The SNAP Project: Design of Floating Point Arithmetic Units

Stuart F. Oberman, Hesham Al-Twaijry, and Michael J. Flynn

Computer Systems Laboratory
Stanford University
Stanford, CA 94305
{oberman, hesham, flynn} @umunhum.stanford.edu

Abstract

In recent years computer applications have increased
in their computational complexity. The industry-wide us-
age of performance benchmarks, such as SPECmarks, and
the popularity of 3D graphics applications forces proces-
sor designers to pay particular attention to implementation
of the floating point unit, or FPU. This paper presents re-
sults of the Stanford subnanosecond arithmetic processor
(SNAP) research effort in the design of hardware for float-
ing point addition, multiplication and division. We show
that one cycle FP addition is achievable 32% of the time
using a variable latency algorithm. For multiplication, a bi-
nary tree is often inferior to a Wallace-tree designed using
an algorithmic layout approach for contemporary feature
sizes (0.3um). Further, in most cases two-bit Booth encod-
ing of the multiplier is preferable to non-Booth encoding
for partial product generation. It appears that for division,
optimum area-performance is achieved using functional it-
eration, and we present two techniques to further reduce
average division latency.

1 Introduction

A floating point number representation can simultane-
ously provide a large range of numbers and a high degree
of precision. As a result, a portion of modern microproces-
sors is often dedicated to hardware for floating point com-
putation. Previously, silicon area constraints have limited
the complexity of the floating point unit, or FPU. Advances
in integrated circuit fabrication technology have resulted
in both smaller feature sizes and increased die areas. To-
gether, these trends have provided a larger transistor budget
to the processor designer. It has therefore become possible
to implement more sophisticated arithmetic algorithms to
achieve higher FPU performance.

1063-6889/97 $10.00 © 1997 IEEE

The IEEE 754 floating point standard [1] is the most
common floating point representation used in modern mi-
croprocessors. It dictates the precisions, accuracy, and
arithmetic operations that must be implemented in con-
forming processors. The required precisions of the signif-
icands include single precision (24 bits) and double preci-
sion (53 bits), and support for double extended precision
(> 64 bits) is recommended. The arithmetic operations
include addition, multiplication, and division. The Stan-
ford subnanosecond arithmetic processor (SNAP) research
effort has studied the design of algorithms and implementa-
tions for high performance IEEE conforming floating point
adders, multipliers, and dividers.

1.1 Design Space

The performance and area of a functional unit depend
upon circuit style, logic implementation, and choice of algo-
rithms. The space of current circuit styles ranges from fully-
static CMOS designs to hand-optimized self-timed dynamic
circuits. Logic design styles range from automaticaily-
synthesized random logic to custom, hand-selected gates.
We investigate performance and area tradeoffs at all levels.

The three primary parameters in FP functional unit de-
sign are latency, cycle time, and area. The functional unit
latency is the time required to complete a computation, typ-
ically measured in machine cycles. Designs can be either
Fixed Latency (FL) or Variable Latency (VL) [S1]. Ina FL
design, each step of the computation completes in lock-step
with a system clock. Further, any given operation completes
after a fixed quantity of cycles. The cycle time in a FL de-
sign is the maximum time between the input of operands
from registers and the latching of new results into the next
set of registers. In contrast, VL designs complete after a
variable quantity of cycles. This allows a result to be re-
turned possibly sooner than the maximum latency, reducing
the average latency. They achieve their variability through
either the choice of algorithm (VLA) or choice of circuit de-

156

sign (VLC). VLA designs operate in synchronization with a
system clock. However, the total number of cycles required
to complete the operation varies depending upon other fac-
tors, such as the actual values of the input operands. VL.C
designs need not have any internal synchronization with the
rest of the system. Instead, such a design accepts new inputs
at one time, and it produces results sometime later, indepen-
dent of the system clock.

1.2 Organization

The following sections detail performance and area
tradeoffs for floating point unit design. Section 2 is a case
study of a VLA technique for increasing the performance of
FP addition. Section 3 investigates how multiplication per-
formance and area vary with technology. Specifically, the
use of different partial product generating algorithms are
analyzed, as are the choices for partial product reduction.
Section 4 investigates the performance of floating point di-
vision. Section 5 summarizes the results.

2 Floating Point Addition

The most frequent FP operations are addition and sub-
traction, and together they account for over half of the total
FP operations in typical scientific applications [S2]. Both
addition and subtraction use the FP adder. Techniques to
reduce the latency and increase the throughput of the FP
adder have therefore been the subject of much previous re-
search.

To further reduce the latency, we observe that not all of
the components are needed for all input operands. Two
VLA techniques are proposed to take advantage of this to
reduce the average addition latency [S3]. To effectively use
average latency, the processor must be able to exploit a vari-
able latency functional unit. The processor might use some
form of dynamic instruction scheduling with out-of-order
execution in order to use the reduced latency and achieve
maximum system performance.

2.1 Current Algorithms

FP addition comprises several individual operations.
Higher performance is achieved by reducing the maximum
number of serial operations in the critical path of the algo-
rithm. In this study, the analysis assumes double precision
operands.

A block diagram of a state-of-the-art FP adder is shown
in Fig. 1. Adders similar to this architecture have been im-
plemented in several commercial microprocessors [2], [3],
[4]. This architecture exploits many aspects of the FP ad-
dition dataflow. It implements the significand datapath in

157

FAR CLOSE

Exp Diff Predict
+

Swap

1

+
Swap

Rshift ComAdd LOP

PENC

I HalfAdd l

ComAdd

[

Lshift

MUX

Figure 1. Three cycle pipelined adder with
combined rounding

two parts: the CLOSE path and FAR path. For subtrac-
tion, when the exponents differ by more than 1 (FAR path),
massive cancellation can not occur. Rather, there can be at .
most a 1 bit left-shift. Similarly, when the exponents dif-
fer by at most 1 (CLOSE path), massive cancellation may
occur requiring a large normalizing left-shift, but no initial
large aligning right shift is required. This allows the align-
ing right shift and the normalizing left-shift to be mutually
exclusive, with only one such shift ever appearing on the
critical path [S].

Another optimization made in this algorithm reduces the
number of serial operations. In a straightforward imple-
mentation of the addition dataflow, rounding would be im-
plemented by a separate series incrementer after all other
operations. However, the realization can be made that the
rounding step occurs very late in the computation, and it
only modifies the result by a small amount. By precomput-
ing all possible required results in advance, rounding and
conversion can be reduced to the selection of the correct
result [S4]. For the IEEE round to nearest (RN) rounding
mode, the computation of A + B and A + B + 1 is suf-
ficient to account for all possible rounding and conversion
possibilities. Incorporating this optimization into the algo-
rithm requires that the significand adders in each path com-
pute both sum and sum+1, typically through the use of a
compound adder (ComAdd). Selection of the true result is

accomplished by analyzing the rounding bits, and then se-
lecting either of the two results. This optimization removes
one significand addition step.

For the two directed IEEE rounding modes round to pos-
itive and minus infinity (RP and RM), it is also necessary
to compute A + B + 2. The rounding addition of 1 ulp
may cause an overflow, requiring a 1 bit normalizing right-
shift. This is not a problem in the case of RN, as the guard
bit (next less significant bit below the LSB) must be 1 for
rounding to be required. Accordingly, the addition of 1 ulp
will be added to the guard bit, causing a carry-out into the
next most significant bit which, after normalization, is the
LSB. However, for the directed rounding modes, the guard
bit need not be 1. Thus, the explicit addition sum+2 is re-
quired for correct rounding in the event of overflow requir-
ing a 1 bit normalizing right shift, This additional result
can be produced by using a row of half-adders above the
FAR path compound adder, or by simply duplicating the
two compound adders, where one adder computes sum and
sum+1 assuming that there is no carry-out and the other
adder computes the same results assuming that a carry-out
will occur.

Assuming that the mantissas are conditionally swapped
based upon the true exponent difference, the smaller man-
tissa is always subtracted from the larger mantissa, except
possibly in the CLOSE path for cases where the exponents
are equal. However, in these cases, since there is no ini-
tial aligning right shift, the result is exact and no rounding
is required. Further, by again precomputing both sum and
sum~+1 in the significand adder, recomplementation can also
be reduced to selection. The true subtraction of A — B is
accomplished by selecting sum-1, as the subtraction is im-
plemented by A - B + 1. If the carry-out of this addition is
0, then the result is negative requiring recomplementation.
The complemented result is formed by bitwise inversion of
sum, as

—~(A - B) =A+ —B-

Accordingly, recomplementation is reduced to a MUX and
bitwise inversion.

Further performance improvement is achieved by com-
puting the normalizing left-shift distance in the CLOSE path
in parallel with the compound adder, rather than in series,
using leading-one-prediction (LOP) and priority-encoding
(PENC). An adder employing all of these optimizations in
a high clock-rate microprocessor typically has a latency of
three cycles. The critical path in this implementation is in
the third stage consisting of the delays of the half-adder,
compound adder, multiplexor, and drivers,

2.2 Variable Latency Algorithm

From Fig. 1, the long latency operation in the first cycle
occurs in the FAR path. It contains hardware to compute the

158

absolute difference of two exponents and to conditionally
swap the mantissas. For IEEE double precision operands,
the minimum latency in this path comprises the delay of
an 11 bit adder and two multiplexors. The CLOSE path,
in contrast, has relatively little computation. A few gates
are required to inspect the low-order 2 bits of the exponents
to determine whether or not to swap the mantissas, and a
multiplexor is required to perform the swap.

Rather than letting the CLOSE path hardware sit idle dur-
ing the first cycle, it is possible to take advantage of the
duplicated hardware and initiate CLOSE path computation
one cycle earlier, This is accomplished by moving both the
second and third stage CLOSE path hardware up to their
preceding stages. Since the first stage in the CLOSE path
completes early relative to the FAR path, the addition of the
second stage hardware need not result in an increase in cycle
time, This is similar to the first cycle in the second genera-
tion DEC 21164 FP adder [4].

The operation of the proposed algorithm is as follows.
Both paths begin speculative execution in the first cycle. At
the end of the first cycle, the true exponent difference is
known from the FAR path. If the exponent difference dic-
tates that the FAR path is the correct path, then computation
continues in that path for two more cycles, for a total latency
of three cycles, However, if the CLOSE path is chosen, then
computation continues for one more cycle, with the result
available after a total of two cycles. While the maximum la-
tency of the adder remains three cycles, the average latency
is reduced due to the faster CLOSE path, If the CLOSE path
is a frequent path, then up to 1/3 reduction in the average
latency can be achieved.

Further reductions in the latency of the CLOSE path can
be made after certain observations. First, the normalizing
left shift in the second cycle is not required for all opera-
tions. A normalizing left shift can only be required if the ef-
fective operation is subtraction. Since additions never need
a left shift, addition operations in the CLOSE path can com-
plete in the first cycle. Second, in the case of effective sub-
tractions, small normalizing shifts, such as those of two bits
or less, can be separated from longer shifts. While longer
shifts still require the second cycle to pass through the full-
length shifter, short shifts can be completed in the first cycle
through the addition of a separate small multiplexor. Both
of these cases have a latency of only one cycle, with little or
no impact on cycle time. If these cases occur frequently, the
average latency is reduced. A block diagram of the variable
latency adder is shown in Fig. 2,

2.3 Performance

This algorithm was simulated using operands from ac-
tual applications to determine its effectiveness. The data
for the study was acquired using the ATOM instrumenta-

FAR CLOSE

Predict
+

Swap

e

ComAdd

Exp Diff
* Lop

l

PENC

Swap

ctlllnllon
o L output
Tri-state
Rehift Lshift
e
"¢ L output
Tri-state

HalfAdd

ComAdd

I

__l

Colligion Logle
+
Tri-State

l

Output

Figure 2. One, two, or three cycle variable la-
tency adder

tion system [6]. ATOM was used to instrument 10 applica-
tions from the SPECfp92 [7] benchmark suite which were
then executed on a DEC Alpha 3000/500 workstation. The
benchmarks used the standard input data sets. All double
precision floating point addition and subtraction operations
were instrumented. The operands from each operation were
used as input to a custom FP adder simulator. The simu-
lator recorded the effective operation, exponent difference,
and normalizing distance for each set of operands.

The resuits show that 57% of the operations are in the
FAR path and require three cycles, while 43% are in the
CLOSE path and require at most two cycles. A comparison
with a different study of floating point addition operands [8]
on a much different architecture using different applications
provides validation for these results. In that study over 30
years ago, six problems were traced on an IBM 704, track-
ing the aligning and normalizing shift distances. There 45%
of the operands required aligning right shifts of 0 or 1 bit,
while 55% required more than a 1 bit right shift. The sim-
ilarity in the results suggests a fundamental distribution of
floating point addition operands in scientific applications.

An analysis of the effective operations in the CLOSE
path shows that the total of 43% can be broken down into
20% effective addition and 23% effective subtraction. A left
shift less than or equal to 2 bits is required for 52.5% of the

159

W
% 30l 3.01.00
g
i
3
28 -
&
g
z
2.6 |- 2571147
24 2371.27 3 36/.27
2.31/1.30
2,25/1.33
22 I
2.0
£ € 2 2 3
E 8 0§ & % 1
3 kS - @ 3
o o @
2 Z

Figure 3. FP addition performance

CLOSE path subtractions. In total, 20% + (0.525) x 23% =
32% of the operations can complete in the first cycle. The
performance of the proposed techniques is summarized in
Fig. 3. For each technique, the average latency is shown,
along with the speedup provided over the base Two Path FP
adder with a fixed latency of three cycles. By allowing ef-
fective additions in the CLOSE path to complete in the first
cycle (adds), a speedup of 1.27 is achieved. For even higher
performance, the most aggressive implementation (subs2)
achieves a speedup of 1.33 by allowing all effective addi-
tion and those effective subtractions requiring normalizing
shifts of two bits or less to complete in the first cycle. These
techniques do not add significant hardware, nor do they im-
pact cycle time. They demonstrate how a VLA architecture
provides a reduction in average latency while maintaining
single cycle throughput.

3 Floating Point Multiplication

3.1 Background

The speed of the FP multiplier is critical to the perfor-
mance of an FPU. Multiplication is the process of adding
the partial products. Multiplication algorithms differ in how
they generate the partial products and how the partial prod-
ucts are added together to produce the final result.

Research on multiplier design has included techniques
for partial product generation [9] and partial product reduc-
tion [10], [11], [12], [13], [14]. Most previous analyses of
the partial product reduction trees use as the basis for their

design a simple compressor delay model where the delay
from each input of a compressor to each output is equal.
Also, the delay due to interconnection is typically ignored.
Unfortunately, such simple models do not accurately reflect
the performance of actual implementations where not all in-
puts have the same delay and where the added delay due to
interconnect is significant, especially for minimum feature
sizes below 0.5um. However, a simple delay model is suffi-
cient for the design of a binary tree using 4-2 compressors,
as the delay for all inputs of a 4-2 compressor are approxi-
mately equal.

Designing an optimized partial product array using (3,2)
counters requires taking into account all delay components.
Further, organizing the counters in order to minimize worst-
case delay is not trivial. Therefore, an algorithmic approach
to the design, using a sophisticated delay model that takes
into account the interconnect delay due to counter place-
ment and the different path delays, is extremely useful. We
have implemented such an algorithm, based upon the ap-
proach of Oklobdzija [15]. The algorithm is essentially the
same as that proposed by Oklobdzija, but it also takes into
account interconnect delay due to counter placement and
the different path delays. Our algorithm uses a complex de-
lay model for the (3,2) counter, and it is further constrained
by the availability of wiring tracks for the routing of each
column of the partial product array [S5]. The number of
wiring tracks available in a column is a function of the fab-
rication process and the floorplan of the multiplier. It is a
fixed parameter for each column, and it limits the possible
interconnections.

3.2 Methodology

In this study, we examined multiplier performance and
area tradeoffs over combinations of several parameters: fea-
ture size (f=1.0pum to 0.2um), counter configuration (3,2
and “4-2"), encoding scheme (non-Booth, Booth 2, and
Booth 3), and significand precision (24b through 113b). For
each category, we implemented a custom layout of a binary-
tree multiplier using the MAGIC layout tool. Additionally,
a unique (3,2) array was designed for every combination of
feature size, encoding scheme, and significand precision. A
portion of a binary-tree layout is shown in Fig. 4. Using
extracted parasitics, we performed SPICE timing simula-
tions for each combination of parameters. Each simulation
included delays due to transistors as well as interconnect.
The scalable SPICE model of McFarland [S6] was used to
project results down to 0.2um.

The relative performance of the algorithmically gener-
ated partial product array to binary trees for double preci-
sion non-Booth encoded multipliers is shown in Fig. 5. The
graph shows that the latency of the binary tree and the algo-
rithmically generated arrays are comparable for large fea-

160

Figure 4. Multiplier layout from MAGIC for 16
bit slice of binary tree

1.50

° _
b
&
iy
A 125}
100 |- —=—e = = -
[o
D=
BGim. g
075 -
0.50 |-
0 Binary Tree
O Algorithmic
0.25 |-
0.00]] 1 |]] 1 |] |
01 02 03 04 05 06 07 08 09 10 11

Drawn Feature Size (m)

Figure 5. Relative delay: algorithmic layout to
binary tree for non-Booth double precision

ture sizes. This is because at the larger feature sizes inter-
connect does not significantly affect the total delay for the
binary tree. The algorithmic approach is also better able to
hide the interconnection delay. However, at smaller feature
sizes, the algorithmic layouts outperform the binary tree.
The same reasoning applies to multipliers built using Booth
2 encoding for quad precision (113 bits) because the num-
ber of partial products is approximately equal in both cases.

The relative performance of the algorithmically gener-
ated partial product array to binary trees for quad preci-
sion non-Booth encoded multipliers is shown in Fig. 6. The
graph shows that the latency of the binary tree is smaller
than that for the algorithmically generated arrays for large
feature sizes. This is because the quad format has a large
number of partial products and therefore requires a larger
number of counters in the critical path. At these feature
sizes, the contribution to delay due to interconnect is small.
As aresult of the large number of counters, the critical path

in
=

% [~
I
iy
] 125
D,
e)
¢"'@
100 |- se:g;@ e = £)
0.75 |-
050 |-
O Binary Tree
O Algorithmic
0.25 |-
Lo

0.00
01 02 03 04 05 06 07 08 09 10 LI
Drawn Feature Size (um)

Figure 6. Relative delay: algorithmic layout to
binary tree for non-Booth quad precision

Significand Encoding Scheme
Length (bits) || Non-Booth | Booth2 | Booth 3
Single (24) 0.85 0.85 0.85
Double (53) 0.88 0.85 0.85
Ext (64) 0.96 0.82 0.88
Ext+4 (68) 0.79 0.77 0.88
Quad (113) 0.95 0.90 0.86

Table 1. Relative delay of Algorithmic Reduc-
tion to Binary tree for 0.3um

contains a large number of buffers. The binary tree is better
able to match the delays due to the buffers due to the sim-
plicity of our algorithm for (3,2) array design, yielding over-
all better performance. However, at smaller feature sizes,
interconnect has a significant effect on the total delay. Our
simple algorithmic approach is able to provide comparable
latency to the binary tree because of its ability to hide in-
terconnect delay by connecting the slow inputs due to the
longer wires with the fast inputs for the counters.

Table 1 presents performance results from Fig. 5 and
Fig. 6 along with several other common significand preci-
sions and possible encoding schemes for a 0.3um process.
In this table, the delays are for the algorithmic array rela-
tive to those of the binary tree. The results show that an
algorithmically-designed array usually results in a lower la-
tency than does the binary tree. Therefore, we recommend
further research on the design of more sophisticated tools
and algorithms for (3,2) counter-based partial product array
generation and interconnection.

161

Significand PP Reduction Method
Length (bits) Algorithmic Binary Tree
Non- | Booth | Non- | Booth
Booth 3 Booth 3
Single (24) 1 1.15 | 098 1.12
Double (53) 1.18 1.14 1.14 1.15
Ext (64) 1.25 1.12 1.07 1.04
Ext+4 (68) 1.22 1.16 1.19 1.02
Quad (113) 1.23 1.13 1.18 1.19

Table 2. Relative latency of encoding scheme
to Booth 2 for 0.3um

Significand PP Reduction Method
Length (bits) Algorithmic Binary Tree
Non- | Booth | Non- | Booth
Booth 3 Booth 3
Single (24) 1.02 1.11 0.99 1.15
Double (53) 1.50 | 0.99 1.35 1.02
Ext (64) 1.63 0.96 1.31 0.92
Ext+4 (68) 1.60 | 0.97 145 0.90
Quad (113) 1.73 0.95 1.54 1.04

Table 3. Relative latency x area product of
encoding scheme to Booth 2 for 0.3um

Table 2 summarizes the performance of the different en-
coding schemes relative to the performance of Booth 2 for
a 0.3um process. From this table, as the length of the sig-
nificand increases, Booth 2 becomes the choice which min-
imizes latency. In most of the cases, the reduction in the
number of summands achieved when moving from Booth
2 to Booth 3 encoding is not large enough to offset the ex-
tra delay needed to generate the hard (3x) multiple required
for Booth 3. We therefore recommend the use of Booth 2
encoding for the generation of partial products when mini-
mum latency is desired.

Not all multiplier implementations require minimum la-
tency. For these cases, an optimized design balances both
latency and area. Table 3 summarizes the choice of encod-
ing scheme which minimizes the latency X area product.

For single precision, both the latency and area of non-
Booth and Booth 2 encoding are approximately the same.
As a result, the delay x area product is the same for both.
Non-Booth encoding is recommended in this case due to its
simplicity of implementation. For other precisions, Booth 3
encoded multipliers are 10-15% smaller and 5-20% slower
than Booth 2 encoded multipliers. Accordingly, if area is
of primary concern, Booth 3 encoding is recommended for
these precisions.

4 Floating Point Division

The emphasis in recent FPUs has been in designing ever-
faster adders and multipliers, with division receiving less
attention. Current applications and benchmarks are often
written assuming that division is an inherently slow oper-
ation and should be used sparingly. While division is an
infrequent operation even in floating point intensive appli-
cations, ignoring its implementation can result in system
performance degradation. Thus, a high performance FPU
requires a fast and efficient adder, multiplier, and divider.
Choosing an optimal FP divider design in terms of perfor-
mance and area is difficult, as the design space of FP di-
viders is large, comprising five different classes of division
algorithms: digit recurrence, functional iteration, very high
radix, table look-up, and variable latency [S7]. This section
investigates the performance requirements of FP division
and proposes several techniques for achieving them through
a combination of FL and VLA techniques.

4.1 Performance and Area Tradeoffs

We have investigated in detail the relationship between
FP division latency and system performance [S2]. System
performance was evaluated using 11 applications from the
SPECIpP92 benchmark suite. The applications were each
compiled on a DECstation 5000 using the MIPS C and For-
tran compilers at O3 optimization. The results presented
were obtained on the MIPS architecture, primarily due to
the availability of the flexible program analysis tools pixie
and pixstats. The compiler utilized the MIPS R3000 ma-
chine model for all schedules assuming double precision FP
latencies of 2 cycles for addition, 5 cycles for multiplica-
tion, and 19 cycles for division.

In order to analyze the impact that the compiler can have
on improving system performance, we measured the inter-
lock distances of division results as a function of compiler
optimization level. Fig. 7 shows the average interlock dis-
tances for all of the applications at both O0 and O3 levels of
optimization. By intelligent scheduling and loop unrolling,
the compiler is able to expose instruction-level parallelism
in the applications, increasing the interlock distances. Fig.7
shows that the average interlock distance can be increased
by a factor of three by compiler optimization to over 10
instructions. Accordingly, for scalar processors, a division
latency of 10 cycles or less can be tolerated.

To determine the effects of division latency on overall
system petformance, the performance degradation due to
division was determined. This degradation is expressed in
terms of excess CPI, or the CPI due to the result interlock.
The performance degradation due to division latency be-
tween 1 and 20 cycles is displayed in Fig. 8. In this figure,
designs above 8 cycles are SRT implementations, the de-

162

20

E B 00Avg =334
Tg’ Bam 03 Avg=10.22
§ 15

]

]

8 .

;%
10 ,j
5 .

0 ‘.;_ '} ': :" :5-. ;.:- ,l
EREEERERRE
g € ® &

a g s @ E'

Figure 7. Interlock distances [S2]

sign between 4 and 8 cycles is a self-timed SRT design, and
those designs below 4 cycles are very-high radix designs
requiring large initial approximation tables.

Fig. 8 also shows the effect of increasing the number of
instructions issued per cycle on excess CPI due to division.
To determine the effect of varying instruction issue rate on
excess CPI due to division, a model of an underlying archi-
tecture must be assumed. In this study, an optimal super-
scalar processor is assumed, such that the maximum issue
rate is sustainable. The issue rate is then used to appropri-
ately reduce the interlock distances. Fig. 8 also shows how
area increases as the functional unit latency decreases. The
estimation of area is based on several reported layouts, all
of which have been normalized to 1.0um scalable CMOS
layout rules.

Dividers with latencies lower than 4 cycles do not pro-
vide significant system performance benefits, and their ar-
eas are typically too large to be justified. However, in-
creasing the number of instructions issued per cycle also
increases the urgency of division results, Thus, for future
microprocessors, it is recommended that the divider have a
latency no greater than 10 cycles, and wide issue processors
should attempt to reduce latency even further.

4.2 Achieving High Division Performance

Many recent floating point divider implementations have
implemented SRT division [S7]. SRT division is a compet-
itive division algorithm mainly for shorter operand lengths,
as the algorithm retires only a fixed number of quotient bits
in each iteration. For longer floating point formats, such as
double extended and quad, the demand for greater than lin-
ear convergence becomes apparent. Further, many impor-

=]
B
©

T @
z T T T T T T T T T T z
2 b3
g 016 3
o] £
-~ 10000 g
014 |- — lssue 8 o] (4si00) £
-+~ issue4d K4
--- lssue 2 ,/’ P
of2)- Issue 1 e e
./' r’
.
010} o
.
.
e
0.08 |- -
- 10.00
(14810)

0.06 |-

004

0.02 |- =20 Area

0.00 L#ZE L] ! Lt 10

o 2 4 6 8 10 12 14 16 18 20 (i481)

Divide Latency (cycles)

Figure 8. CPl and area vs division latency [S2]

tant special-purpose applications, such as 3D graphics, have
a high division throughput requirement. A sequential SRT
divider, though, allows only one¢ operation to be in progress
at any time. Thus, SRT division may not be appropriate for
high throughput, long format implementations. The appli-
cation of aggressive circuit techniques to low radix stages
(radix 2 and radix 4) may allow SRT division to remain
competitive for shorter formats, including single and dou-
ble precision, when high throughput is not required [S8].
In Fig. 8, typical SRT algorithms are represented by small
areas and latencies greater than 15 cycles.

Low latency, high throughput division for longer for-
mats can be achieved most readily by using an implemen-
tation of division by functional iteration. Such implementa-
tions may reuse existing floating point multiplication hard-
ware. Thus, these implementations are attractive from an
area-performance perspective. Both the Newton-Raphson
and series expansion (Goldschmidt) iterations are effective
means of implementing faster division by functional itera-
tion [S7]. The iterations in both algorithms comprise two
multiplications and a two’s complement operation, which
is often replaced by the simpler and faster one’s comple-
ment. The multiplications in Newton-Raphson are depen-
dent operations, whereas in the series expansion iteration
the two multiplications are independent operations and may
occur concurrently. A series expansion implementation can
therefore take advantage of a pipelined multiplier to obtain
higher performance in the form of lower latency per oper-
ation. In the Newton-Raphson iteration, unused cycles in
a pipelined multiplier can be used to allow for more than
one division operation to proceed concurrently, providing
higher division throughput.

163

4.3 Faster Functional Iteration

The number of iterations required for a divider using
functional iteration is directly coupled to the accuracy of
the initial approximation. Special tables are typically used
to obtain a very accurate initial approximation [16], [17].
The challenge in table design is to maximize the approxi-
mation accuracy while minimizing its total size. As a result,
this continues to be a very important active area of research.

A VLA technique that can be applied to functional itera-
tion is the use of reciprocal caches. The use of result caches
is discussed by Richardson [18]. The use of a small recip-
rocal cache for an integer divider is discussed in [19]. It has
been shown that a reciprocal cache is an efficient technique
of reducing average floating point division latency when
implementing division by functional iteration [S9]. This
technique uses the redundant nature of reciprocal operations
present in many applications by trading execution time for
increased memory storage. Once a reciprocal is calculated,
it is stored in a reciprocal cache. When a division operation
is initiated, the reciprocal cache is simultaneously accessed
to check for a previously computed result. If a previous
reciprocal is available, the result is simply retrieved from
the cache and multiplied by the dividend to form the quo-
tient. Otherwise, the operation continues in the divider, and
the reciprocal is written into the cache upon completion of
the iterations. In the study of [S9], applications from the
SPEC{p92 and NAS suites are analyzed. It is shown that
the use of a reciprocal cache with a total storage of approx-
imately eight-times that of a standard 8-bit initial approxi-
mation table, or 16 Kbits, can yield a two-times speedup in
average floating point division performance.

The main disadvantage of division by function itera-
tion is the lack of a final remainder, making exact round-
ing difficult. For exact rounding of the quotient, it is typ-
ically necessary to use an additional multiplication of the
quotient and the divisor and then to subtract the product
from the dividend to form the final remainder. Accord-
ingly, quadratically-converging algorithms can incur a la-
tency penalty of one back-multiplication and a subtraction
in order to produce exactly rounded quotients. A VLA tech-
nique that can be used to reduce the latency penalty in-
volves keeping several extra guard bits in an appropriately
biased pre-rounded result. Schwarz [20} proposes using 1
additional guard bit in the pre-rounded result. In this way,
the back-multiplication and subtraction is only required in
half of the cases on average. An extension to this tech-
nique [S1] further reduces the latency penalty. An exhaus-
tive analysis of the possible cases for various numbers of
guard bits and rounding modes demonstrates that by us-
ing m bits of extra precision in the pre-rounded result, a
back-multiplication and subtraction are required for only
27 of all cases, reducing the average latency for exactly-

Division Initial Reciprocal
Approximation Cache

I l

FP Multiplier
VLA FP Adder Booth 3

Algorithmically Designed Array

j Newton-Raphson
Control

VLA Division
Rounding Control

Figure 9. Possible FPU implementation

rounded quotients formed using functional iteration. For
RN, the back-multiplication is required for cases very near
the halfway point between two representable machine num-
bers to determine on which side of the halfway point the
infinitely precise result lies, while the other cases do not re-
quire the multiplication. For RZ, RM, and RP, the back-
multiplication is required for cases very near a machine
number to determine on which side of the machine num-
ber the infinitely precise result lies, while the other cases do
not require the multiplication.

The use of small and accurate initial approximation ta-
bles, coupled with a reciprocal cache and a few extra guard
bits in the pre-rounded result can result in a significant re-
duction in the latency of floating point division.

5 Summary

Bringing together many of the themes of this paper, one
possible organization of a high performance FPU is shown
in Fig. 9.

The pipelined FP adder in this FPU uses the VLA ad-
dition algorithm of Fig. 2. A pipelined multiplier is shown
that uses Booth 3 encoding and an algorithmically-designed
array of (3,2) counters. Such a multiplier implementation
provides a good balance of performance and area. Divi-
sion is computed through the Newton-Raphson iteration.
This allows for more than one division operation to be in
progress simultaneously, providing higher division through-
put. Dedicated hardware is included to provide a very ac-
curate initial reciprocal approximation. A small reciprocal
cache returns frequently-computed reciprocals at a much
lower latency. VLA exact rounding is supported in this
implementation by using a multiplier with wider precision
than is strictly required in order to compute several extra
guard bits in the pre-rounded quotient estimate and thus re-
duce average latency.

This paper demonstrates that VL functional units pro-
vide a means for achieving higher performance than can be
obtained through FL-only impiementations. The next gen-
eration of performance-oriented processors require flexible
and robust micro-architectures to best exploit the perfor-
mance achievable with VL FPUs. As superscalar proces-
sors become more complex and move to higher widths of
instruction issue, it becomes even more imperative that pro-
cessors incorporate VL functional units due to the increased
exposure of the latencies of individual FP functional units.

Acknowledgments

This work was supported by the NSF under grant
MIP93-13701 and a fellowship from the Saudi National
Guard.

List of Recent SNAP Publications

The following is a list of recent publications related to
the SNAP project. These and other publications and in-
formation on the SNAP project and researchers may be
obtained through the World Wide Web using the URL
http://umunhum.stanford.edu.

[S1] S. E Oberman, Design Issues in High Performance
Floating Point Arithmetic Units, Ph.D. thesis, Stanford
University, Nov. 1996.

{S2] S.FE Oberman and M. J. Flynn, “Design issues in divi-
sion and other floating-point operations,” IEEE Trans.
Computers, vol. 46, no. 2, pp. 154-161, Feb. 1997.

[S3] S. F. Oberman and M. J. Flynn, “A variable latency
pipelined floating-point adder,” in Proc. Euro-Par’96,
Springer LNCS vol. 1124, pp. 183-192, Aug. 1996.

[S4] N.T. Quach and M. J. Flynn, “An improved algorithm
for high-speed floating-point addition,” Technical Re-
port No. CSL-TR-90-442, Stanford University, Aug.
1990,

[S5] H. Al-Twaijry and M. J. Flynn, “Optimum placement
and routing of multiplier partial product trees,” Tech-
nical Report: CSL-TR-96-706, Stanford University,
Sept. 1996.

[S6] G. McFarland and M. Flynn, “Limits of scaling MOS-
FETs,” Technical Report: CSL-TR-95-662 Revised,
Stanford University, Nov. 1995,

le4

[S7] S. F. Oberman and M. J. Flynn, “Division algorithms
and implementations,” to appear in IEEE Trans. Com-
puters, 1997,

[S8] D. L. Harris, S. F. Oberman and M. A. Horowitz,
“SRT division architectures and implementations,” in
Proc. 13th IEEE Symp. Computer Arithmetic, this vol-
ume, July 1997.

[S9] S. F. Oberman and M. J. Flynn, “Reducing division
latency with reciprocal caches,” Reliable Computing,
vol. 2, no. 2, pp. 147-153, Apr. 1996.

References

[1] ANSVIEEE Std 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic, 1985.

[2] D. Greenley et al., “UltraSPARC: the next genera-
tion superscalar 64-bit SPARC,” in Digest of Fapers.
COMPCON 95, pp. 442451, Mar, 1995.

[3] L. Kohnand S. W. Fu, “A 1,000,000 transistor micro-
processor,” in Digest of Technical Papers, IEEE Int.
Solid-State Circuits Conf., pp. 54-55, 1989.

[4] J. A. Kowaleski et al., “A dual-execution pipelined
floating-point CMOS processor,” in Slide Supplement
to Digest of Technical Papers, IEEE Int. Solid-State
Circuits Conf., pp. 287, 1996.

[5] M. P. Farmwald, On the Design of High Performance
Digital Arithmetic Units, Ph.D. thesis, Stanford Uni-
versity, Aug. 1981.

[6] A. Srivastava and A. Eustace, “ATOM: A system for
building customized program analysis tools,” in Proc.
SIGPLAN 94 Conference on Programming Language
Design and Implementation, pp. 196-205, June 1994,

[7] SPEC Benchmark Suite Release 2/92.

[8] D. W. Sweeney, “An analysis of floating-point addi-
tion,” IBM Systems Journal, vol. 4, pp. 31-42, 1965.

165

[9] O. L. McSorley, “High speed arithmetic in binary
computers,” Proc. IRE, vol. 49, no. 1, pp. 67-91, Jan.
1961.

{10] C. Wallace, “A suggestion for a fast multiplier,” IEEE
Trans. Electronic Computers, pp. 14=17, Feb. 1964,

[11] L. Dadda, “Some schemes for paratlel multipliers,”
Alta Frequenza, vol. 34, pp. 349-356, Mar. 1965.

{12] D. T. Shen and A. Weinberger, “4-2 carry-save adder
implementation using send circuits,” IBM Technical
Disclosure Bull., vol. 20, no. 9, Feb. 1978.

[13] M. Santoro and M. Horowitz, “A pipelined 64X64b
iterative array multiplier,” in Digest of Technical Pa-
pers, 1EEE Int. Solid-State Circuits Conf., pp. 35-36,
Feb. 1988.

[14] N. Ohkubo et al., “A 4.4 ns CMOS 54*54-b multiplier
using pass-transistor multiplexor,” IEEE J. Solid-State
Circuits, vol. SC-30, no. 3, pp. 251-257, Mar. 1995.
[15] V.G. Oklobdzija, D. Villeger and S. S. Liu, “A method
for speed optimized partial product reduction and gen-
eration of fast parallel multipliers using an algorithmic
approach,” IEEE Trans. Computers, vol. C-45, no.3,
pp- 294-305, Mar. 1996.

{16] D. DasSarma and D. Matula, “Faithful bipartite ROM
reciprocal tables,” in Proc. 12th IEEE Symp. Com-
puter Arithmetic, pp. 12-25, July 1995.

[17] M. Ito, N. Takagi, and S. Yajima, “Efficient initial ap-
proximation and fast converging methods for division
and square root,” in Proc. 12th IEEE Symp. Computer
Arithmetic, pp. 2-9, July 1995.

[18] S. E. Richardson, “Exploiting trivial and redundant
computation,” in Proc. 11th IEEE Symp. Computer
Arithmetic, pp. 220-227, July 1993.

[19] D. Eisig et al., “The design of a 64-bit integer mul-
tiplier/divider unit,” in Proc. 11th IEEE Symp. Com-
puter Arithmetic, pp. 171-178, July 1993.

[20] E. Schwarz, “Rounding for quadratically converging
algorithms for division and square root,” in Proc. 29th
Asilomar Conf. on Signals, Systems, and Computers,
pp- 600-603, Oct. 1995.

