Fast Table-Driven Algorithms for Interval Elementary Functions

Douglas M. Priest
Sun Microsystems, Inc.
Mountain View, California
douglas.priest@eng.sun.com

Abstract

We present table-driven algorithms for computing inter-
val bounds on several common elementary functions. Our
algorithms use directed rounding to obtain sharp bounds—
within 1.5 units in the last place of the exact range of the
function over the argument interval—without the explicit
use of extended precision. Moreover, by performing all
floating point operations in the same rounding mode, our
algorithms can exploit software pipelining to provide bet-
ter performance than simply evaluating the corresponding
point elementary function at each endpoint of the argument
interval and rounding.

1. Introduction

The IEEE 754-1985 standard[4] specifies two directed
rounding modes, round-to-negative-infinity and round-to-
positive-infinity, that are intended to support interval arith-
metic. Indeed, the basic interval operations are relatively
casy to implement using these modes (in the absence of
certain exceptions), and since IEEE 754 arithmetic is now
nearly ubiquitous, we might expect to see interval arithmetic
supported more widely. Such support must include an ele-
mentary function library capable of delivering correct and
preferably sharp bounds on the ranges of various standard
functions over real intervals.

There are several viable approaches to computing in-
terval elementary functions. One could simply reimple-
ment a point elementary function algorithm using inter-
val arithmetic with appropriate error terms to accommodate
the approximation errors, but that would typically produce
much wider results than the best possible. One alterna-
tive, used by Kearfott, ez al, in the portable version of their
INTLIB library[6], uses interval arithmetic to compute in-
terval bounds on the point function values at the ends of
the argument interval. This approach generally produces
tighter bounds than evaluation over the entire argument in-
terval, but the bounds are still appreciably wider than the

1063-6889/97 $10.00 © 1997 IEEE

168

»

best possible—on the order of a hundred units in the last
place for a degenerate argument—and the computation of
two-sided bounds on the function values at the endpoints
wastes some computing effort.

Kniippel’s BIAS library[7] uses the point function itself
to compute function values at the ends of the argument in-
terval; it then perturbs the computed values to account for
the error in the point function. As a result, the BIAS ele-
mentary functions are reasonably fast, usually costing only
moderately more than twice the cost of the corresponding
point function, and they can deliver results that are only a
few units in the last place wider than the best possible. By
using the underlying platform’s point functions, however,
the BIAS functions depend for their correctness on knowing
the accuracy of those point functions, and that accuracy can
be difficult to ascertain when the source codes for the point
functions are not available.

Another approach is reflected in the algorithms of
Braune[1] and Krimer[8]. They start with point function
algorithms and perform a careful error analysis to estimate
the worst case error as a function of the floating point preci-
sion used. They then implement their algorithms computing
intermediate results in an extended precision wider than the
desired precision of the result: they compute the function
value in this extended precision, perturb it by the worst case
error bound, and then round the perturbed value outward to
working precision. They show that if the extended precision
format carries a modest number of extra bits beyond work-
ing precision, they can almost always deliver the sharpest
bounds possible in working precision. (How much extra
precision is needed to guarantee that the final results are al-
ways the best possible is an open question, although Muller
and Tisserand[11] have made progress in this area.)

We have chosen to use an approach similar to that of
Braune and Kréimer, but we trade a little accuracy for effi-
ciency. Our algorithms use only IEEE 754 double precision
arithmetic, and we make sparing use of well-known tech-
niques for simulating additional precision implicitly. Nev-
ertheless, because we use carefully designed, table-driven
point function algorithms as a basis, and because we rely on

directed rounding modes to aid in controlling the signs of
roundoff errors, our algorithms still achieve worst case er-
rors smaller than 1.5 units in the last place. Our algorithms
are also quite fast: besides avoiding extended precision, we
manipulate the signs of the intermediate results so that we
can perform all computations in the same rounding mode.
In this way, we need only save, set, and restore the round-
ing direction once for each function evaluation. Also, this
technique allows us to “pipeline” the computation of the
upper and lower bounds for typical arguments, so we can
take advantage of the pipelined floating point architectures
of modern CPUs. As aresult, our algorithms compute sharp
interval bounds at a cost that is often no more than twice
that of the corresponding point function.

In section 2, we review some tools and techniques we
have found useful in the error analysis of the interval func-
tions, which is similar to but in some ways more rigorous
than the corresponding analysis for point functions. Section
3 presents algorithms for the exponential, logarithm, and
arctangent functions, while section 4 describes the methods
we use to perform argument reduction for the trigonometric
functions and gives algorithms for sine, cosine, and tangent.
Throughout, we omit the treatment of special cases such as
infinite intervals and tiny arguments; for the most part, these
cases are trivial to analyze and only slightly more difficult to
implement. Finally, section 5 tabulates the worst observed
errors for our algorithms and compares the performance of
the interval functions with that of their point counterparts.

2. Error Analysis Tools

The primary goal of a point elementary function algo-
rithm is to compute an approximation whose error is small
but may be either positive or negative; thus, the error anal-
ysis for these algorithms centers on bounding the absolute
value of the error. In contrast, the goal of an interval ele-
mentary function algorithm is to compute true bounds for the
range of the function over the argument interval, so the error
analysis focuses on proving that the errors in the computed
interval endpoints have the correct signs. Following the
typical style of analysis for point functions[13], we consider
two distinct sources of error: the error in the approximation
of a transcendental function by a polynomial, and the error
due to roundoff in the computation.

For interval elementary function algorithms, we typically
need to find a polynomial approximation p(z) to a transcen-
dental function f(z) such that p(z) > f(z), or vice versa,
for all z in a given range; ideally, we would also like p to be
a good approximation to f over this range. Fortunately, this
task is equivalent to the well-studied problem of finding a
best uniform approximating polynomial to f: in any linear
subspace that contains constant functions, the best uniform
one-sided approximations to f(z) are simply g(z)4€ where

169

g is the best overall uniform approximation to f and e is its
worst case error. Thus we can apply the Remes algorithm to
find the best uniform approximating polynomial and simply
add or subtract an upper bound on the worst case error.

An estimate of the worst case error sup |f(z) — g(z)|
over the range of the approximation arises as a by-product
of the Remes algorithm. This value is generally only an
estimate, however, for several reasons: the Remes algo-
rithm is iterative, the values of f used in the algorithm are
themselves approximate (though necessarily much more ac-
curate than the approximation being sought), and depending
on the implementation, the algorithm may fail to account
for the error due to rounding the coefficients of g to work-
ing precision. For interval functions, we need a rigorous
bound on the approximation etror, so rather than rely on
the value produced by the Remes algorithm, we compute
a bound directly: given double precision coefficients a; of
a polynomial p(z) = Y, a;z%, rational coefficients b; of
the m-th degree Taylor polynomial g(z) = Y 1%, bz of
f(z) (which is always analytic in the cases of interest), a
bound ¢ on the remaining coefficients of the Taylor series
for f, and an interval [/, 7], we estimate the approximation
error

sup |7 (z) —p(2)| < sup /(=) - q()| + sup lg(z) - p(z)]
ctm+1
< -
<1 +z€%!{>§’r}lq(2) p(2)|
where ¢t = max(|l],|r]) and Z is the set of roots of

¢'(x) —p'(z) in the interval [I, 7). We use a secant algorithm
employing quadruple precision rational interval arithmetic
to find double precision intervals containing these roots and
compute an upper bound on the second error term over each
interval. Combining the largest such error with the trunca-
tion error represented by the first term, we obtain an upper
bound on the total approximation error.

To ensure that the errors in the computed interval end-
points have the correct signs in the presence of roundoff,
we rely on several common techniques. In many cases, we
use an a priori analysis to estimate the contribution due to
roundoff errors and simply add a term that bounds these er-
rors, much the same way that we handle approximation error.
For some steps in the computation, the error analysis is easy
to carry out by inspection, but for the evaluation of polyno-
mial approximations, we rely on a variation of a well-known
technique[5] called “running” roundoff error analysis. As
above, letting ay, ..., a, denote the coefficients of p, we
compute an upper bound on the roundoff error in the evalu-
ation of p(z) for any z € [I,7] by an augmented version of
Homer’s rule:

¢ = max(lt], i)
p=las),e:=0

fort=n-1,...,0do
pr=pxt, e:=ext+ulp(p)
p:=p+lail, e:=e-+ulp(p)

(Here ulp(z) denotes a unit in the last place of = and can be
computed easily using the nextafter function recommended
by IEEE 754.) Provided this computation is carried out
rounding up, the final value of e is a rigorous upper bound
on the roundoff error.

The directed rounding modes of IEEE 754 arithmetic
provide another way to control the sign of roundoff errors.
We use directed rounding in two ways corresponding to two
different interpretations of the effects of roundoff, namely
backward error and forward error. In some cases, we per-
form argument reductions carefully to ensure that the com-
puted value of the reduced argument is the exact value that
would be obtained in the absence of roundoff from an orig-
inal argument no less than (or greater than, depending on
context) the actual original argument. By contrast, the last
reconstruction steps of all of our algorithms rely on directed
rounding to ensure that the final computed result is no less
than (or greater than) the value that would be delivered in
the absence of roundoff. To use directed rounding in this
way, we must keep track of the signs of the intermediate
quantities computed by our algorithms much more carefully
than would be necessary in a point function; we also manip-
ulate those signs so that we can perform all computations
in the same directed rounding mode. Fortunately, as our
performance results show, the cost of manipulating signs is
more than offset by the savings afforded by using a single
rounding mode for all computations.

3. Exponential and Logarithm Functions

3.1. Exponential

To compute exp(z), we set j = [z/n] where n =
log(2)/256 to working precision and the square brackets
denote the nearest integer; we then write ;7 = 256k + 1,
where £ and ¢ are integers and 0 < ¢ < 256, so that
exp(z) = 252¢/2%6 exp(z — jlog(2)/256). From a table,
we obtain ey, and ¢; such that |2¢/25¢ — (e}, + ;)| < 271%
and |e;| < 27%.

We computer = (z—jnp)—jn; whereny, = log(2)/256
rounded to 32 significant bits and n; = log(2)/256 — ny,
rounded to working precision. Note that if |z| is small
enough that exp(z) does not trivially underflow or overflow,
l7] < 2%, s0 jny is exact, and the total roundoff error in
coinputing r is smaller than 270, As |r| is less than about
log(2)/512, the corresponding error in exp(r) is smaller
than 279,

We approximate exp(r) by a polynomial 14 E(r) where
E(r) == r(1 + r(Ey + r(Ey + 7E3))). (Table 1 gives

the coefficients for all of the polynomial approximations
used in this paper) The approximation error satisfies
|exp(r) — 1~ E(r)] < 277, and the roundoff error in com-
puting E(r) is smaller than 2~%. Note also that |e; E(r)| <
2792, so computing 2%(ep, + (e B(r) + (e1+27%))) round-
ing up yields an upper bound on exp(x), while computing
28(—ep + (—enE(r) + (27% — ¢;))) rounding up yields the
negative of a lower bound.

Coeff. Hexadecimal value
E 3fAfffff fffffffe6
b, 3£c55555 721al1dl4
B, 3fab55555 6e0896af
I 3fd55555 55555e83
123 bfcfffff ff££fb840
I3 3fc99999% 98215569
Iy bfc55555 48cee8eb
ls 3£c2492d 1b233010
le bfc0009d 1058b3ef
l7 3fbc588d 3a223fb0
lg bfb669ae 7e3daabc
Iy 3fe55555 5550a044
Ly 3£4999b4 4293087c¢
Ay bfd55555 555554ee
A; 3£c99999 997al1559
As bfc24923 158dfel2
Ay 3fbc639d 0edl347b
8] bfc55555 55555440
s7 3£811111 1108¢c703
83 bf2a019f 75eedbel
S4 3ec718e3 a6972785
Sy bfc55555 5555240£
) 3f81110e 1933012
Ch bfdfffff ££££6328
C, 3fab5551 5f7acflc
c bEfdAfffff ffffffda
1) 3fa55555 55445306
c3 bfS6cl6b a66cS5bb7
C4 3ef9fcct 2aedblde’
T 3fd55555 55555526
T 3fcl11111 111239fa
T 3fabalba 16d5e0be
T 3f9664f9 16acl0a28
Ts 3£8224b3 cfdécedc
Ts 3£6e745d 4523£a96

Table 1. Coefficients for polynomial approxi-
mations. The values are shown as hexadec-
imal representations of IEEE 754 double pre-
cision numbers.

170

3.2. Logarithm

For31/32 < z < 17/16, we let v = z — 1 and approx-
imate log(z) by a polynomial v + v*(—1/2 4 I(v)) where
I(v) := v(l; + v(lz + ... + vig)). The approximation er-
ror satisfies |log(z) — v — v3(=1/2 + I(v))| < 27v],
and the roundoff error in evaluating I(v) is less than 275°,
Thus computing v + [v](27%¢ + [v|(=1/2 + (2736 + 1(v))))
rounding up yields an upper bound on log(z) while com-
puting —v + [v] (2756 + [v|(1/2 + (2736 — I(v)))) rounding
up yields the negative of a lower bound.

For general 2, we write z = 2"u where 91/128 < u <
91/64, choose v such that |u — v| < 278 min(|ul, |v|), and
use the formula log(z) = nlog(2) + log(v) + log(u/v).

Let by, = log(2) chopped to 38 bits and b; = log(2) — by,
to double precision, so |log(2) — b, — by| < 27%. As
[n| < 1074, the product nby, is computed exactly, and the
total of the approximation error in b; and the roundoff error
in evaluating nb is less than 2%

From a table, we obtain I;, and I; where I, = log(v)
rounded to 26 bits past the binary point and I; = log(v) —1},
to double precision, so | log(v) — I, — I;] < 2~7. Note that
h has enough trailing zeroes to ensure that I, + nby, is also
computed exactly.

Finally, we apply the identity log(u/v) = 2tanh™!(s)
where s = (u — v)/(u + v). We have |s| < 277, and
we approximate 2 tanh ™' (s) by an odd polynomial L(s) :=
$(2 + s*(Ly + s*Ly)). The approximation error satisfies
|log(u/v) — L(s)| < 27%3. By choosing v to be less than,
respectively greater than u, we ensure that s is positive,
respectively negative, so if we compute s so that roundoff
errors cause it to exceed the exact value (u — v)/(u + v)
in magnitude, then the roundoff errors in computing L(s),
respectively L{—s), rounding up will all be positive. Thus,
computing (In + nbp) + (272 + I, + nb; + L(s)) rounding
up yields an upper bound on log(z) while computing — ({5, +
nby) + (2752 — I; — nb; + L(—s)) rounding up yields the
negative of a lower bound.

3.3. Arctangent

As the arctangent function is odd and globally monotonic,
we can obtain a lower bound on arctan{z) from an upper
bound on arctan(—z}, so it suffices to show how to compute
the latter for any z.

If [z] < 1/32, we approximate arctan(z) by an odd
polynomial z + z2A(z) where A(z) := z(A; + *(A2 +
z*(A3 + z%A4))). The approximation error satisfies
|arctan(z) — z — z2A(z)| < 27%%|z|, and the roundoff
error in computing |z|A(z) is less than 2752, so computing
z + |2|(27% + |2 A(z)) rounding up yields an upper bound
on arctan(z).

If 1/32 < |z| < 32, we find a value y satisfying 0 <

171

y — 2 < 27|, so arctan(z) = arctan(y) + arctan((z —
y)/(1 + zy)). From a table, we obtain a; and a; such
that a;, = arctan(y) to double precision and 0 < ay, +
a — arctan(y) < 27'%. Asy > 2, evalvating s = (z —
¥)/(1+ zy) rounding up ensures that the computed value is
greater than the exact value. Now |s| < 1/32, so computing
an + (s + (a1 + |s](27% + |s|A(s)))) rounding up yields
an upper bound on arctan(z).

If |z} > 32, we compute arctan(z) as sgn(z)7/2 +
arctan(—1/z), where the latter term is computed as above.

4. Trigonometric Functions

4.1. Argument reduction

To compute a trigonometric function of an argument
given in radians, we first reduce the argument to a suit-
able range, typically [—m /4, 7 /4]. Specifically, we want to
compute £ —nm/2 where n is the integer nearest 22 /7. (For
some functions, we may restrict n to be even or odd, leading
to a larger reduced range of [—7 /2, 7 /2].) Of course, in or-
der to preserve the accuracy of the computed function values
for large arguments, we must compute z —n /2 to high rela-
tive accuracy for all arguments z, Our implementation uses
two different methods depending on the magnitude of the
argument. Note that in both cases, the argument reduction
is carried out rounding to nearest.

If |z] < 2", we first compute n = [2z/p], where p
is a double precision approximation to 7 and the square
brackets denote the nearest integer. Note that the errors in
computing n are not significant: at worst, the reduced ar-
gument will simply lie slightly outside the desired range.
We now compute z — n” to twice double precision (by
well-known techniques), where P is a multi-word, 157-bit
approximation to w/2. As |n| < 2%, the total errors due
to approximating 7/2 by P and to rounding the tail of the
product n.P are each smaller than 27136, Using McDonald’s
Nearpi program[10], we verified that all reduced arguments
for z in this range are at least 2752 in magnitude, so the cor-
responding relative error in the reduced argument is smaller
than 273, Roundoff in the accumulation of the reduced
argument contributes a relative error no larger than 27105,
so the final result is a pair of double precision numbers 1,
and ¥, satisfying |z — nm — y; — 12| < 27|z — nx| and
lyz2] < 273y,

For |z| > 2w, we rely on a reduction method due to
Payne and Hanek[12]. (The particular implementation we
use is available in the fdlibm library[2].) Without directly
computing n, the method simultaneously produces n mod
8 and, in our case, double precision numbers y; and y;
satisfying |z — nw — y; — 5] < 27|z — nx| and |y,| <
27|y1|. (Because we reduce by an integer multiple of
/2, for a point function, we would only need to consider

n mod 4 to determine the quadrant in which the original
argument lies. For an interval function, however, we need
to know how many quadrants are spanned by the original
argument interval, and this information is most easily found
by retaining an additional bit in n[14].)

In the descriptions that follow, we omit references to the
lower part (y,) of the reduced argument. Our implementa-
tion incorporates this part, typically by adding it to a trailing
term in the approximation, such as the higher order terms
in a polynomial or the difference between the argument and
a nearby point at which function values are tabulated. The
error analyses given below remain valid with this modifica-
tion.

4.2. Sine and cosine

For sin{z), we first reduce the argument to the range
[~ /2,7 /2] by subtracting an even multiple of 7 /2. (Point
algorithms often rely on the identity sin(z) = cos(z — 7 /2)
to reduce to the range [~ /4,7 /4] instead. In table-driven
implementations, this saves some table space at the cost of
doubling the number of cases that must be considered. For
interval functions, this extra logic would be multiplied by
the already nontrivial number of cases needed to handle the
local extrema in the sine and cosine functions, so we have
chosen to use the larger reduced range and larger tables.)

If |z| < 21/128, we approximate sin(z) by an odd poly-
nomial z + z2s(z) where 5(z) := z(s; + 2%(s2 + z%(s3 +
z%s4))). The approximation error satisfies |sin(z) — z —
z*s(z)| < 27%|z|, and the roundoff error in computing
|z|s(z) is less than 2758, Thus computing z + |z|(27°¢ +
|z|s(z)) rounding up yields an upper bound on sin(z), while
computing —z + |z|(27>6 — |z|s(z)) rounding up yields the
negative of a lower bound.

If |z| > 21/128, we apply the identity sin(z)
sin(a) cos(z — a) + cos(a) sin(z — a) and use an “accurate”
table method[3]: we find double precision numbers a, s,
and ¢ such that ja — z| < 0.00782, | sin(a) — s| < 279|s|,
and |cos(a) — ¢| < 27%¢|. Setting d = z — a, we ap-
proximate sin(d) by an odd polynomial d + d*$(d) where
S(d) := d(S; + d*8) and cos(d) by an even polynomial
1+ C(d) where C(d) := d*(C; + d*C;). The approxi-
mation errors satisfy | sin(d) — d — d2S(d)| < 27°%|d|, and
|cos(d) — 1 — C(d)| < 29 - 2761, while the roundoff error
in computing |d|S(d) is less than 2%, and the roundoff
error in computing C/(d) is less than 2795, Thus computing
s+ (s(sgn(s)27°¢ + C(d)) + c(d + |d|(27°¢ + |d|.S(d))))
rounding up yields an upper bound on sin(z) while comput-
ing —s + (—s(=sgn(s)27% + C(d)) + c(—~d + |a|(27>° —
|d|.S(d)))) rounding up yields the negative of a lower bound.

For cos(z), we reduce the argument to the range
[-7/2,7 /2] by subtracting an odd multiple of 7/2; we
then compute bounds on the sine of the reduced argument as

172

above. To obtain better performance for interval arguments
with both endpoints already in the reduced range, however,
we skip the reduction step and compute bounds on the cosine
directly by the following method.

If |z| < 21/128, we approximate cos(z) by an even
polynomial 1 + ¢(z%) where c(t) := t(c1 + t(ca + t(cs +
tca))). The approximation error satisfies |cos(z) — 1 —
c(a?)] < 212751, and the roundoff error in computing c(t)
is less than 11 - 278, Computing ¢ = (—z)z and p = z*
rounding up ensures that their computed values are smaller,
respectively larger, in magnitude than the exact values. Thus
computing 1 + (2% + ¢(—q)) rounding up yields an upper
bound on cos(z), while computing —1 + (275 — ¢(p))
rounding up yields the negative of a lower bound.

If |z| > 21/128, we again resort to the accurate
table method, this time using the identity cos(z) =
cos(a) cos(z—a)—sin(a) sin(z—a). We find a, s, and ¢ such
that|a—|z|| < 0.00782,]sin(a)—s| < 27%s,and | cos(a)—
cf < 27%¢, and letting d = |z| — a, we approximate sin(d)
and cos(d) by the same polynomials as above. Thus, com-
puting ¢+ (¢(27°¢+ C(d)) + s(~d + |d|(256 ~ |d| S(d))))
rounding up yields an upper bound on cos(z) while comput-
ing (s(d+ |d|(27% + |d|S(d))) + (=) (C(d) —27%)) — ¢
rounding up yields the negative of a lower bound.

4.3, Tangent

For the tangent function, we first reduce the argument
to the range [—7 /4, /4] by subtracting a multiple of =/2.
Note that unlike the sine and cosine functions, we cannot
use the larger range [—n /2,7 /2] since we must compute
z mod /2 with high relative accuracy when z is near any
multiple of 7 /2 in order to approximate its tangent accu-
rately. Therefore, the reduction takes the form z = nw/2+y
where n is an integer and |y| < /4, and we must consider
two cases: if n is even, then tan(z) = tan(y), and if n is
odd, tan(z) = — cot(y).

If |z| < 5/32, we approximate tan(z) by an odd polyno-
mial z + 2T (z) where T'(z) := z(T1 + 2*(T + =>(T3 +
z*(T4 + z*(Ts + 2°Ts))))). The approximation error sat-
isfies | tan(z) — z — 2*T(z)| < 27°%|z|, and the roundoff
error in computing |z|7'(z) is less than 257, Thus, com-
puting z + |z|(27¢ + |z|T'(z)) rounding up yields an upper
bound on tan(z), while computing —z+|z|(27% — |z|T(z))
rounding up yields the negative of a lower bound.

If z > 5/32, we rely on the identity tan(z) = tan(w) +
tan(z — w)(1 + tan(w)®)/(1 — tan(z — w) tan(w)). We
first find w, tp, and t; such that 0 < z —w < 277, t =
tan(w) chopped to double precision, and ¢; = tan(w) — t,
rounded to double precision. Letting d = z — w, we ap-
proximate tan(d) by an odd polynomial d + dt(d) where
t(d) := d*(Ty + d*(T» + d*T3)). The approximation error
satisfies | tan(d) — d — di(d)] < 27%|d| and the roundoff

error in computing ¢(d) is less than 27%. Thus computing
u = d+ d(27% + t(d)) rounding up yields an upper bound
on tan(d) while computing v = —d + (—d)(~27¢ + t(d))
rounding up yields an upper bound on — tan(d). Now com-
puting tp, + (t1+ (u+ (tn +278) ((¢n +2750)u))/ — ((tn+
2756)y — 1)) rounding up yields an upper bound on tan(z)
while computing —t, + (—t + (v + (tn — 27)((tn —
2756)v))/((tn — 27%¢)v + 1)) rounding up yields the nega-
tive of a lower bound. (If z < —5/32, we compute bounds
on — tan(z) = tan(—z) similarly.)

We compute — cot(z) as follows. As above, if |z| <
5/32, then computing g = |z|(27 + |z|T'(z)) rounding
up yields an upper bound on tan{z) — z while computing
h = |z|(276 — |z|T(z)) rounding up yields the negative
of a lower bound. To evaluate —1/(z + g¢) accurately, we
first compute r = —1/(z+g) and set ry, = r chopped to 21
significant bits (with an extra bit subtracted to ensure thatry,
is smaller than r), zj, = (z + g) chopped to 21 significant
bits, and z; = (z — z5) + g. Now computing rp, + r((1 +
razn) + sgn(r)27% + r,z;) rounding up yields an upper
bound on — cot(z). Likewise, to evaluate —1/(—z +h), we
compute s = —1/(—z + h) and set s = s chopped to 21
significant bits, z, = (—z + h) chopped to 21 significant
bits, and z; = (—z — z,) + h, so computing sj, + s({1 +
snzr) + sgn(s)2~% + s;,2;) rounded up yields the negative
of a lower bound.

If z > 5/32, we use the identity — cot(z) = — cot(w) +
tan(z — w)(1 + cot(w)?) /(1 + tan(z — w) cot(w)). We first
find w, cp,, and ¢; such that 0 < w —z < 277, ¢, = cot(w)
chopped, and ¢ cot(w) — cp, rounded. As above, if
we set d = z — w, then computing u = d + d(—27 +
t(d)) rounding up yields an upper bound on tan(d) while
computing v = —d+ (—d) (276 +¢(d)) rounding up yields
an upper bound on — tan(d). Now computing —cp, + {—c; +
(u+ (cn—27)((en —27"%)u)) /((ch—27)u+ 1) yields
an upper bound on — cot(z) while computing ¢;, + (1 +
(0+ (e + 279 ((en +2-5)0))/ — ((en +2-5) — 1))
yields the negative of a lower bound. (If z < —5/32, we
compute bounds on cot(z) = — cot{—xz) similarly.)

5. Accuracy and Performance Results

Table 2 shows the measured accuracy and performance of
our interval elementary function algorithms. To measure the
worst case error, we used Liu’s Berkeley Elementary Func-
tion Test program([9] supplemented by custom test programs
that use quadruple precision point functions to compute ac-
curate function values. The second column in the table
shows the worst error observed over the entire range of the
function. The error is expressed in units in the last place
(ulps) of the computed double precision function values;
note that for interval functions, the theoretical best possible
worst case error is essentially one ulp.

173

In addition to worst case errors, the test programs check
monotonicity and sign symmetry. Because our algorithms
compute all results in the same rounding mode, the ap-
proximations are slightly different for positive and for
negative arguments, so in many cases we observed sign
asymmetries; for example, the computed lower bound for
sin(3.242851544064926372) differs by one ulp from the
computed upper bound for sin(—3.242851544064926372).
We did not observe any monotonicity failures, however.
Moreover, our implementation takes care to preserve com-
mon inequalities such as | cos(z)| < 1 for all z and cardinal
vales such as log(1) = 0 (e.g., the computed logarithm
of the degenerate interval [1,1] is the degenerate interval
[-0,40]).

The third column in table 2 shows the relative perfor-
mance of our interval elementary functions compared with
the corresponding point functions for arguments in the pri-
mary range (shown in the fourth column). We measured
the performance on a Sun Ultra/1 system; for the compari-
son, we used the point elementary functions optimized for
that system that are provided with the Sun Workshop 4.2
compilers. The ratios show the average number of cycles
for one evaluation of the interval function divided by the
average number of cycles for one evaluation of the point
function. (Decimal approximations of the ratios are shown
in parentheses.) As these results show, the added cost of
saving, changing, and restoring the rounding mode is offset
by the efficiency of pipelining the evaluation of the lower
and upper bounds, so that in many cases the total cost of
the interval function is no more than twice the cost of the
corresponding point function.

6. Acknowledgements

The interval elementary function algorithms described
above are based on point elementary function routines de-
veloped by Dr. K.-C. Ng. His carefully crafted algorithms
and well-documented source code provided valuable insight
and inspiration for the interval functions.

References

[1] Braune, K., Standard Functions for Real and Complex
Point and Interval Arguments with Dynamic Accuracy, in
U. Kulisch and H. J. Stetter, Eds., Scientific Computation
with Automatic Result Verification, Springer-Verlag, New
York, 1988,

[2] fdlibm: A Freely Distributable Standard Math Library, avail-
able from netlib.

[3] Gal,S., and B. Bachelis, An Accurate Mathematical Library
for the IEEE Floating Point Standard, ACM Trans. Math.
Soft. 17 (1991), 26-45.

Function Error (ulp) Perf. Ratio Primary Range
exp 1.17 142/91 (1.6) 2710 < 2] < 700
log 1.29 169/98 (1.7) z<31/320r17/16 < z
atan 1.16 179/97 (1.8) 1/32< |z] < 32
sin 1.28 161/70 (2.3) 21128 < |z| < /2
cos 1.28 136/77 (1.8) 21/128 < |z| < w/2 —21/128
tan 1.32 188/94 (2.0) 5/32< |z| < w/4

Table 2. Measured accuracy and performance of interval functions. The second column shows the
largest error observed over the entire range of the function. The third column shows the ratio of the
cost of the interval function to that of the corresponding point function measured as the average
number of clock cycles per function evaluation for arguments in the primary range shown in the

fourth column.

[4] IEEE 754-1985 Standard for Binary Floating-Point Arith-
metic, Institute of Electrical and Electronics Engineers, New
York; 1985.

[5] Kahan, W., and 1. Farkas, Algorithm 168 and Algorithm 169,
Comm. ACM 6 (1963), 165.

[6] Kearfott, R. B., M. Dawande, K. Du, and Ch. Hu, Algorithm
737: INTLIB: A Portable Fortran-77 Elementary Function
Library, ACM Trans. Math. Soft. 20 (1994), 447-459.

{71 Kniippel, O., BIAS—Basic Interval Arithmetic Subroutines,
Bericht 93.3, Technische Universitit Hamburg-Harburg,
1993.

[8] Kriamer, W., Inverse Standard Functions for Real and Com-
plex Point and Interval Arguments with Dynamic Accuracy,
in U. Kulisch and H. J. Stetter, Eds., Scientific Computation
with Automatic Result Verification, Springer-Verlag, New
York, 1988.

[9] Liu, Z., Berkeley Elementary Function Test, available from
netlib (in the UCBTEST package).

[10] McDonald, S., Nearpi, a C Program to Exhibit Large
Floating-Point Numbers Very Close to Integer Multiplies
of 7 /2, available from http://www.cs.berkeley.edu/"wkahan/
testpi/.

Muller, J.-M., and A. Tisserand, Towards Exact Round-
ing of the Elementary Functions, in G. Alefeld, A. From-
mer, and B. Lang, Eds., Scientific Computing, Computer
Arithmetic and Validated Numerics (SCAN-95), Akademie-
Verlag, Berlin, 1996.

Payne, M., and R. Hanek, Radian Reduction for Trigonomet-
ric Functions, ACM SIGNUM Newsletter 18 (1983), 19-24,
Tang, P. T. P, Table-Lookup Algorithms for Elementary
Functions and Their Error Analysis, in P. Kornerup and
D. Matula, Eds., Proc. 10th Symposium on Computer Arith-
metic, IEEE Computer Society Press, Los Alamitos, Calif.,

1991.

[14] Walster, G. W., personal communication.

(11]

[12]

(13]

174

