} is uniquely determined.

141

For any given exponent e and precision p > 2, FP{e, p)
denotes the set of binary floating point numbers of the posi-
tive [2¢,2¢+1) and negative (—2°+!, —2°] binades having a
standard p-bit fp-factorization,

FP(e,p) = {(=1)°2°||1.b1bs - - -bpa| | 5,85 € {0, 1}} .
()
Equivalently, FP (e, p) is defined by the binary rational fac-
torizations,

FP(e,p) = {i2°*!=P |27~ < Ji| < 2P = 1}. (D)

It is emphasized that a number of the set FP(e,p) may
be termed a standard binary floating point number of preci-
sion p and exponent e independent of the actual representa-
tion of the number. This is particularly useful for discussing
compatibility when the floating point number may be given
in an unnormalized format that might include carry-save or
borrow-save digit encoding.

It is well known that addition (same sign) and multi-
plication of non zero floating point numbers produce a re-
sult with a floating point factorization r = (—~1)*2°f with
1 < f < 4 where e can be determined from the expo-
nents of the unique normalized floating point factorizations
of the arguments. A similar result holds for subtraction
when the argument exponents differ by at least two. Such
resulting factorizations can describe the internal output of
an adder or multiplier input to a rounder. The result may be
passed still having a redundant digit significand. The fac-
torization of the subsequent rounded result ' = (—1)*2¢ f’
(without exponent adjustment) can be described by allow-
ing 1 < f' < 4. Our approach is to extend and formal-
ize these existing “two-binade limited” internal formats to
characterize the packet forwarding format. Our purpose
is to support fused arithmetic operations with output of a
rounded addition or multiplication immediately input to a

consuming successor addition or multiplication. We shall -

coerce compatibility without need for intermediate com-
pression to the standard unique factorization format.

A significand factor f is termed prenormalized when it
is in the two binade closed interval 1 < f < 4.

Observation 2.2 Ler e = |logs |a|| for any binary num-
ber a # 0. Then a has two or three fp-factorizations
with prenormalized significand factors (prenormalized fp-
factorizations):

o fore = logs |a|, there are 3 fp-factorizations:
a=(-1)°2°.1= (—1)329‘1 .9 = (_1)329_2 4,

e for e < logs|a|, there are 2 prenormalized fp-
factorizations:

Lo [(1rer withl< f <,
T (=127 with2 < f <4

The set of p-digit prenormalized significand factors is
given by

Frel) = {717 =14 grrorf =24 551, ®

for 0 <4 < 2P~1. Note that the p-digit prenormalized sig-
nificands have granularity 1/2°=1 in the binade [1, 2] dou-
bling to 2/2P~1 in the binade [2, 4]. This step in granularity
allows that the set of binary numbers with prenormalized fp-
factorizations with exponent e and a p-digit prenormalized
significand can be readily associated with standard binary
floating point numbers of precision p and the appropriate
exponents.

Observation 2.3 Forany e andp > 2,

{a | a= (_1)s2ef:3 S {Oa 1},f S Fpre(p)}
= FP(e,p) UFP(e+ 1,p) U {—2°%2 2¢+2}

©)
(10
The specification of the set of p-digit prenormalized sig-
nificands Fp,.(p) is introduced to allow fp-factorizations
where the significand can be represented employing con-

ventional carry-save or borrow-save representations, with
only the final digit needing revision.

Lemma 2.4 The p-digit prenormalized significand factors
can be obtained from redundant binary significands with a
restricted low order digit as follows:

o Borrow-save (or signed bit) form:
Fyre(p) = { || 1b0.b1bz - - -bp2by_1 ||}

withby € {0,1}, b; € {~1,0,1} for 1 < i < p—2

and
{——'2,0, 2} for Hlboblbg . 'bp-——ZH > 2
by1 €4 {=2,-1,0,2} for||Lbo.b1dy - by s|| =2
{-2,~1,0,1,2} for||1bg.biby - -by_s]| < 2

e Carry-save form:
Fpre(p) = H'do'dld? v 'dp~2d;—1”}

withdy € {1,2}, d; € {0,1,2} for1 < i <p-2
and

e

Proof: Consider the borrow-save form and let

{0,2,4} for||do.dydy - - -dy_s| > 2
{0,1,2,4} forlldo.d1d2~--dp..2|l =2
{0,1,2,3,4} for||do.dids - --dp_s|| < 2

fp = Hlboblbg e bp_2“

142

denote the p-signed bit principal part contribution to the
significand factor, where &y € {0,1}, b; € {-1,0,1} for
1 < ¢ < p— 2. The range of values for f, is the se-
quence 14 1-2=(=2) 1 42.2-0=2) 14 (¢! 4
2r=2 _1)2-(P=2) = 4 — 2-(P=2) with granularity 2~ (=2
throughout. For f, > 2, the values of f, + b3_,2= (=1
withb;_; € {~2,0,2} augments the sequence of f;, values
only by 4 —2=(=2) 4 9. 9-(-1) = 4, yielding the re-
quired values of Fj,. over the binade [2, 4]. For f, < 2, the
values of f, + by_,2~®"~Y with by _; € {-2,-1,0,1,2}
effectively extends the precision by one position to the right
compensating for the loss of the leading digit and cover-
ing the required values of Fp,, over the binade [1,2] with
granularity 2~ ("=1) throughout. For fp = 2, the values of
fp 05127V with b2, € {~2,-1,0,1,2} cover pre-
cisely the values of I}, within the interval [2—2“(1’ “2), 2+
2(”‘2)] where the granularity of spacing changes as the bi-
nade boundary is crossed. The argument is similar for the
carry-save form. O

Let the signed sticky digit s(f)
borrow-save digit string f = bgby---bp, b; €
be given by

{-1,0,1} for a
{-1,0,1}

S(bgby - - -by) = signum(||boby - - -bn]|). (12)
Corollary 2.5 For the borrow-save prenormalized signifi-
cand 1bg.b1bg - - ~bp_2b;__1 with b;_l having an extended
range as specified in Lemma 2.4, determination of which
extended range applies for b, _,, is equivalent to finding the
signed sticky digit S(bo.b1bs - - - bp_2).

In Section 4 we show that the signed sticky digit can
be computed more cfﬁcicntly than by 2-1 compression of
the string bg.b1by - - - b, to a 2’s complement or standard
signed binary string.

A binary normalized floating point number system with
exponent range [Enmin, Emqy) and precision p > 2 is de-
noted:

FP(Bumin, Emaz,p) = Ulrgs FP(e,p). (13)
The specification employed in (6) and (13) for FP(e,p)
follows the IEEE standard 754 [1] for normalized floating
point numeric values. Thus the normalized binary IEEE
754 values are given for the various precision levels by:
FP(—126,127,24) for single, FP(—1022,1023,53) for
double and FP(Eyin < —16382, Epngr > 16383, p > 64)
for double extended precision.

In view of Observation 2.3, compatibility with the nor-
malized IEEE754 values may be achieved using prenormal-
ized significands. E.g. for double precision:

FP(—1022,1023,53) = {(=1)*2°f},

where s € {0,1}, —1022 < e < 1022 and f € Fpre(53),
|f] # 2107

The IEEE 754 standard also prescribes certain denor-
mal values. In practice, implementations such as the var-
ious 86 architectures use normalized number systems of
greater exponent range and treat denormals, underflow and
overflow by appropriate special logic. Similar techniques
may be used based on prenormalized significands. It fol-
lows that borrow-save and carry-save significands may be
employed for compatible IEEE standard arithmetic results
without conversion to standard binary format providing the
final digit rules of Lemma 2.4 are observed.

3 Packet Forwarding Pipelines

The packet forwarding pipeline paradigm we propose ac-
cepts one input in a “standard” binary format derived from
the factorization (5) and the IEEE 754 standard [1]. The
other operand is in a “packet forwarding” format using a
borrow-save p-digit prenormalized significand defined with
reference to Lemma 2.4.

Specifically a standard double extended IEEE 754 float-
ing point operand with unique factorization

a=(-1)"24f (14)
as specified in [1], consists of (see Fig. 2 (a)):
e s is a sign bit,
& ¢ is encoded in an exponent field of 15 or more bits,
o fi = laias---ap—1 with a; € {0,1} is a normal-

ized binary significand with at least 64 bits of preci-
sion (henceforth p = 64 is employed).

Sign Exponent [4s]6s]82] ‘ e |
Significand [1[4 4] 1408 %2 [%5]
(@)
Sign Exponent [aslas]ta] - [}

Carry-Round Packet
L IRCACACALA PACAL?
Principal Part %ﬂﬂﬂ B Iﬁlﬁlﬁi
(b)
Figure 2. Floating point operand formats. (a)

Standard IEEE 754 operand format. (b) Packet
forwarding operand format.

143

Our packet forwarding floating point operands (see Fig.
2 (b)) have a non unique factorization

b= (=1)*22°(fa + c27%) (15)

with the same sign and exponent format as a standard dou-
ble extended precision operand. The significand (fy +
¢27%3) in (15) is kept in a temporally staggered format by
partitioning it into two packets (see Lemma 2.4):

o fo = 1bg.bybs - bgy with b; € {—1, 0, 1}, is a
64 digit borrow-save encoded digit string termed the
principal part packet.

® C = cg9C63, is given by a two digit borrow-save digit
string with ¢ = {|ceaces|| € {—2,~1,0,1,2} termed
the carry-round packet.

The principal part is a redundant leading part of the IEEE
compliant result of a floating point operation, that is prenor-
malized such that it belongs to the two binade range (1, 4),
in particular [1 + 27524 — 2-2]. The carry-round term
¢2~%3 has the range [—~2762, 26?), with the significand range
then being {1, 4].

The packet format has the packets (s, e, f, ¢) ordered for
input to a multiple execution stage pipeline in sequential or-
der with output of packets for forwarding occurring at se-
quential stages. The packet forwarding pipeline paradigm
has one standard operand input and one packet forwarding
operand input. Since standard double extended operands,
by wired recoding [3], constitute a subclass of the more gen-
eral packet forwarding operands, both inputs can be stan-
dard operands.

sign, exponent and
principal part input

carry-round input

A2 | Rl | R2

standard input —-’l Al standard rounded sum

sign, exponent and
principal part output

carry-round output

Figure 3. Input and output scheduling in a
packet forwarding pipeline.

In Figure 3 we illustrate a four stage (cycle) execution
pipeline with the first two stages being the operation and
the last two the rounding. The pipeline accepts one operand
in standard format (s1, ey, f1) and the first three packets
(52, €2, f2) of the second operand utilizing the packet for-
mat, at the start of cycle one. The carry round packet (cz) is
input at the start of the second cycle. After the second cycle

144

the three leading packets (s3, e3, f3) of the output in packet
format are available for forwarding. After the third cycle
the carry round packet (c3) is forwarded, and in the fourth
cycle the result in standard format (s4, ea, f4) is available
for retirement to a register. The rounder must assure com-
patibility in coercing the two factorizations to have the same
value, i.e.

(_1)33283(]"3 + 632-63) — (_1)8426411‘4‘ (16)

AI|A2]R1IR2
S mmnne
—~ [l]

—

{a)

B}

A2

—[u]=

Al R

R2I——>
~[mlwlaTw]

(b)

Figure 4. (a) Conventional forwarding opera-
tion in the case of data hazards with 4 cycle
latency and 3 stalls per pipe, and (b) compara-
ble packet forwarding operation with 2 cycle
effective latency and one stall per pipe.

In Figure 4 (a) we illustrate execution of successive de-
pendent floating point operations exhibiting conventional
pipeline data hazards. With the pipelined packet forward-
ing paradigm in Figure 4 (b), a dependent instruction can
be issued after 2 clock cycles rather than 4, thus the latency
is cut in half and the number of stall cycles is reduced by a
factor of three.

4 Signed Sticky Digits and a Rounding Unit

In the following we discuss the rounding algorithm, as-
suming that the input to the rounder comes from a multiplier
compression tree in redundant form or from the addition al-
gorithm in our accompanying paper [2].

The significand data-path of the rounding unit is depicted
in Fig. 5. A 129 digit borrow-save uncompressed result
is taken as the input. The leading 64 bits are termed the
principal part packet. This packet can be forwarded to a
cooperating pipeline or fed back as the forwarding input of
the same pipeline for a successive operation.

In the first stage of the rounder two signed sticky digits
are computed based on upper and lower parts of the full

nof {129
(3 principal part packet
................... N - I o
64
67
64
l @
upper LGR lower
signed sticky 3 svigned sticky
3
i
~— mode
I ROUND LOGIC .
~— sign
2 - -
5 carry-round puacket
............................. sp-Ee e
]
ADDER -

rounded standard significand

Figure 5. Significand data-path for the two
cycle rounder (the dashed lines represents
pipeline cuts).

Signed Sticky | Interval of fraction | Encoding (s, m)
-1 (-1,0) (1,1)
0 [0,0] (0,0) or (1,0)
1 0,1) (0,1)

Table 1. Interpretation of a signed sticky digit

double width input. These digits are used along with other
information needed for rounding, as entries for a table that
determines the carry-round packet that is forwarded. The
final stage computes the standard format result.

Traditionally the sticky bit is computed on the lower part
of the compressed output immediately to the right of the
round bit, and it is defined as zero if the fraction is equal
to zero, otherwise it is one. Here we shall compute up-
per and lower sticky digits each with range {~1,0, 1}. The
lower sticky replaces the ordinary sticky bit, and the high or-
der sticky is needed for normalization according to Lemma
2.4 and Corollary 2.5. The interpretation and encoding of a
signed sticky digit is given in Table 1. Note that the sticky
is encoded in a sign-magnitude format for convenience of
computation by the following algorithm.,

In what follows we describe how to compute the (s, m)
pair from a 2n digit borrow-save encoded significand:

e =0.2129...29,, 7

—z7 € {-1,0,1} and z},z; € {0,1}, by

.’I?,':J!?'

145

a divide and conquer algorithm. Let us assume that we
have computed the signed sticky of the upper and lower
halves of z, and let them be denoted by (s, mp) respec-
tively (s;,m;). Then the signed sticky of the full 2n digit
fraction is given by

Sp ifm;, =1

m=myVmy, ands = .
h b { s; otherwise

(18)
For the base case of a single borrow-save encoded digit
si=z; andm; =z} @z . (19

To implement (18) and (19) we derive a simple muxing cir-
cuit (see Fig. 6 and [8]).

e
g~
8
e
g~
8s

MUX

s

Figure 6. Signed sticky computation.

Since the mux selection signals can be set up early, the
sticky information can flow through the tree at high speed.
In this manner the signed sticky digit computation is con-
siderably faster that if done by 2-1 compression of the re-
dundant number followed by a conventional sticky compu-
tation, i.e. a tree of and gates. Since only the high order
signed sticky is needed to determine the normalization digit,
the 2-1 compression of the leading digits always employed
to determine standard output is avoided when only the com-
patible packet forwarding format is needed.

5 Rounding Logic

The first stage of the rounder computes the carry-round
packet. The rounding position (i.e. the position where a
unit is to be added or subtracted as decided by the rounding
logic) is defined as the position of the guard digit (G), i.c.
position 63, if the unrounded full precision result is strictly
less than two (see Fig. 7 (a)). In the case of significand
overflow (2 < full precision result < 4) the rounding posi-
tion is one place to the left at the position of the L bit, i.e.
position 62, (see Fig. 7 (b)).

Since the upper (S,) and lower (S;) sticky digits are
computed based on the principle part from positions 0 down

to 63 and respectively from positions 65 and down (see Fig.
7 (c)), the range of the significand factor and the rounding
position can be deduced from the sticky digits and the round
digit R at position 64, as shown in Table 2.

0 12 62 63 64
L R

G
o] [1] [T DX 1
64 sticky
(a)

R
[X 11
64 sticky

(b)

Lol 11

L G R

upper sticky lower sticky

(c)
Figure 7.

U
I

=
b

range | round pos.
(1,2)
(1,2)
(1,2)
(2,2]
(2,4)
(2,4)
(2,4)

Table 2. Range and rounding position.

<o
[

H om0 OO
E R e B
el uleBuBoRaRa

The IEEE floating point standard specifies four basic
rounding modes. These four modes can be reduced to three
atomic rounding modes depending on the sign of the num-
ber (see Table 3). The rounding operation in the atomic
modes can be computed without examining the sign.

[IEEE rounding mode | positive | negative |

round up RI RZ
round down RZ RI
round to zero RZ RZ
round to nearesteven | RNe RNe

Table 3. Conversion of IEEE rounding modes
into 3 atomic modes: Round to infinity (RI),
to zero (RZ) and to nearest even (RNe).

Based on the high order part value f up to the round
digit, the round digit (R) and the low order sticky digit (5;),
the rounding ranges can be deduced as depicted in Fig. 8.

From the range we deduce what to add at the rounding posi-
tion (i.e. —1, 0 or 1) as summarized in Table 4. If the round
position is at the guard digit, we shall include this digit in
the carry-round packet, since the principle part contains all
the digits to the left of the guard digit, i.e.:

¢ = G + Table4(G, R, S;, mode). 20

If on the other hand the rounding position is at the L digit,
we shall treat L as the least significand digit, make the guard
digit into round digit, and incorporate R into the low order
sticky digit, i.e.

¢ =2 Tabled(L, G, RA S;, mode). @2n

Sfulp f S+ulp
(RS) - 10 of 00 01 10

RZ - - . 1 - -— -
RI — — o ? — e —
RNe (feven) =— —» —» ? -— -

RNefodd) =— =— — } =— — —

Figure 8. Rounding ranges

[R S [RZJRI[RNe(G=0) | RNe(G #0) |

-1 -1 0 -1 -1
-1 0 -1 10 0 -1
-1l -1 10 0 0
0 -1 -1 0 0 0
0 0 0 0 0 0
0 1 0 1 0 0
1 -1 0 1 0 0
1 0 0 1 0 1
1 1 0 1 1 1

Table 4. Simple rounding table (fraction as-
sumed positive and rounding position at L)

Rounding logic can be implemented based on Tables 3—
4 and equations (20) and (21). This straight forward im-
plementation would require three consecutive table lookup
steps followed by computation of the carry-round packet.

To speed up computation of the carry-round packet we
may compute a packet for all possible sticky digit combina-
tions, in parallel with the sticky digit computation. When
the actual sticky digits are available the correct packet is
selected using a multiplexor. Each one of the nine regions
of the composite rounding Table 5, should be implemented

0y
-

=3 0 1}
RL | RNe || RZ [R RNe I

1
T8 TG R UR] RZ | Ri | RNe
T BRI 3 T) ERR IS T
1] o0 2 | 1 B -1 40 -1
] - 0 - 4 1o 0 A4 40 0
0 a a1 e -1 4| 0 4t 0
B oo a4 f e [0 0 0 0 1 0
0! 0 1 0 0 1 0 0 1 1
[0 1 0 0 1 0 0 1 1
1| oo 0 1 1 1 1 1 1 2 1
Lt 1 2 1 1 2 2 i 2 2
x [-1 T 0 B) T] 0 0 T 1 0 0
0 x| o a4 | e 0 [0 0 0 2 0
x | 1 0 2 0 0 2 0 o | 2 0
T] A SR E) 2] 0 72 Z 10 7
1] o 2 0 2 2 | o | -3t 2] 0 0
1] 210 0 2 |0] 2 |0 0
0o | a 210 0 2|0 o 2 |0 0
1 oo 20 0 0 0 0 0 2 0
0ol 0 2 0 0 2 0 0 2 0
T 0 2 0 o 2 0 o | 2 o
1 0 0 2 [0 2 at 0 2 2
1 1 [2 2 [2 2 0 2 2

Table 5. Carry round Packets (entries marked
with t should be 0 if L = 0).

P{-1:62] N[-1.62] ¢t ¢

644}04 ‘1, 24} 2‘1,
[reduced 4-2 Add |

l ¥
hvd

2-ladder /1

64

Figure 9. Final Addition.

separately using PLA’s to minimize die area by exploiting
redundancy in the table.

At the end of the first rounding stage the packet forward-
ing result output is complete. Now let us consider the fi-
nal stage of the rounder and coincidently of the adder and
multiplier pipes. The carry-round packet (c) is added to
the principal part using a redundant 4-2 compressor (i.e. a
borrow-save adder). Since the carry-round packet is only
a two digit integer, the adder logic can be reduced consid-
erably. The borrow-save encoded sum is sent to 2-1 adder
for compression into a standard binary IEEE compliant rep-
resentation (see Fig, 9). The final adder in effect subtracts
the negative digits from the positive digits of the borrow-
save encoded input, by forming the 2’s complement of the
negative digits. If the compressed result is greater than or
equal to two, as signaled by the most significant bit, the
significand is normalized by shifting it one position to the
right. Since the adder does not need to produce two results,
as with algorithms employing prediction [4, 5, 6], this part
of the implementation can be less restrictively chosen from

the large base of standard addition algorithms [7], such that
a good tradeoff between latency and area is attainable.

In a floating point stack architecture such as the x86, re-
sults that are forwarded are consumed and need not be sent
through the second rounding stage. Since floating point in-
tensive computation has the majority of results forwarded
[9], the adder and multiplier pipes could each have their
own first rounding stage and share the second stage with
little extra delay, saving the cost of a second 2-1 adder.

References

[1] “IEEE standard for Binary Floating-Point Arithmetic”;
ANSUIEEE std 754-1985, New York, The Inst. of Electrical
and Electronics Engineers, Inc, Aug. 1985.

[2] Nielsen, A. M., Matula, D. W, Even, G., Lyu, C.
N.: “Pipelined Packet-Forwarding Floating Point: II. An
Adder”;
in these proceedings

[3] Daumas, M., Matula, D. W.;
“Recoders for Partial Compression and Rounding”;
Technical report RR97-01, Ecole Normale Superieure de
Lyon, LIP, available at http://www.ens-lyon.fr/LIP.

[4] Yu, R, Zyner, G.:
“167 MHz Radix-4 Floating Point Multiplier”;
In Proc. of the 9th IEEE Symp. on Computer Arithmetic,
1989, 149-154.

Santoro, M., Bewick, G., Horowitz, M.:

“Rounding Algorithms for IEEE multipliers”;

In Proc. of the 12th IEEE Symp. on Computer Arithmetic,
1995, 176-183.

[5

—

f6

—

Quach, N., Takagi, N., Flynn, M.:

“On Fast IEEE Rounding”;

Stanford Technical Report: CSL-TR-91-459, available at
http:/fumunhum.stanford.edu/main.html.

[7] Omondi, A. R.:
“Computer Arithmetic Systems - Algorithms, Architecture
and Implementations”;
Prentice Hall, ISBN 0-13-334301-4, 13-101.

[8] Lyu, C.-N.:
“Micro-Architecture of a Pipelined Floating-Point Execu-
tion Unit”;
PhD thesis, SMU, Dallas, Texas, Dec. 1995.

[9]1 Oberman, S. F, Flynn, M. J.: “Design Issues in Division and
Other Floating-Point Operations”;
IEEE Transactions on Computers, vol. 46, no. 2, February
1997, pp. 154-161.

147

