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Abstract

This paper presents a thorough analysis of radix repre-
sentations of elements from general rings, in particular we
study the questions of redundancy, completeness and map-
pings into such representations. After a brief description of
the more usual representations of integers, a more detailed
analysis of various complex number systems is performed.
This includes the “classical” complex number systems for
the Gaussian integers, as well as the Eisenstein integers.

1 Introduction

Number representations have for long been a central re-
search topic in the field of computer arithmetic, since choos-
ing the wrong number system can have detrimental effects
on such aspects of computer design as storage efficiency,
accuracy and speed of operation. By conception design-
ing a number system amounts to choosing a representation
suitable for computer storage of the elements of a set of
numbers, such that arithmetic operations can be performed
with relative ease on these numbers, by merely manipulat-
ing their representation.

No number system has achieved the kind of wide spread
acceptance and popularity that the radix representations
have. Radix based number systems represent the elements
of a set (like the integers) by a positional notation known
as radix polynomials. Each element is represented as a
weighted sum of digits, where the weights are increasing
integer powers of the base or radix. This form of notation
has the advantage that each digit can be drawn from a small
finite digit set, and that arithmetic algorithms can be bro-
ken into atomic steps operating on individual digits. An
important issue in the design of radix number systems is the
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notion of completeness, i.e. does a given base and digit set
combination have the desired effect of being able to rep-
resent all the elements of the set of numbers in question.
Equivalently the notion of redundancy is of importance, e.g.
the presence of alternative radix polynomials representing
the same element, has had a profound influence on algo-
rithms and speed of arithmetic operations in modern micro-
processors.

As microprocessors become increasingly more complex,
the problems that can be solved in hardware likewise in-
crease in complexity. As an example we are at the point
where signal processing problems demanding fast and fre-
quent execution of arithmetic operations on complex num-
bers, can be solved by dedicated hardware. It seems logical
to investigate alternative number representations for these
problems, addressing such issues as redundancy and stor-
age efficiency, that has brought by the speed improvements
of modern micro processor technology. Unfortunately as-
sessing such important questions as completeness and re-
dundancy, are no longer trivial tasks when we turn our atten-
tion to sets like complex numbers. Answering these ques-
tions requires a fundamental understanding of the under-
lying mathematical foundation of radix polynomials. The
goal of this paper is to clarify some of these issues, while
providing usable tools for designing and evaluating number
systems.

We will do this by using such well founded and widely
understood mathematical notions as rings, residue classes
and norms. This paper extends the work done by Matula in
[7, 8] to the general notion of rings, and gives a thorough
analysis of representations of complex numbers.

2 On the Representation of Numbers

This paper is devoted to the study of radix representa-
tions of rings. As a foundation for this study, we will rely
on the algebraic structure of sets of polynomials. If R is a



ring, then the entity denoted by R[z] is the set of polynomi-
als over the ring R. Each of these polynomials is a formal
expression in the indeterminate ¢ of the form

M

where n < oo and each coefficient is an element of R. The
set of Laurent polynomials over the ring R , denoted by
R*[z], is the set of polynomials of the form

P(z) = anz™ + an12" '+ ...+ @17 + aq,

P(z) = apz" 4 an_12" "+ ...+ q2, )

whereco > m > 1> —ocoand a; € R.

When an element of a ring is represented in positional
notation, it is customary to use a weighted notation, where
each digit has weight equal to some power of the radix. The
radix is in itself an element of the ring and the digits of the
number are elements of a finite subset of the ring, this sub-
set is termed the digif-set. As described, a number may be
represented by an algebraic structure termed a radix poly-
nomial. These polynomials are similar to the polynomials
over a ring, and may be thought of as the algebraic objects
expressible by a number system characterized by a fixed
base or radix 8 € R and a digit-set 2. In this paper we will
assume that the zero element of the ring is always part of the
digit-set, and that the base is not equal to the zero element,
neither is it a unit of the ring. For instance if R = Z, i.e. the
ring of integers, then we will assume 0 € ¥ and |3] > 1.

Definition 2.1 Radix Polynomials over ¥

Pz[B, Z) = {P(I]) = dm[B]" +dm-1[8)" " +. . +do[£]’}

withdy,dm-1,...,do EX A0 < m < co.

In analogy with the definition of Laurent polynomials, as-
suming B3~ exists in some extension of R, we define;

Definition 2.2 Extended Radix Polynomials over ¥

P8, 5] = {P((8]) = dm[A™ +dm-1 [B]" "+ +d[6]'}

withdy,,dp1,...,di EX A —0c0o <l <m < 00.

The extended radix polynomials may be thought of as al-
gebraic objects representing numbers with fractional digits.
If we replace [] by £ in a radix polynomial, we evaluate
the polynomial in the point # = 3, and thereby determine
the element of the ring that the polynomial represents. This
procedure may be formalized by the following function de-
fined as the evaluation mapping

IP(BDII = P () la=p - ©)

The radix polynomials map into the ring R, and the ex-
tended radix polynomials map into the set of numbers de-
fined as the 8 — ary numbers:

Ag = {rf|lr € RN —00 < i < o0},
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Observe that ¢ here may be negative, so the S~ ary num-
bers may contain fractional parts.

Example: For the ring R = Z the set .45 constitutes the
binary numbers, Ag the octal numbers, and .44 the hex-
adecimal numbers. ]

Since the evaluation mapping |} - || is a homomorphism
from P[4, R] into Ag, arithmetic in the ring A4 can be per-
formed in the ring of (extended-) radix polynomials, while
preserving a correct representation of the elements in 4.

Note that the evaluation mapping is not an isomorphism,
since it is not necessarily one-to-one, for instance if one
number can be represented by more that one radix polyno-
mial.

The goal of our study is to determine criteria for which
radix polynomials written over a digit-set sufficiently rep-
resents a ring. By sufficiently we will understand that the
number system is capable of representing all the elements
of the ring, in the sense that for each element of the ring
there should exist at least one radix polynomial that repre-
sents this element.

Definition 2.3 Completeness
A digit set 3 is complete base (3 for the ring R iff

VreR:IP e Pr[,Z]:||P||=r

The definition of completeness has deliberately been de-
fined based on the radix polynomials and not on the ex-
tended radix polynomials, since in the latter case this would
lead to some obscure digit sets being complete, i.e. digit
sets where fractional digits are needed to represent the non-
fractional elements of Az. An example being R = Z with
B =2and & = {-2,0, 2}, here fractional digits are needed
to express the odd integers. On the other hand, if a digit set
¥ is complete base S for the ring R, it is also complete for
the 8 — ary numbers, in the following sense:

Vae Ag : AP € P[B, L] :: ||1P|| = a.

Let [z] denote ! the ideal I = {kz]k € R}, generated
by z in the ring R, then the set r + I is termed a co-set.
Furthermore let R /I denote the set of distinct co-sets, and
|R/I| the number of distinct co-sets. We will say that two
elements r1, 7y € R are congruent modulo I ifr1 —r9 € I,
and adopt the notation r; ro mod I. If a set S has
exactly one element from each distinct co-set in R /I we
will say that S is a complete residue system modulo I.

Example: For the ring of integers, the ideal generated
by 8 € Zis defined as [8] = {28 | = € Z} =
{...,~26,-8,0,8,283,.. .}, i.e. all the numbers divisible

!The notation [-] is thus used for two different purposes, but which
interpretation applies should be evident from the context.



by 8. An example of aco-setis3+ [8] = {...,3—28,3—
3,3,3+8,3+28,...}. Theset {0,1,...,|8] - 1}isa
complete residue system modulo [8], thus |Z/[5]| = |8]. O

Lemma 2.4 If ¥ is complete base 3 for the ring R, then 3
contains a complete residue system modulo ), and conse-

quently || > [R/[B]|.

Proof: Lete € R. Since X is complete there exists a
polynomial P € P;[8, X] of the form

P([B)) = dn[B]™ + -+ da[f] + do,d; €T

with || P|| = e. Now ||P|| = d¢ = e mod [f] thus the el-
ement e is represented by the residue class dg + {§] where
dy € Y. Consequently X contains a complete residue sys-
tem modulo [S]. o

The converse statement does not hold, e.g. the set & =
{0, 1} is not complete base # = 2 for the integers.

As previously noted, some digit-sets allow a single ring
element to be represented by numerous radix-polynomials,
these digit-sets are termed redundant.

Definition 2.5 A digitset ¥ is redundant base (3 for the ring
R iff
AP,Q € P[5, %] : P # QA[IP| =@l

and is non-redundant base 8 iff

VP,QEePB,I), P£Q: 1P| #]QIl.

Redundancy can complicate the determination of the
sign or the range of a number, but redundancy can also
be desirable, since by exploiting the redundancy, arithmetic
operations can be performed more efficiently, e.g. perform-
ing addition and subtraction with limited carry propagation.

The following lemma provides a condition for the pres-
ence of redundancy.

Lemma 2.6 If T is complete base 3 for the ring R, and
IZ| > |R/[B]] then X is redundant base .

Proof: Since |Z| > |R/[B]], there exists d1, dz € T such
that d; = dy mod [,3] thus 3k € R 1 dy = dy + kﬂ
Since ¥ is complete base 3, there exists a polynomial
P € Pz[3,%] : ||P|| = k, by forming P’ = P[f] +ds €
Pz{B, ] with || P/|| = kB + d; = d;, we conclude that &
is redundant base .

0

The difference between two congruent digits is a multi-
ple of the radix, if this multiple is in the digit-set or is rep-
resentable then the digit-set is redundant. Thus redundancy
can also occur in non-complete digit-sets. For instance if
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8 =2ad X = {0,1,2} we have 0 = 2 mod [2] and
2—0=1-p, thussince 1 € T we have 2[2]° and 1[2]'
expressing the same element of the ring Z, thus ¥ is redun-
dant. On the other hand X is not complete since no negative
integer can be expressed.

Lemma 2.7 If |X| > |R/[8]| = k1, and the number of ele-
ments from R that can be represented with radix polynomi-
als of degree at most n is bounded by ®,, < C - k% + O(1),
where kg < kq + 1, then ¥, is redundant base (3.

Proof: Let @, = {P € P;[3,%] | deg(P) < n} be the
set of radix polynomials of degree at most n. The number
of such polynomials is |Q,| = |**" > (k; + 1)»*1. The
ratio:

o, C-k+0()

|Qnl = (k1 + 1)+
has a limit value of zero as n tends towards infinity, thus

there will be more polynomials than elements to represent,
e.g. X is redundant base 5. a

Theorem 2.8 For the ring of integers (i.e. R = Z.), if |2} >
|2 /[B]| then % is redundant base f3.

Proof: Consider the ring of integers R = Z. For € Z
we have |Z/[B]] = |B] = k. A = max{|d| | d € £},
then the largest numerical value that can be represented by
a radix polynomial of degree at most n is given by

|ﬂ|n+1 -1
Bl-1 "

thus the number of integers that can be represented is
bounded by

max{|[|P|||| P € @n} < AZ], | = A

1"t —1
18] -1

As demonstrated the condition of Lemma 2.7 is satisfied,
thus [2] > |Z/|F]| implies that ¥ is redundant base 8. 0O

&, < 2A +1=C-|8]"+0(1) = C-k"+0(1).

A similar result can be proven for the ring of Gaussian
integers (see Lemma 4.17), in fact we have been unable to
find rings where |X| > |Z/[B]| does not imply that ¥ is
redundant, thus it seems likely that the following conjecture
holds.

Conjecture 2.9 If || > {R/[B]] then ¥ is redundant base
8.

Lemma 2.10 If there exists no digits d1,ds € X,dy # do
belonging to the same residue class modulo [f] (ie. |L| <
|R/1B]|) then T is non-redundant base 3 for the ring R.



Proof: Assume that P = L7"p;[6]' € P[B, L] and Q =
Liq:[B]* € P[B, X] with P # @ but || P|| = ||Q||- Let k be
the smallest index such that p; # ¢ then

=228 = | Skasl6l ||

and consequently px = g mod [], a contradiction. O

As stated above, the amount of redundancy is closely re-
lated to the size of the digit-set, so we define the redundancy
index of a digit-set ¥, as 7 = |X| — |R/[B]]-

From Lemma 2.4 we note that a negative redundancy in-
dex implies that ¥ can not be complete, and for rings satis-
fying Conjecture 2.9, that a positive index implies that the
digit-set is redundant, and finally from Lemma 2.10 that an
index less than or equal to zero implies that the digit set is
non-redundant.

If R is an integral domain, R is said to be ordered iff R
contains a non-empty subset R+ such that

l.Va,be Rt :a+bcRYAa-beR*.

2. Each element of R belongs to exactly one of the sets
R+, {0} orR~™ where R~ = {—z |z € R}.

The set Rt is termed the positive elements of R. As an ex-
ample one easily checks that the integers are ordered, since
they can be divided into three sets, namely Zt = {z € Z |
z>0}L{0}andZ-={z€Z |z < 0}.

Definition 2.11 If R is ordered, a digit-set ¥ is termed
semi-complete base 3 for the ring R, iff ¥ is complete base
B for the positive elements R, in the sense that

VreRt AP € PZ[B, 5] ||P|| = . “

If a digit-set is semi-complete for a ring R, then by defi-
nition all the positive element of the ring can be represented,
thus if an element of R is represented by its magnitude (i.e.
a positive element), along with a sign indicating whether the
element belongs to R*U{0} or R, then all elements of the
ring can be represented. Historically these representations
are referred to as sign-magnitude representations.

3 Determining a Radix Representation

This section covers the problem of determining a radix
representation of a ring element, given a base and a finite
digit-set. It will generally be assumed that the ring R is an
integral domain, and that the ring is normed, in the sense
that there exists anorm N : R — R. We will assume that
the norm satisfies Ya,b € R:

1. N(a+b) < N(a) + N(b)
2. N(ab) = N(a)N(b)
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3. N@=0—- a=0.

Furthermore we will assume that given a real number k£ €
R, there exists only a finite number of elements in R that
has at most norm k, i.e.

VE>20:{reR|N(r) <k} < .

If ¥ is a complete residue system modulo [3], for any
element r € R the following algorithm terminates after a
finite number of steps. The correctness follows from argu-
ments similar to those of the proof of Theorem 3.13.

Algorithm 3.12 DGT-Algorithm

Stimulus: A base B, A digit set &, that is a complete
residue system modulo 3, and an element r €

R.
Response: (OK = true and P = Yo d&;[B) €
Pz[B, X] with ||P|| = 7) or (OK = false).
Method: [0
Ty ~T
OK « true

whiler; # 0 and OK do
findd; € ¥ : dy =7, mod [8]
g1 — (m—di))/8
lel+41
OK «(Vj:0<j<lurj#m)
end

Example: Consider the ring of Gaussian integers Z[{] =
{a+1b | a,b € Z} wherei = /=T, and the number system
B =-1+4¢ % = {0,1}. Using the DGT-algorithm we will
determine a radix polynomial representing the Gaussian in-
teger r = rg = 3 + 44.

Since (3 +4i) —1 = (1 - 3i)fwehave 1 = 3 +
4i mod [f], thus dg = 1. Then r; = 2L, and the DGT-
algorithm proceeds as indicated in the following table, and
as depicted in Figure 1.

1 0 1 2 3 4 5 6
[ 344 1-30 24t 24i — 1 |
d 1 0 1 1 1 1 1

Thus the radix polynomial P = X5_qd;[-1+i) = 1[~1+
P+ 11+ + 11+ + 1 -1 +P+ 11+ +1 €
Pz[-1414,{0,1}]is arepresentationof r = 3 +44. O

Theorem 3.13 Let R be aring, and N : R — R a norm.
Let X be a digit-set containing a complete residue system
modulo (8], then % is complete base 8 for the ring R iff

dma.’c
VreR :N(r) < N =1 AP e Pz[B, 2] : ||P|l=r

N(p)
)

where dimoe = max{N(d) | d € X'}, for some ¥’ C ¥ and
%' is a complete residue system modulo [5].



Figure 1. DGT-algorithm example: Conversion of 3 + 4¢
into a radix polynomial from Pz[—1+1, {0, 1}]. The black
dots represents the ideal [—1 + 7.

Proof: If ¥ is complete then by definitionVr € R : IP €
Pz[8,%] : ||P|| = r, thus assume (5) holds. Choose any
r € R, and in analogy with the DGT-algorithm choose a
sequence of digits dy, di, da, . . ., from the remainders r =
7o, 71,72,..., such that d; € ¥/ and d; = r; mod [f] (
this is possible since ¥’ contains a complete residue system
modulo {8]). Form the subsequent remainders as:

T —d;

L= S Q)

Notice that § divides r; — d; since d; = r; mod [3] =
ri—d; €[B]=>3kER :r; —d; = kp.
From the properties of the norm N we deduce:

N ('rj ) + dmas

Nrs) < =315 "
thus
< N(ry) S N(rj)> —Ndﬁ)—l
N{r; 8
(T'J+1){ < Ni(%f-_l y N(r;) £ N{ﬂ)—l v

Since there exists only a finite number of elements of
norm at most N (rp), after a finite number of steps we arrive
at some remainder 7, where after

dma:l;
N(r;)

S—N—(ﬁj————l’for'jzk. (9)

By assumption there exists a polynomial P € Pz[3, X] with
|P|] = 7k, and by recursion (6) we have

P = 'I'kﬂk + dk_l,@k_l +...+d1f+dy

thus the polynomial P’ = P[8]* 4+ =51 d;[8] € Pz[8, E]
with value || P/|| = r is a representation of r, and ¥ is com-
plete base 3. u]

Theorem 3.13 together with the DGT-algorithm can be
used to establish the completeness of a digit-set.

Corollary 3.14 Let R be an ordered ring, with positive el-
ements Rt and norm N : R — R. Let ¥ be a digit-set
containing a complete residue system modulo [3], then T is
semi-complete iff

dma.’l:
VreRY :N(r) < A -1 2AP e Pz[B,X]: ||P|| =
where dipoy = max{N(d) | d € ¥'}, ¥ C T and &'
contains a complete residue system modulo {).

Example: LetR =Z,8> land X = {0,1,...,8—1}.
This digit set is not complete for the integers, since no nega-
tive number can be represented. On the other hand the inte-
gral domain Z, is an ordered domain, thus using R* = Z+
we conclude using Corollary (3.14) that X is semi-complete
since

-1

)

{r;rez+/\|r|g :1}:{0,1}g2. (10)

0

)
"

We will conclude this section with a study of the repre-
sentation of the integers, that is the ring R = Z. Although
this ring can be represented by a vast number of different
digit sets, we will consider only contiguous digit sets of the
form

E={rr+1,...,8~ 1,5}, wherer <Oands >0

since it seems that there is no profound advantage gained by
representing the integers by non contiguous digit sets.

Observation 3.15 Forthering R = Z, the set C = {r,r+
1,...,8 — 1,8} is a complete residue system modulo [f3], if
the cardinality of C satisfies |C|=s—r+1=|8] > L

Thus from Lemma 2.10 and Lemma 2.8 3 is non-redundant
base 8 if [£] = s — r + 1 < |8| and redundant base 3 if
Zl=s—-r+1>|8]

The absolute value is a norm on the integer ring. Em-
ploying this norm in connection with Theorem 3.13 it can
be checked whether a digit-set is complete, e.g. it can be
used in the proof of the following lemma.

Lemma 3.16 The digit-setY = {r,r+1,...5—1,s} with
—Bl<r <0< s<|fland B =5 —r+ 12> |Blis
complete if

(rs <OAB>0)orB <0 (11)

and non-complete otherwise.
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| r.s

Redundant

{ Digit-set [Z] Complete n ]
Standard r=0,s=]|8]-1 18] false B<O 0
Extended [ r=0,s=8>0 B+1 true false 1
Balanced | r = —s 254+1> (8] 28+41>|8] true >0
Min. Red. | - [8]<r<0<s<8] 18]+ 1 true (rs<OAB>0V(B<0) 1
Max.Red. | r=—|8|+1,s=|8|-1 2|8]-1 true true 8] -1

Table 1. Classification of digit-sets.

Historically the digit-sets presented in Table 1 have
proven to be useful {1, 10]. By applying Theorem 3.16 the
depicted properties can be derived. As demonstrated not all
of these digit sets are complete, but as is easily verified the
digit sets are all semi-complete.

It is important to note that the set of numbers repre-
sentable by extended polynomials over the integers is not
isomorphic to the rationals, in fact 45 C @, since not all
rationals are representable. For instance % ¢ Az. In gen-
eral 1/p where p is prime in Z and not equal to 3, can not
be represented by a finite extended polynomial over the in-
tegers.

Example: Classical Number Representations.

1. Binary. 8 = 2and ¥ = {0,1}. Standard digit set,
non-redundant and semi-complete.

. Nega-binary. # = —2and ¥ = {0, 1}. Standard digit
set, non-redundant and complete.

. Borrow-Save. 8 = 2and ¥ = {-1,0, 1}. Minimally
and maximally redundant digit set, complete.

. Carry-Save. § = 2and ¥ = {0, 1,2}. Extended and
minimally redundant digit set, semi-complete.

m|

4 Representing Complex Numbers

Using the formal framework developed in Sections 2 and
3, we shall investigate possible radix representations of the
complex numbers. We will attempt to do this using two dif-
ferent approaches, the first being by examining the Gaus-
sian integers, the second by examining a similar ring that
we will refer to as Eisenstein integers.

4.1 Representing the Gaussian Integers

The Gaussian integers is a lattice on the field of complex

numbers, defined as the set:
Z[i)={a+ib|a,beZ}, 12)

where 7 = 1/—1. It is a logical extension of the ring of
integers, and as such the number systems for the two rings
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exhibits many common characteristics. Designing a number
system for complex numbers, involves facing a larger num-
ber of decisions, than when designing a number system for
the integers, e.g. there is the possibility of choosing com-
plex or integer valued digit sets and a complex or integer
base.

Initially we will examine a more general ring of alge-
braic integers defined as:

ZIV-d) = {a+V~db| a,b € Z},

with d € Z,d > 1. Note that if d = 1 then this
ring is the ring of Gaussian integers. Furthermore ob-
serve that the function N : Z[/=d] - R defined as
N(a + +/—=db) = +/a?+ db? is a norm on Z[/—d], and
thattheset C = {r,r+1,..., s} is a complete residue sys-
tem modulo [#], 8 = v/—d and d > 2 if the cardinality of
C satisfies |C|=s—r+1=4d.

(13)

Lemma4.17 For the ring R = Z{v-d], d € Z,
if |12 > |Z[V=d]/ [,3]| then ¥ is redundant base

V=d.

d> 1,
:5-[-

Proof: The number of distinct residue classes is given by
|Z[v=d)/[6 + V=dv]| = 6% + dy? = k, as can be de-
rived from classsical results in algebraic number theory [11,
pages 62 and 121]. Let A = max{N(d) | d € L}, and
Q. be the set of radix polynomials in Pz [, X] with degree
at most n. The polynomials in @,, represent elements of
Z[/—d] that have norms bounded by:

Nt -1

max{N(IPI) | P € Qn} < ASSN(BY = A=

=0

Since the normof the base is N(8) = /62 + dv?, the num-
ber of elements that can be represented by radix polynomi-
als of degree at most n, is bounded by:

NEt -1
< C-(+dy)"+0(1) =C k" +0(1).

Thus by Lemma 2.7 the lemma is proven.



4.2 Complex Number Systems with an Integer
Radix

The straightforward approach for representing the ele-
ments of Z7], is to choose an integer base and a complex
digitset,e.g. € Zand X =%, + i%; = {d, + id; | d, €
Y,,d; € £;}. Itis evident that if 3, and 3; are complete
digit sets base g for the integers, then 3 = ¥, +43; is com-
plete base /3 for the Gaussian integers, furthermore if X, or
¥; is a redundant digit set base S for the integers, then X is
redundant base # for the Gaussian integers.

Example: The following base, digit set combinations are
examples of the large number of possible number systems
that can be constructed combining two integer digit sets.

1. Binary. 8 = 2and ¥ = {0,1} 4 ¢{0,1}. Non-
redundant and non-complete.

Borrow-save. 2 and X
i{—1,0,1}. Redundant and complete.

{-1,0,1} +

3. Carry-Borrow-save. 8 = 2and & = {0,1,2} +
i{-1,0, 1}. Redundant and non-complete but semi-
complete.

O

These number systems are constructed such that the real
and imaginary parts of a number are written using respec-
tively the real and imaginary parts of the digit set. This has
some obvious advantages since arithmetic can be based on
the conventional integer arithmetic algorithms [12]. Fur-
thermore converting from a conventional representation to
a complex representation and computing the complex con-
jugate are fairly simple tasks.

4.3 Imaginary Radix Number systems

Instead of using an integer radix, we could alternatively
use a purely imaginary radix.

Lemma 4.18 The digit set & = {r,r+1,...,5} C Z
is complete base B = +/—d, d € Z,d > 1 for the ring
Z[/—d] iff T is complete base —d for the integers.

If we allow a single extra digit immediately to the right
of the radix point in the definition of completeness, it is in
some cases possible to define number systems that are not
only complete for the ring Z[+/—d] but also for the Gaussian
integers.

Define the set of radix polynomials with one fractional
digit as

P—l[ﬂ) 2] = {P+P——1[ﬁ]_1 | P S 'PI[ﬂy E] /\p—l € 2}
(14)
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Definition 4.19 A digit set ¥ is fraction-complete base 3
forthe ring R iff

YreR AP € P1[B,X): ||Pll=r

Lemmad420 If 8 = v/—d, d € Z,d > 1 and ©
{r,r+1,...,8}, =d < r €0 < s £ d is complete base
B for Z[«/—d] then ¥ is fraction-complete base f3 for the
Gaussian integers iff /d € Z (i.e. d is of the form d = k?
forsomek € Z,[k| > 1).

Proof: Assume thatd = k?,k € N,k > 1. Since T con-
tains a complete residue system modulo k2, there exists a
set X = {kp, k(p+1),..., k(g - 1), kg}, =k <p < 0 <
g < ksuchthatY C X andtheset 3" = {p,...,q}isa
complete residue system modulo k.

Thus for any z € Zthereexistsb € Z,d' € ¥’ and d” € &/
such that z = bk — d" = bk — d'/k.

Since ¥ is complete base 8 for Z[v/—k?], for any a +
vV —k?b € Z[vV—k?] there exists a radix polynomial P €
Pz[B, L] such that || P}| = a + v/ —k?b.

Forming the polynomial P/ = P + d'[8]~! € P_4[B,%]
with value [|P'|| = [|P||+ &' A = a+ ki— $i = a+iz,
we conclude that % is fraction complete.

Assume /d ¢ Z, thus v/d is an irrational number. In
order to represent i = v/—d/+/d we will implicitly have to
represent 1/ Vvd using an extended radix polynomial with a
finite number of digits from P[—d, X, this is obviously not
possible since 1/+/d is an irrational number. (]

As in Section 3, we have classified a number of different
digit sets (see Table 2). From Theorem 3.16, Lemmas 4.18
and 4.20 we dertve the properties displayed in the Table.

Example: Imaginary Radix, Complex Number Represen-
tations.

1. Binary. 8 = V=2, % = {0,1} and R = Z[V=2).

Standard digit set, non-redundant and complete.

. Quarter-Imaginary. f = /=4 2¢ and ¥
{0,1,2,3}. Standard digit set, non-redundant, com-
plete and fraction-complete (this number system was
proposed by Knuth in {5]).

3. Borrow-Save (Quarter-Imaginary). § = 2iand X =
{-3,...,3}. Maximally redundant digit set, com-
plete, fraction-complete (addition in Redundant num-
ber systems of this form has been examined in [3]).

0
4.4 Complex Radix Number Systems

As suggested in [9], we could use a fully complex base,
eg. B =v+1,v # 0and § # 0. We will only here



[ Digitset | r,s [z Redundant 1 ]

Standard r=0,8s=d~-1 d false 0

Extended | r =0,s=d d+1 true 1

Balanced | r = —s 2s4+12>d 2s+1>d 2s+1-d>0

Min.Red. | —~d<r<0<s<d d+1 true 1

Max.Red. | r=—-d+1,s=d—-1 2d-1 true d-1

Table 2. Classification of digit-sets for Z[/~d].

examine number systems for which the digit set contains
exclusively integer digits. Observe that the set C = {r,r + 83,030
1,...,s} is acomplete residue system modulo 8 = y + 84, 4 e i g, e
yE€Z, by >1andé € {~1,1}if|C| = s—r+1 =42+ 1.
Lemma 4.21 The digit set & = {r,...,s}, —A? < r < N :
0<s<Aand|Z| =s—r+1> A% + 1 is complete RIEWE
base B = —A +6i, A > 1,6 € {—1,1} for the Gaussian e
integers.

Proof: The proof is a slight generalization of the one given
in [4]. O

Lemma 4.22 The Symmetric digit set ¥ = {-s,...,s},

[3;] < s < y%iscompletebase B = y+0i, y € Z,y| > 1
and 8 € {—1, 1} for the Gaussian integers.

Proof: If 3 = —A —1 then by Lemma 4.21 we have that &
is complete base 3, thus for any a + ib € Z[{] there exists a
radix polynomial P = %7_,d;[~A — i} € Pz[-A - i,
such that || P|| = a + .

If conversely 8§ = A-+1, then by forming the polynomial:

n
P'o= Y (=)= (-4~ i)Y
j=0
= Y di[A+i € Pr[A+4,X],
j=0
with value || P’|| = [|P|| = a+ b we conclude that ¥ is also

complete base 8 = A + i.

The case § = A — { is analogous to the above. ]

The set of elements that can be represented using the
standard digit set Z,¢4 = {0, 1, ..., A%} is a somewhat un-
symmetric set, whereas the set of elements that can be rep-
resented using a symmetric redundant digit set has a higher
degree of symmetry (see Figure 2).

Example: The following base, digit set combinations are
examples of complete number systems.
1. Binary. 8 = -1+ iand ¥ = {0, 1}. Standard digit
set Non-redundant and complete.
2. Borrow-save. # = 1 +iand ¥ = {-1,0,1}. Min-
imally and maximally redundant digit set, complete.
(]
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Figure 2. The Gaussian integers representable with radix
polynomials of degree 7, using the number systems (a):
B=-1+4%={0,1},(b): 8 =144 2% = {0,1},
And in (c) the elements representable using polynomials
of degree 5 and the redundant number system 8 = 1 + ¢,
¥ = {~1,0,1}. The elements that lie within the circles all
have norms less that dmaz /(N(8) — 1) = 1/(1/(2) — 1),
thus from Theorem 3.13 we immediately conclude that the
number systems (a) and (c) are complete.

S Representing Eisenstein Integers

This section is devoted to the study of the ring Z[p] =
{a+bp|abe Z}where p = e = =143 (je. the
third complex root of unity). This ring is a lattice on the
complex field, (see Figure 3) it is similar to the Gaussian
integers but as will be shown it exhibits some interesting
properties.

Note that both Z[i] and Zp] are algebraic integers, since
i and p are roots of the polynomials i2 + 1 = 0 respectively
p? +p+1 = 0, with rational coefficients. Furthermore, ob-
servethatthesetC = {0, 1, ..., |- 1}+p{0,1,...,|8]—-
1} is a complete residue system modulo [3] with 8 € Z and

181 > 1.

Lemma 5.23 For the ring Z[p), if |Z| > |Z[p]/[B]| then £
is redundant base B € Z, |3| > 1.

Proof: The proof is analogous to the one given for Lemma
4.17. ]

From Lemma 5.23, we conclude that if a digit set has
more than 32 digits the digit set is redundant.



P 1+p
pH O=1+p+H 1
P 1+p*

Figure 3. The ring Z[p] and the digit set © = {0,1} +
0, 13p + {0, 1}4%.

Theorem 5.24 The digit set ¥ = {0,1,...,|8] — 1} +
{0,1,...,|8] = 1}p is complete base § € Z for the ring
Zlplif B < -1.

Proof: Take any r = ap + a1p € Z[p]. In Section 3 it
was shown that the digitset , = {0,1,...,|8| — 1} was
complete base § < —1 for the integers. Thus there exists
polynomials Py, P; € Pz[8, X} representing the (possibly
negative) integers ag respectively a;. Forming the polyno-
mial P/ = Py+Pyp € P[B3, ]} with value || P/|| = ao+a1p
we conclude that ¥ is complete. 0O

As shown in [2] it can be beneficial to represent the ring
Z[p] using the redundant set W = {a + bp+ ¢cp? | a,b,c €
NuU {0}}.

Theorem 5.25 The digit set & = {0,1,...,8 — 1} +
{0,1,...,8—1}p+{0,1,...,8— 1}p? is complete base
B € Z with 8 > 1 for the set W (as well as Z[p)]).

Proof: Take any ag + a1p + ag p2 € W. As demonstrated
in Section 3, the digitset ¥, = {0,1,...,8 — 1} is semi-
complete base @ for the integers, in the sense that

VaeZ*:3IP e Pr[8, 5] = |Pll=a.  (15)

In particular there exists polynomials FPo, P, P, €
Pz[B,L.] representing ap, a; and as, thus forming the
polynomial P! = Py + Pyp + Pyp® € Pz[B, ¥] with value
IIP’]| = ag + a1p + azp?, we conclude that ¥ is complete
base /3 for W. [m]
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In particular the binary digitset ¥ = {0, 1} + {0, 1}p +
{0,1}p? is complete base 3 = 2. The digits of this num-
ber system are depicted in Figure 3. Note that apart from
the number system being redundant, the digit set in it self
contains redundancy, in the sense that there exists differ-
ent digits that represent the same element of the ring, e.g.
l+p+p2=0.

Since the § — ary numbers written over Z[i] respectively
W are not identical, conversion between elements from the
two rings can not be exact. This is due to the fact that since
p= b"@@ and 3@ is an irrational number, there does not
exists a finite extended radix polynomial in P[3, X] with

3
B € Zand ¥ C Z, that represents %

6 Conclusion

A summary of some properties of various low radix num-
ber systems for representing complex numbers have been
compiled in the form of Table 3.

The last two columns of the table deals with the effi-
ciency of representation, bpd is the number of bits needed
to encode the digits, and eff is a measure of efficiency of
the combined representation and digit encoding, defined as
follows:

[logs [{IPIl | P € Po,k—1[0, Z]} ]
k[log, |Z]] '

Thus eff is the asymptotic value of ratio between the num-
ber of bits needed to encode the values representable by
radix polynomials, and the number of bits needed to rep-
resent the digits of the polynomial, using a minimal binary
encoding of the digits.

In order to evaluate the relative merits of these number
systems, we will now to turn our attention to arithmetic
operations performed in these systems. If fast addition is
needed the system should be redundant. As for storage, if
digit serial arithmetic is an application, an encoding using
few bits per digit will be desirable, since this will minimize
module size and inter module wiring. Furthermore if a digit
set is closed under multiplication (i.e. the product of two ar-
bitrary digits is again a digit), performing division and mul-
tiplication on radix polynomials written over the digit-set
is simpler than if the digit set is not closed under multipli-
cation. In the latter case, when forming the product of a
single digit and a number, the individual digit by digit prod-
ucts will introduce a carry effect into the neighboring posi-
tions. As an example the binary integer system, e.g. 8 = 2
and ¥ = {0, 1}, forms a closed group under multiplication.
For the Gaussian integers, the number system 3 = 2 with
¥ = {0,1} + {0, 1} does not share this property, since for
instance (14)(—141¢) = ~2 ¢ I, thus T is not closed un-
der multiplication. But the systems (v/=2, {—1,0,1}) and
(£1 £14,{-1,0,1}) seems very promising.

eff = lim

k—o00



base digit set ring | compl. | redund. | closed | bpd | eff
2 {0, 1}+4{0, 1} Z[5) | false false false 2 1
2 {-1,0,1}+i{-1,0,1} Z[5} | true true false | 4 3
V=2 {0,1} | Z[v/=2] | 1true false true 1 1
V-2 {~1,0,1} | Z[/=2] | true true true 2 z
2i {0,1,2,3} Z[i] | true false false 2 1
2 {-2,...,2} Z[i) | true true false | 3 2
2 {-3,...,3} ZE) | true true false | 3 z
—1+14 {0,1} Z[i) | true false true 1 1
+14: {-1,0,1} Z{5} | true true true 2 3
-2 {0,1} + p{0, 1} Z[p] | true false false 2 1
2 | {0,1}+p{0,1}+p%*{0,1} Zp] | true true true 3 2

Table 3. Properties of low-radix systems for representing complex numbers

However performing digit by register multiplication,
as required in various multiplication and division algo-
rithms, might also be relatively easy if the partial prod-
ucts can be generated by a shifting process possibly com-
bined with negation. This is the reason why the modified
Booth recoding algorithm, e.g. recoding from the non re-
dundant system (4, {0, 1,2, 3}) into the redundant system
(4,{-2,1,0,1,2}), is popular in multiplier design. It can
be shown that with proper encoding, partial products can be
formed trivially in the system (2, {—2, 1,0, 1,2}) using
a simple shifting rule.
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