Pipelined Packet-Forwarding Floating Point: II. An Adder *

Asger Munk Nielsen'
Dept. of Mathematics and Computer Science
Odense University, Denmark

David W. Matula and C. N. Lyu
Dept. of Computer Science and Engineering
Southern Methodist University
Dallas, Texas

Guy Even?
Univ. des Saarlandes
66123 Saarbriicken, Germany

Abstract

This paper presents a floating point addition algorithm
and adder pipeline design employing a packet forward-
ing pipeline paradigm. The packet forwarding format and
the proposed algorithms constitute a new paradigm for
handling data hazards in deeply pipelined floating point
pipelines.

The addition algorithm employs a four stage execution
phase pipeline with each stage suitable for implementation
in a short clock period, assuming about fifteen logic levels
per cycle. The first two cycles are related to addition proper
and are the principal focus of this paper. The last two cy-
cles perform the rounding and was covered in the first pa-
per of this series [5]. The addition algorithm accepts one
operand in a standard binary floating point format at the
start of cycle one. Packets comprising the other operand
in our packet forwarding floating point format are input at
the start of cycles one and two. Output of the result oc-
curs in the packet format after cycles two and three with
the format representing a floating point value equal to the
standard IEEE 754 rounded result. The same result in a
standard binary floating point format is available after cy-
cle four for retirement to a register. The packet forwarding
result is thus available with an effective two cycle latency
for forwarding to the start of the adder pipeline or to a co-
operating multiplier pipeline accepting a packet forwarding
operand. The effective latency of the proposed design is two
cycles for successive dependent operations while preserving
IEEE 754 binary floating point compatibility.

*This work was supported in part by a grant from Cyrix Corporation
and by the Texas Advanced Technology Program Grant 003613013.

t Supported by grant no. 5.21,08.02 from the Danish Research Council.

}Supported by the North Atlantic Treaty Organization under a grant
awarded in 1996.

1063-6889/97 $10.00 © 1997 IEEE

148

1 Introduction

Background. Although simple by conception, floating
point addition is a surprisingly complex arithmetic oper-
ation, since it involves several time consuming dependent
operations. The conceptual steps of the algorithm are (see
Fig. 1 (a)): Compute the exponent difference, align the sig-
nificand with the smaller exponent by shifting it right by
an amount equal to the exponent difference, add or subtract
the significands, normalize the sum by shifting out leading
zeros to the left, and round the final result. As described,
the algorithm consists of two potentially full precision shifts
and three additions (exponent subtract, significand addition,
and rounding). Two of the three addition operations are
slow in the sense that they require a delay that scales loga-
rithmically with the precision of the number.

In order to minimize latency the addition unit can be di-
vided into two separate datapaths operating in parallel (see
Fig. 1 (b)), as investigated in numerous contributions to the
literature e.g. [4, 6, 7]. The left path operates under the
assumption that the exponents of the two operands are dif-
ferent by no more than a unit, i.e. |e; — ez] < 1. In this
case only a short prealignment shift of at most one posi-
tion is needed. Since the operands are close in range, the
difference (or sum if the operands have opposite signs) of
the aligned significands may be close to zero, and conse-
quently a potentially long normalization shift is required.
If, on the other hand, the exponent difference is “large”, i.e.
ler — ea} > 2, a potentially long prealignment shift is nec-
essary. It follows in this case that the post normalization
step is trivial, due to absence of significant cancellation.
Related Work. This paper relies on results presented in
the following two papers {2, 5]. In the paper of Daumas
and Matula [2] recodings of redundant numbers are defined
and investigated. These definitions and properties play a
crucial role in our addition algorithm since they enable us

ley -e 51 lg, -¢,122
Exponent Exponent Exponent
Subtract predict Subtract
Alignment Significand Alignment
Shift Add Shift
Significand N i Significand
Add ormalize Add
Normalize Round Round
Round \ Select /

(a) ®

Figure 1. Traditional floating point addition al-
gorithms

to avoid compressing the sum into a non-redundant num-
ber, and allow for obtaining a short latency. The first pa-
per of this series [5] presents a packet forwarding floating
point format, sets the pipelining scheme with packet for-
warding, and presents a design of a rounding unit for such
a micro-architecture. In our paper we present only the first
two pipeline stages of the adder; the last two stages of the
pipeline are the rounding unit presented in [S].

Contribution. Our goal is to design a floating-point adder
suitable for implementation with a short clock period with
an effective latency of two clock cycles for successive de-
pendent additions. To meet this goal, we rearrange and
avoid non essential 2-1 compression steps of traditional
floating point addition implementations. This is achieved
by using the packet forwarding floating point format [5]. A
preliminary exploration of this format was described in [6].
Since one of the inputs of the adder can be represented in
redundant format, there is no need to perform a 2-1 com-
pression when the result is forwarded. Hence, the only 2-1
compression step in the addition algorithm is deferred to
the latter portion of the rounding phase where it contributes
no delay to the data forwarding process. Only 4-2 and 3-2
redundant additions are employed before the rounding step
(see Fig. 2). While the value of the forwarded redundant
result equals the value required by the IEEE Standard, the

149

output of the rounding unit complies with the IEEE Stan-
dard also with regard to the format, and therefore, can be
retired to a register.

e -e >l
-Igey-e g4 g -ey>4
Exponent Exponent
Predict Subtract
Red. Add Alignment
Shift
Red. Add I
| [Red. Add |
Normalize
Red. Add
\ Select /
Round

Figure 2. Proposed floating point addition al-
gorithm

Overview. In Sec. 2 we briefly review the results of Dau-
mas and Matula [2] on recoding and partial compression
that we rely on. We define the packet forwarding format
and refer the reader to paper [5] for further information on
the properties of the representation as well as the rounder
design.

The adder design for small exponent differences is dis-
cussed in Sec. 3. The execution is logically separated
into two cases depending on whether the input carry-round
packet makes a significant contribution to the post allign-
ment normalization shift length. When the carry-round
packet is not significant to the shift length, our principal
result is the following. Employing the standard operand sig-
nificand and the principal part of the packet format operand
we can determine the post alignment normalization shift to
within one of two final positions in the first cycle. When the
carry-round packet 1is significant to the shift length, our al-
gorithm yields the correct output comprising at most seven
digits properly aligned by the alternative logic case.

The adder datapath for large exponent differences is de-
scribed in Sec. 4. We show that only the principal part
(or standard format input) needs to be aligned by a vari-

able length right shift. The late arriving carry-round packet
can be directed to one of just two locations to complete the
addition. Summary conclusions are given in Section 5.

2 Floating Point Formats, Recodings and
Partial Compression

In this section we provide a brief description of recoding
and partial compression results based on specific floating
point formats that will be used herein. The reader is referred
to the paper of Daumas and Matula [2] for more details and
proofs.

A standard double extended IEEE 754 floating point
operand with unique factorization

a=(-1)"2°f M
as specified in [1], herein consists of (see Fig. 3 (a)):
e sisasignbit,
e ¢ is encoded in an exponent field of 15 bits,

o f = l.ajaz---as3 with a; € {0,1} is a normalized
binary significand with p = 64 bit precision.

Sign Exponent [94]41192] - Jea]
Significand [1]4] 4] [0 161 [t [}
(a)
Sign Exponent [94]43]%2] e]
Carry-Round Packet
AN ACAL
Principal Part ARG AR

(b)

Figure 3. Floating point operand formats. (a)
Standard IEEE 754 operand format. (b) Packet
forwarding operand format.

Our packet forwarding floating point operands (see Fig.
3 (b)) have a non unique factorization

b= (—1)"2°(f + c27%) @

with the same sign and exponent format as a standard
double extended precision operand. The significand fac-
tor (f + ¢27%%) in (2) has the prenormalized range 1 <
f + ¢2793% < 4 and is partitioned into two packets [5]:

o f = 1bo.byby .- bgy with b; € {'—l, 0, 1}, is a
64 digit borrow-save encoded digit string termed the
principal part packet.

® C = cg9Cg3, termed the carry-round packet, is given
by a two digit borrow-save digit string with ¢ =
”ngCegH € {—-2, -1,0,1, 2}.

Herein, a k-digit borrow-save encoded digit string a =
Qk—-1ak-9 -+ - ag denotes a 2 x k bit array where the digit a;
is encoded by a positive bit ¢} € {0, 1} and a negative bit
a; € {0,1} with digit value a; = a} — a] € {~1,0,1}.
Definition 1 The P-recoding of the k-bit borrow-save en-
coded digit string a = ag..1ax_3 - ag denoted by b =
P(a) is the k + 1 digit borrow-save encoded digit string
b = biby_1 - - - by defined by

b;-"+1:a?’-not(a,-')fori:l,...,k and bF =0
b;‘:a;"@a;'fori:O,...,k—l and b, =0

The N -recoding of a, denoted by ¢ = N{a), is the k-bit
borrow-save encoded digit string ¢ = cxcp—1 . . . co, defined
by

c;":af@a;'forizo,...,k—l and c,j':O
c;‘_l_l:not(a;")~a,~_fori=1,...,k and ¢; =0

The effect of a P-recoding is to selectively pass a positive
carry out of each digit position and absorb it in the position
one place higher. Similarly N -recodings selectively pass a
negative carry (borrow) out of each position to be immedi-
ately absorbed. The reader can easily verify that the values
denoted by the digit strings @, b = P(a) and ¢ = N (a) are
all equal, i.c. that b1 ;2" = Yh 4;2¢ = S8 ;2.

Given a radix polynomial 3., d;[2]?, the value ob-
tained by “chopping” off leading digits and inserting a radix
point immediately to the left of the “tail”, is the fraction
value at position j. It is denoted in terms of the digit string
dmdm—1 -+ - dg as follows:

fildm-de) = ||0.dj1dj_g---de|

j-1
> di2i.
i=L

The borrow-save encoded digit string d,,dp1 - - - ds 1S
said to have fraction values in the range (c,d) for —1 <
¢ <0<d<1whenevere < fi{dmdm—1---de) < dfor
alll41 < j < m+1. The widthof (¢, d) is d — ¢. Daumas
and Matula [2] prove that if a borrow-save encoded digit
string has fraction values in the range (¢, d), then the P-
carry recoding has fraction values in the range (§ — %, —g—),
and the N-carry recoding has fraction values in the range
(¢,4¢ + 1). The compound P N-recoding P(N(d)) then

Il

150

has fraction values in the range (§ — 3,4 + 1) C (-3, 3).

Successive recodings can reduce the fraction range of an in-
ternal borrow-save encoded digit string from a width of two
tol %, 1;11-, This reduction is termed partial compression.

The partial compression obtained by P and N-recoding
can be extended to redundant adders as follows.

1. Consider a 3-2 adder as having for input a 3 x k bit
array where each of the k digits are encoded by 3 bits,
two positive bits and one negative bit. Let the fraction
range be (¢, d) with ~1 < ¢ < 0 < d < 2. Then the
output fraction range is (§ 14

213
. Consider a 4-2 adder as having for inputs a 4 x k
bit array where each of the k digits is encoded by 4
bits, two of positive and two of negative weight. If
the fraction range of the input digits is (¢, d), with
—2 < ¢ €0 < d < 2, then the output fraction range
is(¢ -1, 44 %)

4 24
3 Adder Datapath: Small Exponent Differ-
ence

In this section we describe the addition algorithm for the
case that the exponent difference is small. As mentioned in
the introduction , this case includes the case that extensive
cancellation takes place. We have adjusted the exact range
of differences to be —1 < e; — e < 4. This adjustment
turns out to simplify significantly the algorithm for the case
of a large exponent difference at a modest increased cost for
the case of a small exponent difference.

Notation. Let (s1,e1, fi) denote the sign-bit, exponent,
and significand of the operand given in the IEEE Stan-
dard’s format. Let (s2,es, fi, f5, ¢, ¢™) denote the sec-
ond operand given in the packet forwarding format, with
I, £ ,ct, ¢~ identifying the corresponding positive and
negative bit strings of the borrow-save encoded digit strings
fand c.

Description. Figure 4 depicts the addition algorithm oper-
ating under the assumption that —1 < e; — ey < 4. Since
the exponent difference is small, it suffices to consider only
the 3 LSB’s of the exponents in order to compute the differ-
ence e — ey. This difference determines the alignment shift
of f1. The extension of the small exponent difference range
from [~1,+1] to [~1,4] makes the alignment shift some-
what costlier. However, the algorithm for the large exponent
difference is greatly simplified, as discussed in Sec. 4. Note
that only f; is shifted, and that “traditional operand swap-
ping” is not performed. The reason for this is that the signif-
icand of the second operand is represented as a borrow-save
number and has twice as many bits as fi. Restricting the
alignment shift to f saves hardware.

While the significand f is being aligned, the redundant
significand is negated, if necessary, and recoded. Note,

151

fl f;f;'
a.JfJ(

2]

69 65 65
70 k70

PN-recoder
L) Y
l 64
. t 7 y71
LZA ‘ 2te-

k

U
V

et

Exponent
predict

t .

-
reduced 4-2 Add ’

=

&

7

-

principul part

Sinal adjust I

11

loworder part

o

' Figure 4. Adder datapath for —1 < e; —e; < 4.

negating a borrow-save number amounts to swapping the
positive and negative weight vectors. The recoded redun-
dant significand and the aligned non-redundant significand
are then added using a 3-2 adder. The sum, represented as
a borrow-save number, is recoded and passed on to a lead-
ing zero estimator and through to the second cycle of the
algorithm,

Since we are dealing with the case of small exponent
difference, a non-zero sum may be very close to zero. How-
ever, the rounding unit requires that the output non zero sig-
nificand belong to the range (1,4), and hence, a normaliza-
tion shift may be required. A naive approach is to compress
the sum to a non-redundant representation, count the num-
ber of leading zeros, and perform a left shift. We avoid this
time-consuming 2-1 compression as follows.

First, the 64 most-significant positive and negative bits of
the recoded borrow-save encoded sum are pairwise XORed.
The resulting 64-bit binary string is fed to a leading-zeros
counter, LZ A [3]. Hence, the number of leading zeros in
the representation of the sum using borrow-save digits de-
termines the shift amount. Note, that the borrow-save en-
coding of the sum might have a large number of leading
insignificant one’s, i.e. a plus one followed by a string of
minus ones or conversely a minus one followed by a string
of plus ones. The recodings have a key role in restricting
this adverse situation so that the shifted sum belongs to one
of two possible binades, as formalized in Lemma 2. This
completes the description of the first clock cycle.

In the second clock cycle, we first add the carry-round
packet, denoted by ¢, to the sum, denoted by g. This is
done in two steps: First, the carry-round packet is negated,
if necessary, just as the redundant significand was. Then, a
redundant addition takes place. Since the redundant signif-
icand is not shifted, the position of the carry-round packet
is fixed. Hence, the redundant addition simply computes:
h =g+ (=1)**®%2 .¢.27%3. Claim 3 shows that this re-
dundant addition can be performed by a redundant adder of
4 digits such that this addition does not generate a carry that
changes the 64 most significant digits of g.

After the carry-round packet has been added to the sum,
the normalization shift takes place. The leading-zeros com-
putation outputs two signals: “k < 63” - a flag that sig-
nals whether there is a non-zero digit among the 64 most-
significant digits of ¢; and “k” - the number of leading zeros
in g in case there is a non-zero digit among the 64 most-
significant digits of g. The normalization is split into two
paths, depending on the signal & < 63. If k¥ < 63, then
a normalization shift takes place, and the most-significant
digit of the shifted sum is guaranteed to be non-zero. If
k > 63, then out of the 71 digits of the sum, the 64 most-
significant digits are zeros. The remaining 7 digits are nor-
malized and 64 zeros are padded to the right.

After the correct path has been selected according to the
signal k < 63, a final adjustment takes place. This adjust-
ment performs the following tasks: (a) detect the sign of the
sumn and then negate and shift the sum accordingly so that
the principal part is within the range (1, 4), as prescribed
by Claim 4; and (b) adjust the two most significant digits of
the sum so that the representation complies with the packet
forwarding format.

This completes the description of the second clock cycle.
The sign-bit, exponent, and principal part packet are ready
to be forwarded as well as input to the rounding unit, as
described in [5]. Note, the description of the exponent and
sign-bit data-paths is omitted.

Correctness. The following lemma demonstrates the ad-
vantage of using carry recodings for partial compression.
The lemma shows that the recodings nearly eliminate the

152

range ambiguity caused by leading insignificant ones (and
minus ones) in the borrow-save encoding of the sum. This
lemma is instrumental in reducing the problem of comput-
ing the normalization shift amount to a problem of comput-
ing the number of leading zeros in a binary string.

Lemma 2 Suppose the sum g is non-zero and let 0 - o - ¢
denote the rvepresentation of the recoded sum, where o €
{-1,1} andt € {-1,0,1}?=*~1. Then o.t (where the dot
between o and t is a radix point) is in the range (%, %) for
oc=1and(-3,~Z) foroc =-1.

Proof: Since the borrow-save number fz = f;' - fa,
with fraction range (—1, 1), is P N-recoded and added with
a 3-2 adder to the binary number f; with fraction range
[0, 1), the output of the second PN-recoder g = g+ — g~
has fraction range (— 23,).

Denote the fraction range of the borrow save number 0 -

(14¢,14d)N(2¢, 2d). Substituting (c,d) = (—23,) we
get 1.t € (35, 2). Similarly we deduce 1.t € (— %
)

The sum g that is input to the second pipeline stage con-
sists of 71 borrow-save digits, 7 of which are to the left
of the radix point and 64 of which are to the right of the
radix point. A more detailed look shows that the two least
significant digits (i.e. ¢[63 : 64]) originate uninterrupted
from the aligned non-redundant significand, and therefore,
963 : 64] € {0,1}2.

The following claim shows that the (possibly negated)
carry-round packet can be added with the 4 least significant
digits of the sum g without generating a carry.

Claim 3 Let g[61 64] denote the 4 least-significant
borrow-save digits of the redundant sum that are input to
the second pipeline stage, and let ¢[63 : 62] denote the 2
borrow-save digits of the carry round packet. Then,

3
—12<) gl64 -] 2 +4 - ¢[62] +2 - c[63] < 11

i=0

Proof: Define: A = 2¢[63] + ¢[64], B = 2¢[61] + ¢[62],
and C = 2¢[62] + ¢[63]. Since A originates from the
non-redundant significand fi, it follows that) < A < 3.
The PN -recoding performed just before the end of the
first clock cycle, insures that —2 < B < 1. (Note that
this recoding starts at position 62.) Finally, by definition,
—2 < C <2 Hence, -12< A+4B+2C <11 and the
claim follows. O

As stated above, the sum g has 7 digits to the left of the
radix point and 64 digits to the right of the radix point. Let
g be of the form 0% - ¢ - ¢, as in Lemma 2. The normal-
ization shift shifts h by k positions to the left and positions

the radix point between o and ¢{. The combined effect of
the shift and the repositioning of the radix point amounts
to scaling the fraction by 2¥ €. Thus, the value output by
the normalization shiftis A = (g + ¢ - 27%%) . 2¥=6. The
next claim shows that, even after the addition of the carry
round packet, the normalized sum belongs to a range of two
binades.

Claim 4 If k < 63, then normalized sum h satisfies:
1l Ifoc=1,thenh¢€ (%, 1).
2. Ifo =1, thenh € (-2,-%).

Proof: If o = 1, then Lemma 2 implies that

9 7

2! 9k—69
hoe (zpgte?
Similarly, If & = —1, then

Our assumption that & < 63 implies that

L

k—69
2% < 5

Je-

and the claim follows.]

Claim 4 implies that if the partially normalized fraction
is positive, then by a shift of two positions to the left, the
normalized sum is shifted to the range (1, 4). If the sum is
negative, then by a negation and a shift by one position to
the left, the normalized sum is shifted to the range (1,4).
Thus, in the final adjustment stage, depending on the sign,
we either negate the bits of the redundant significand and do
a hardwired left shift, or perform a hardwired left shift by
two positions.

4 Adder Datapath: Large Exponent Differ-
ence

In this section we describe the addition algorithm for the
case that the exponent difference is large. This case is char-
acterized by a large alignment shift and a small normal-
ization shift (at most one position). In our algorithm, the
alignment shift takes place during the first cycle although
the carry round packet is input only at the beginning of the
second cycle. A variable shifting of the carry-round packet
is avoided by the choice of the threshold that separates be-
tween the case of a small exponent difference and a large
exponent difference. Thus, the sign of the exponent differ-
ence eq — eg determines the alignment of the late arriving
carry-round packet.

153

Lty
sV 65

.\‘I .Yz

9

Ly

Exponent
Subtract

Expsign

: Swap ;
J
i !
B K
Expmag high order Expuay_ low order
Alignment generator

2

§
5 cond. neg.| +—

2

42 Add J [reduced 4-2 Add l

Sfinal adjust

i1

loworder part

h»

Y69

l reduced
69 Jr69

.
% %

principal part

Figure 5. Adder datapath for eo —e; > 2 or
€1 — €2 Z 5.

Description. Figure 5 depicts the addition algorithm oper-
ating under the assumption thate; —e; > bores —e; > 2.
The first cycle begins with a full subtraction of the expo-
nents. The magnitude of the difference ¢; — eq is limited by
66, since alignment shifts of 66 positions or more yield the
same rounded result. Meanwhile, the redundant significand
is negated, if necessary, and P N-recoded. The sign of the
exponent difference controls which significand is aligned.
Note, that the output of the Swap box is a borrow-save num-
ber, and that encoding the non-redundant significand as a
borrow-save number is done by putting zeros in the nega-
tive vector. The significand with the larger exponent is sent
to the second cycle. The significand with the smaller ex-
ponent is sent to two boxes: (a) The high order alignment
box is a shifter capable of shifting a 66-digit borrow-save
number by 2 to 66 positions to the right. Bits shifted out on
the right can be discarded as the low order generator com-
putes the sticky digit. (b) The low order generator computes
the bit string 064~ Fepmeg . 1 Ezpmag and performs a bitwise
AND between this string and the 64 most-significant dig-
its of the significand (note that the P N -recoding introduces
an additional digit to the left of the radix point). This pro-

duces the bits of the significand that would be shifted be-
yond bit position 65 and participate only in the generation
of the sticky digitin the rounder. Hence, justifying these bits
to the right does not change the sticky-digit. The advantage
of this approach is that the carry-round packet needs to be
placed only in one of two positions, depending on the sign
of ey — ey, as depicted in Fig. 6. This completes the descrip-
tion of the first clock cycle.

——

60 61 62 63 64 65

—

66 67 68

high order part low order pant

210 J 2 F e

CIACACACAL oo o ofiff] o
ARARAE 0oo oo
T e s falR]
(a)
high order pant s | i low order pan
200 1 23 e 60 61 62 63 64 65[66 67 68 - vrvrvresrisssmrmareons 128129

T o T [)
()
high order part e | et low order pant
280 1 23 e 60 61 62 63 64 65(66 67 68 ~--rrervseeorcrsne 138129
AL
A
[I e s Pafe @i o 0 o e 08 600
(<)
high order part R aand Ry low arder part
20 1 23 e 60 61 62 63 64 65[66 67 68 «~-rorermrissessriiinse - 128429

(5[5
.. FACACA
Yol s %2

(d)

el

[8a % %o/ [42 %3]

Figure 6. (a) alignment when ¢e¢; = ey + 5
(b) alignment when ¢; > e, + 66; (c) align-
ment when ¢; = ¢y + 2; (d) alighment when
eg > ey + 66;

At the beginning of the second cycle, the high-order
part of the shifted operand and the non-shifted operand are
added by a 4-2 adder which outputs the sum g. Meanwhile,
the carry-round packet, which is input at the beginning of
the second clock cycle, is negated if necessary, just as the
redundant significand was. The sign of the exponent differ-
ence determines whether the carry-round packet is added to

154

the high order part or to the low order part, as depicted in
Fig. 6. If e; > ey, then then the redundant fraction fo was
shifted and the carry-round packet is added in fixed posi-
tions 128 and 129, If e5 > e1, then the non-redundant frac-
tion f; was shifted and the carry-round packet is added in
fixed positions 62 and 63. Since we have separated the com-
putation into high and low order parts, care should be taken,
so that the addition of the carry-round packet modifies only
one part. In particular, when the carry-round packet is added
to the low order part, a ripple effect is not allowed, Claims 5
and 6 show that the addition of the carry-round packet can
be performed by constant width 4-2 adders.

After the carry-round packet is added either to the high
order part or to the low order part, an adjustment takes
place. The large exponent difference implies that the mag-
nitude of the redundant sum is in the range (3, 43). There-
fore, the adjustment consists of: (a) sign detection and nega-
tion if necessary; (b) a shift by at most one position to the
left or to the right so that the redundant sum is in the range
(1,4); and (c) adjustment of the digits to the left of the radix
point so that the representation complies with the packet
forwarding format.

This completes the description of the second clock cycle.
The sign-bit, exponent, and principal part packet are ready
to be forwarded as well as input to the rounding unit, as
described in [5]. Note, that the description of the exponent
and sign-bit data-paths is omitted.

Correctness. The following claim shows that a 3-digit
adder suffices for adding the carry-round packet with the
low-order part when e; > es.

Claim § Let csace3 denote the borrow-save digits of the
carry-round packet, Consider the borrow-save significand
f5 o= bLobl 1 b4.b)bY - - - by obtained by possibly negat-
ing the redundant significand f, and performing a PN -
recoding. Then, the sum of bg, b, and ceaces can be repre-
sented by 3 digits, namely,

—T<4 by +2 bga+2-contcea < T

Proof: From [2], it follows that —2 < 2+ b + by < 1.
The carry-round packet is in the range [~2, 2], and the claim
follows.]

The following claim shows that a 4-digit adder suffices
for adding the carry-round packet with the high-order part
when e3 > 3. The proof relies on the compression proper-
ties of the 4-2 adder that adds the significands.

Claim 6 Let cgocea denote the borrow-save digits of the
carry-round packet. Consider the borrow-save number
g = g-39—-29-190.9192 - - - §e5 computed by the 4-2 adder
in Fig. 5. If the adder is implemented by cascading two 3-
2 adders, then the sum of geoge19s2ges and cgoces can be
represented by 4 digits, namely,

~15 < 8 9604961+ 2 goo+ gez+ 2 cga + ez < 15

Proof: The fraction range of the adder's input is
[-2,13) = [0,1) + (-3, 1), because the redundant sig-
nificand is P N-recoded. Therefore, the fraction range of
the output of the adder is [~ 3}, £). The carry-round packet
is in the range [~2,2], and hence, the fraction range of

0.00cg2ce3 is [~ 3, £]. The sum of these fraction ranges is
[—42,1), and the claim follows.

88
0

5 Summary and Conclusion

In this paper we have presented an addition algorithm
according to the packet forwarding pipeline paradigm, The
adder accepts one operand in the standard format and the
second operand in a packet forwarding floating point for-
mat. The sum is output in the packet forwarding floating
point format starting at the end of the second cycle, as well
as in the standard format at the end of the fourth cycle. This
algorithm rearranges and avoids non essential 2-1 compres-
sion steps of the traditional floating point addition imple-
mentations. This enables outputting of a nearly complete
significand termed the principal part packet at the end of
the second cycle. The rounding, which takes place during
the third and fourth cycles [5], produces the carry-round
packer at the end of the third cycle, and the standard format
sum at the end of the fourth ¢ycle, The value encoded by the
packet forwarding floating point format output is equivalent
to the standard IEEE 754 rounded output. By these means
only one 2-1 compression is performed, and it is deferred to
the latter portion of the rounding phase where it contributes
no delay to the data forwarding process. All the additions
in the first two cycles are 4-2 and 3-2 redundant additions.

Note that this procedure allows a sequence of additions
to be fused without intermediate 2-1 additions. Only the fi-
nal accumulation is subjected to a 2-1 addition for forward-
ing to a register. Furthermore, this accumulation agrees
with the IEEE Standard sum where every intermediate re-
sult was appropriately rounded.

The algorithm employs recodings for obtaining partial
compression of the redundant numbers [2]. The cost of
each recoding is equivalent to that of passing every borrow-
save digit through just ane half-adder. Most of the recod-
ings do not lie on the critical paths. The partial compres-
sion obtained by recoding is used in several places in the
algorithm, among them: avoiding full compression before
counting leading zeros and simplifying the addition of the
late-arriving carry-round packet.

The algorithm introduces a new threshold criteria for dis-
tinguishing between the cases of a small and a large expo-
nent difference. This criteria enables us to avoid shifting the
carry-round packet by a variable amount in the large expo-
nent difference datapath. Thus, the late arriving carry-round
packet in the large exponent difference datapath is directed
to one of two locations without variable shift delay and de-

155

pending on only the sign of the exponent difference.

References

[1] “IEEE Standard for Binary Floating-Point Arith-
metic”; ANSI/IEEE std 754-1985, New York, The
Inst. of Electrical and Electronics Engineers, Inc, Aug,
1985.

[2] Daumas, M,, Matula, D. W.: “Recoders for Par-
tial Compression and Rounding”; Technical Report
RR97-01, Ecole Normale Superieure de Lyon, LIP,

available at http://www.ens-lyon.fr/LIP.

(3] Dadda, L., Piuri, V., Salice, F: “Leading Zero De-
tectors™; In Proc. of 2nd Intern. Conf. on Massively
Parallel Computing Systems. Ischia, Italy, May 6-9,

1996, 409416,

[4] Farmwald, M. P: “On the Design of High-
Performance Digital Arithmetic Units”; PhD thesis,

Stanford University, Aug. 1981,

(5] Matula, D. W., Nielsen, A. M.; “Pipelined Packet-
Forwarding Floating Point: I. Foundations and a

Rounder”; these Proceedings.

[6] Lyu, C-N.. “Micro-Architecture of a Pipelined
Floating-Point Execution Unit”; PhD thesis, SMU,

Dallas, Texas, Dec. 1995.

[7] Quach, N. T., Flynn, M. J.: “An improved Floating
Point Addition Algorithm™; Technical Report, Stan-
ford University, Jun. 1990.

