Generating a Power of an Operand
by a Table Look-up and a Multiplication

Naofumi Takagi
Department of Information Engineering, Nagoya University
Nagoya 464-01, Japan
email: ntakagi@nuie.nagoya-u.ac.jp.

Abstract

An efficient method for generating a power of an
operand, i.c., XP for an operand X and a given, fized
p, s proposed. The method is applicable to p’s in the
form of £2% where k is any integer and of +2k1 49—k
where ki s any integer and ks is any non-negative tnte-
ger. The reciprocal, the square root, and the reciprocal
square root are included as special cases. It is a modi-
fication of the piecewise linear approzimation based on
the first-order Taylor expansion. The same accuracy s
achieved. A power of an operand is generated through
a table look-up and a multiplication with operand mod-
ification. No addition is required. The required table
size is reduced, because only one coefficient instead of
two has to be stored.

1 Introduction

With the increasing availability of large ROM'’s
(read only memories) and high-speed multipliers, gen-
erating functions by table look-up and multiplication
has become attractive. In this paper, we focus on gen-
eration of a power of an operand.

The piecewise linear approximation based on the
first-order Taylor expansion [1, 2] is an efficient method
for generating powers of an operand in rather low pre-
cision. The two coefficients of the linear function are
read out of a look-up table. A multiplication and an
addition are required besides a table look-up. When
the m most significant bits of an operand are used as
the index of the look-up table, about 2m-bits accuracy
is obtained.

In this paper, we propose a new method for gener-
ating the p-th power of an operand. The method is
applicable to p’s in the form of £2¥ where k is any in-
teger and of £2*1 £27%2 where k; is any integer and k;

1063-6889/97 $10.00 © 1997 IEEE

126

is any non- negatlve integer. The reciprocal X~ -2 the
square root X2, the reciprocal square root X~ =
the reciprocal square x? , the cube X?'+?° and the
fourth power X 2" are all mcluded as specml cases.

The method is a modification of the piecewise linear
approximation based on the first-order Taylor expan-
sion. A power of an operand is generated through a ta-
ble look-up and a multiplication with operand modifi-
cation. The same accuracy is achieved as the piecewise
linear approximation. The multiplication and an ad-
dition required for the piecewise linear approximation
are replaced by only one multiplication with a slight
modification of the operand. The modification of the
operand is a bitwise inversion, a shift and/or a redun-
dant binary Booth recoding [3, 4, 5, 6]. The required
table size is reduced, because only one coefficient in-
stead of two has to be stored. One clock cycle may be
saved, because the addition is removed.

In the next section, we explain the piecewise linear
approximation based on Taylor expansion and the re-
dundant binary Booth recoding. We propose the new
method in Section 3, and compare it with conventional
methods in Section 4. In Section 5, we discuss on the
details of the method in several practical applications.

2 Preliminaries

2.1 Piecewise linear approximation based
on Taylor expansion

We assume that the operand X is an (n + 1)-bit
binary number in the range 1 < X < 2. Namely, X is
represented as [l.z1z2 - - - z,] (2: € {0,1}). We split X
into two parts, X; and X,, where Xj = [L.zyzg - - Tp]
and X2 = [Zm41Zmer - 2n] X 27™,

By the first-order Taylor expansion, X? of X in the
range X; < X < X; 4+ 27 can be approximated as

(X1+2_m_l)p+p-(X1+2_m_])p_l-(Xz—z_m~1). (1)

Table 1. A computation rule for the redundant binary Booth recoding

Step 1 Step 2

lj—1,uy 5j

ag;-103; t;
baj_1b2 00 | 01 10 | 11 i 0172
00 0,0 *1,-3/0,1 1,-2 1,~-1 -3 X | =2 ~1
01 *1,-3/0,1 1,-2 1,-1 1,0 ~2f-27-1]0
10 1,-2 1,-1 1,0 *2,-3/1,1 -1 -1 0 1
11 1,-1 1,0 *2,-3/1,1 2,-2 0 0 1 2
1 1 2 X

* : Both ag;41 and b4y are 1. / Otherwise.

The piecewise linear approximation based on the first-
order Taylor expansion adopts a linear function Cj x
X + Cp, where C1 = p- (X1 +2"™ 1)t and Cy =
(Xp+2-m= 1P —2=m=1.p (X3 +27™ " 1)P-1, The two
coefficients C7 and Cp are read through table look-up
addressed by X; (without the leading 1). The look-up
table keeps the coefficients for 2™ intervals of X. One
multiplication and one addition are required besides
a table look-up. The error is about p(p — 1) - (X3 +
2-m-1)p=2. (X, —2-™m~1)2 /2. Therefore, about (2m +
3 -log, |p|—log, [p — 1| —max{0, p—2})-bits accuracy is
obtained. (We may refine C; and Cj for each interval
so that we may obtain slightly better accuracy.) The
required table size is about 2™ x (m + 2m) bits.

2.2 Redundant binary Booth recoding

In the method to be proposed, the redundant binary
Booth recoding [3, 4, 5, 6] is used for the modification of
the operand. It converts a binary number in the carry
save form into a radix 4 signed-digit (SD4) number with
the digit set {—2,—1,0,1,2}. Namely, it calculates the
sum of two binary numbers in the SD4 representation.

Let us consider conversion of two binary numbers A
(= [-@1a2 - - ag]2) and B (= [byby - - - b,]2) into an SD4
number S (= [s9.5182 - - - 5[n/2])5D4), Where § = A4 B.

The conversion process consists of two steps. In the
first step, at each position of §, we determine #;.,
(e {0,1,2}) and u; (e {-3,-2,-1,0,1}), satisfying
4tj__1 + u; = (2(1‘2j~1 + (1;2_,‘) + (2b2j_1 -+ I)Qj). In the
second step, at each position of S, we calculate s; by
summing up u; and ¢;. In the first step, we determine
u;-1 and t; by looking into asj41 and bgj4q so that s;
satisfies —2 < 5; < 2 in the second step. Table 1 shows
a computation rule for the redundant binary Booth re-
coding.

The redundant binary Booth recoding is an exten-
sion of 2-bit Booth recoding. Namely, we can perform

127

X : Never occur.

2-bit Booth recoding of A by letting B be 0.

Since the computation can be performed in paral-
lel at each position, the depth of a redundant binary
Booth recoder is a small constant independent of n.

3 A new method for generating a power
of an operand

3.1 A New Method

Now, we propose a new method for generating X?.
We can rewrite eq. (1) as follows:

(X1+2-—m——1)p—lX(Xl+2—m—-l+p.(X2_2—m—1))_ (2)

Therefore, C x X' produces the same value as C; x
X + Co, where C = (X3 +27™71)*~1 and

X'=X+27" +p- (X -2"""1. (3)

C can be read through table look-up addressed by X;
(without the leading 1). For special p’s, X’ can be
obtained by modifying X. The look-up table keeps C
for 2™ intervals of X. The required table size is about
2™ x 2m bits. Only multiplication with modification
of the operand is required besides a table look-up.

Now, we show how we can produce X’ by modifying
X.

Case (1): p =27% (k: non-negative integer)

The square root, x2 , is included as a special case
[7]-

Substituting p = 2% to eq. (3), we get
XI = X1 -+ 2—7"_1 + 2-k - (X2 - 2—"]—1) = X1 -+
2-m-1 . g-m=k-1 4 9~k . X, Therefore, X' =
L2122 ZinZma1Zme1 - Ems1Tma2Bmts - - T,
where Z; is the complement of z;. There are k %,,,..1’s
between 2,41 and &40

Table 2. A modified computation rule for the redundant Booth recoding (Step 1)

tjﬁl,'l!,]'
a2;j-102j
baj—1ba; 00 | 01 10 | 11
00 0,0 *1,-3/0,1 1,-2 1,~1
01 *1,-3/0,1 1,-2 1,-1 1,0
~10 0,-2 0,-1 0,0 *1,-3/0, 1
T11 0,—1 0,0 *1,-3/0, 1 1,-2

1 Xl---xmxm+1.-.xn
— |
— m bits
ROM
a ‘iabout 2m bits
s
Q
q4 g
Q o
SRR
U . .
13 (Existing)
o | e
— & Y Multiplier
o]
a
I,
4
o
ol
1O

Figure 1. An implementation for case (1)

We can form X’ by only inserting k £,,41's between
Zma1 and Tpmp2. (We throw several lower bits away,
when they are unnecessary.)

Fig. 1 illustrates an implementation of the method
for this case. The required hardware is a ROM of size
about 2™ x 2m bits and an operand modifier. The
operand modifier consists of only an inverter. (k-bit
shift may be implemented by wiring.) No other ded-
icated hardware is required when we use an existing
multiplier. The multiplier must be 2m-bits by 2m-bits
or larger.

Case (2): p= —27% (k: non-negative integer)

The reciprocal, X ’20, and the reciprocal square
root, X 27, are included as special cases [7].

Substituting p —27F to eq. (8), we get
X'=Xxp+2 ™t —27F (X, —27m) = X3 +
g-m-=1 4 9-m-k=1 _ 9=k . X, Therefore, X’
[1-xlz2 BBt 1Tl T4l Bt 2Emyg - fén] +
2-"—k_ There are k Zm+1’s between Z,41 and Zraa.

128

We can form X' by only complementing X3 bitwise
and inserting & 2;,41’s between 41 and &40, (We
ignore the last term +27"~%. We throw several lower
bits away, when they are unnecessary.)

An implementation of the method for this case is
the same as that for case (1) shown in Fig. 1, except
that the operand modifier consists of » — m inverters.
(The number of inverters may be fewer when several
lower bits are unnecessary.)

Case (3): p = 2F (k: positive integer)

The fourth power, X22, is included as a special case.

Substituting p 2% to eq. (3), we get X'
Xy 4+ 27m~1 4 2F . (X — 27™-1). Therefore, X'
[1.$1$2 e :L'm].] + 2——m+k . [-?Em+1$m+2xm+3 e Tyl
is —1 or 0 accordingly as z; is 0 or 1.

We can form X’ by only a k-bit left shift of X5 and
a redundant binary Booth recoding. Since the most
significant digit of the second term %,,4.; may be —1, we
modify the calculation rule of Step 1 for this position.
Table 2 shows a modified computation rule for Step 1.

Fig. 2 illustrates an implementation of the method
for this case. The operand modifier is a redundant
binary Booth recoder, which can be obtained by mod-
ifying an ordinary Booth recoder. No other change is
required on hardware when we use a multiplier with a
Booth recoder.

B

Case (4): p= —2* (k: positive integer)

The reciprocal square, X -2! ,is included as a special
case.

Substituting p -2% to eq. (3), we get
X' = Xy +27m"1 — 2% (Xy —27™71). Therefore,
X' = [Layzg - &ml] 427 ™% [0 1 Emp2@mes - Fn
1---1]+27". z;is 0 or —1 accordingly as z; is 0 or 1.

We can form X' by only a bitwise complementation
and a k-bit left shift of X3, and a redundant binary
Booth recoding.

An implementation of the method for this case is the
same as that for case (3) shown in Fig. 2. Inverters are
required at the input of the redundant binary Booth
recoder.

ROM

*about 2m bits

(Existing)

Multiplier
(with)
Booth recoder

Operand modifier
RB Booth recoder)

Figure 2. An implementation for case (3)

Case (B): p = £251 £ 27k
(ky: integer, ky: non-negative integer)

The cube, X21+2°, is included as a special case.

Substituting p = £2%1 £ 27%2 to eq. (3), we get
X' =Xp 27 4 (220 £27k) (X —27m) =
(Xy42 ™ 1227ke (Xp—27m 1)) £ 2R (Xp—27™7),
Since k3 is a non-negative integer, Xy +2-™"1 £27k2.
(X2 —27™~1) can be obtained by the way for case (1)
or (2). We can add +2%1 - (X, — 27™"1) to this by
redundant binary Booth recoding.

An implementation of the method for this case is
similar to the former cases. The operand modifier is a
combination of the operand modifier for case (1) or (2)
and a redundant binary Booth recoder.

3.2 Refinement of the Coefficient

Here, we refine the coefficient C' to C’ in order to
reduce the maximum absolute error.

Theerrorof Cx X'is Cx X' = X? = X' x(C - XPx
X D) =X'x((Xh+27")P — (Xy + Xo)P - (X1 +
27 g p (Xy =277 = X! x (XP T+ (p= 1)
2-m-LXP 2 (p—1)(p—2)-2 A X0 4) —(XT+
P XL Xpbp(p=1) 271 XT 2 X 4 (X X
Xo—(p-1)-27")+ X (p-Xo—(p=1)-27" 12—+ 1))
~ X'x(—p(p—1)-271-XP73(Xp—27""1)2). Therefore,
C’ should be C + p(p — 1) - 271 . XP~> . 9=2m~3 —
(X1 +27m 1)1 4 p(p—1)-272m—4 X7 0 e XP) 4
(p—1)-2-m"1. XP72 4 (p—1)(3p—4)-272m~*. X%

Then, when calculations are carried out with infi-
nite precision, the maximum absolute error becomes

129

[p(p — 1) - 272m=4. XP~2|. Therefore, about (2m + 4 —
log, |p| — logy |p — 1] — max{0, p — 2})-bits accuracy is
obtained. Namely, one more bit accuracy is obtained
by the refinement of the coefficient.

4 Comparison

The proposed method generates a power in the same
accuracy as the conventional piecewise linear approxi-
mation based on the first-order Taylor expansion, when
the same part of the operand is used as the table index.
When we use the upper m bits (without the leading 1)
of the operand as the table index, both methods gen-
erate a power in about 2m-bits accuracy.

The proposed method requires a look-up table of
size about 2™ x 2m bits, while the conventional method
requires a one of size about 2™ x 3m bits. Namely, the
look-up table of the proposed method is about the two
thirds of that of the conventional method in size.

The proposed method does not require an addition,
but requires an operand modification which is carried
out by a bitwise inversion, a shift and/or a redundant
binary Booth recoding. The operand modifier consists
of inverters and/or a redundant binary Booth recoder
which is a modification of an ordinary Booth recoder.
It is simple and small, and has a very small constant
delay independent of m and n.

The size of multiplication of the proposed method
is about 2m-bits by 2m-bits, while that of the con-
ventional method is about m-bits by m-bits. There-
fore, when we prepare a dedicated multiplier, the pro-
posed method requires a larger multiplier. The pro-
posed method is more attractive when we may use an
existing multiplier.

Compared with the direct approximation, i.e., di-
rectly reading the approximation through table look-
up, the proposed method additionally requires a mul-
tiplication with operand modification. It requires a
much smaller table. When we want to obtain 2m-bits
accuracy by the direct approximation, we have to use
the upper about 2m bits (without the leading 1) of the
operand as the index to a table of size about 22™ x 2m
bits.

DasSarma and Matula reduced the table size of di-
rect approximation by bipartite tables and a redundant
binary Booth recoding (addition) [8]. When we want
to obtain 2m-bits accuracy by this method, we require
two tables of size about 247/3 x 2m bits and of size
24m/3 » 9m /3 bits.

5 Applications
5.1 Reciprocal

Computation of the reciprocal of an operand, i.e.,
X”zo, is not only important by itself, but also impor-
tant for generation of an initial approximation to the
reciprocal of the divisor in multiplicative division. It
belongs to case (2) of Section 3.1.

The refined coefficient C’ is X;2 — 2-™ . X7% 4
7.272m=3 . X~ and satisfies 272 < C' < 1.
The modified operand X’ is Xj + 27™ — X
L1129 ZnEmt1Tmaz - - &n] + 277 We can form
X' by only complementing X bitwise. (We ignore the
last term +277.)

When calculations are carried out with infinite pre-
cision, the maximum absolute error is about 27273 .
X;3. When we use an m-bits-in ¢-bits-out table for C,
the total absolute error considering the rounding error
of C’ is smaller than 272™=3. X3 4 2-¢-1. X;_ Note
that we do not need whole X/ but need down to about
the t-th position of X’. The size of multiplication is
about (¢ + 1)-bits by #-bits.

The required hardware is a ROM of size 2™ X t bits
and an operand modifier which consists of only t — m
inverters. Note that the operand modifier may be a
modification of the complementer which is used for
the multiplicative division algorithms, such as Newton-
Raphson method. No other dedicated hardware is re-
quired when we use an existing multiplier which is also
used for the multiplicative division. When we prepare
a dedicated multiplier, its size should be (¢ + 1)-bits by
t-bits.

For generating the reciprocal in single-precision (24-
bits) accuracy, m should be 11 and ¢ should be 25, and
the table should be of size 211 x 25 = 50K bits.

When we apply the method to generation of an
initial approximation to the reciprocal for double-
precision multiplicative division by Newton-Raphson
method, the table should be of size 2% x 8 = 64 or
26 x 14 = 896 or 2!3 x 28 = 224K bits, accordingly as
followed by 3 or 2 or 1 Newton-Raphson iterations [7].
(We assume that we compute the reciprocal in 54-bits
accuracy.)

5.2 Square Root

The square root, i.e, X2 ', belongs to case (1) of
Section 3.1.

The refined coefficient C' is X; /* —2-m-2.x7%%
5.272m=6, X1_5/27 and satisfies 272 < C' < 1.
The modified operand X' is X1 +2"™"2 - 2"1. X, =
[L.z1ze -+ * TnTrnt1Em+1Tme2 - - Tn). We can form X'

130

by only a complementation of z,,41 and a 1-bit right
shift.

When calculations are carried out with infinite pre-
cision, the maximum absolute error is about 2-2m~6 .
X7 3/, When we use an m-bits-in #-bits-out table for
C’, the total absolute error considering the rounding
error of C' is smaller than 2-2m—6 -X1_3/2 +2-t2. Xy,

For generating the square root in single-precision ac-
curacy, m should be 10 and ¢ should be 24, and the
table should be of size 210 x 24 = 24K bits.

5.3 Reciprocal Square Root

Computation of the reciprocal square root of an
operand, i.e., X“Tl, is important for generation of
an initial approximation to the reciprocal square root
of the operand in multiplicative square rooting. It be-
longs to case (2) of Section 3.1.

The refined coefficient C' is X7 °/% — 3. 2-m~2.
X752 433.272m=06. X ~T/2 454 satisfies 273/2 < €' <
1. The modified operand X' is X; +27""1 4 9-m=2 _
2_] : X2 = [1-371 Xo--- mm£’m+1-’”m+]£m+2 ce -:i:n] +
27", We can form X' by only a bitwise comple-
mentation of X5 and a 1-bit right shift. (We ignore the
last term +27""1))

When calculations are carried out with infinite pre-
cision, the maximum absolute error is about 3-2-2m~6.
Xy 5/ When we use an m-bits-in ¢-bits-out table for
C’, the total absolute error considering the rounding
error of C’ is smaller than 3-2‘2'"‘6-Xl_‘r’/2+2""1 -X1.

The required hardware is a ROM of size 2 X t bits
and an operand modifier which consists of only t —
m inverters. Note that the operand modifier may be
a modification of the complementer which is used for
the multiplicative square rooting algorithms, such as
Newton-Raphson method.

For generating the reciprocal square root in single-
precision accuracy, m should be 10 and ¢ should be 25,
and the table should be of size 210 x 25 = 25K bits.

When we apply the method to generation of an
initial approximation to the reciprocal square root
for double-precision multiplicative square rooting by
Newton-Raphson method, the table should be of size
20 x 14 = 896 or 2'? x 28 = 224K bits, accordingly
as followed by 2 or 1 Newton-Raphson iterations [7].
(We assume that we compute VX or vV2X accordingly
as the exponent is even or odd. We also assume that
we compute the reciprocal square root in 54-bits accu-
racy.)

5.4 Reciprocal Square

The reciprocal square, i.e., X”2], belongs to case
(4) of Section 3.1.

The refined coefficient C’ is X1—3 -3.2-m-1 'Xf4 +
15.2-2m-3 . Xl_5, and satisfies 273 < C’ < 1. The
modified operand X' is X 42771 =2.(Xp~2"™"1) =
[1-3:1-7:2 s T 1] + 2—m+1 i [-a_;m—{—l-';:m+23~:m+3 o jnl} +
27", We can form X’ by a bitwise complementation
of X3, a 1-bit left shift and a redundant binary Booth
recoding.

When we use an m-bits-in ¢-bits-out table for C’,
the total absolute error considering the rounding error
of C' is smaller than 3.272m—3 -Xl_4 +2-t1. x5,

For generating the reciprocal square in single-
precision accuracy, m should be 12 and t should be
25, and the table should be of size 2!2 x 25 = 100K
bits.

5.5 Cube

The cube, i.e., X21+20, belongs to case (5) of Sec-
tion 3.1.

The refined coefficient C’ is X12 -2 . X745
2-2m=3 and satisfies 1 < C' < 4. The modi-
fied operand X' is X3 + X2 +2 - (Xo — 27™71) =
[1-3"1-'”2 s mn] + 2-m+l . [-3:;m+1 Tin+2Tm+3 " -7:71]~ We
can form X' by a 1-bit left shift and a redundant binary
Booth recoding.

When we use an m-bits-in ¢-bits-out table for C’,
the total absolute error considering the rounding error
of C' is smaller than 3-2-2m=3. X, +2-t+1. X,

For generating the cube in single-precision accuracy,
m should be 12 and ¢ should be 28, and the table should
be of size 212 x 28 = 112K bits.

5.6 Fourth Power

The fourth power, i.e., X%, belongs to case (3) of
Section 3.1.

The refined coefficient C’ is X3 +3-27""1. X{ +
3.272m-1. X, and satisfies 1 < C' < 8. The modi-
fied operand X' is X; +27™" 1 422, (Xp - 277" 1) =
(L2122 2ml] + 272 - [Fpi1@ms2 - - a). We can
form X' by a 2-bit left shift and a redundant binary
Booth recoding.

When we use an m-bits-in t-bits-out table for C’,
the total absolute error considering the rounding error
of C' is smaller than 3-27%m=2. X7 + 2712. X,

For generating the fourth power in single-precision
accuracy, m should be 13 and ¢ should be 29, and the
table should be of size 21% x 29 = 232K bits.

131

6 Concluding Remarks

We have proposed a new method for generating the
p-th power of an operand for several useful p’s. It re-
quires only one multiplication with a slight modifica-
tion of the operand and produces an approximation
with the same accuracy as the conventional piecewise
linear approximation based on the first-order Taylor
expansion which requires one multiplication and one
addition. One clock cycle may be saved, and the re-
quired ROM size is reduced.

The proposed method can be used for direct gen-
eration of several powers, e.g., reciprocal, square root,
reciprocal square root, reciprocal square, cube, fourth
power, and etc., of an operand in single-precision (24-
bits) or less accuracy. It is also efficient for generation
of reciprocal and reciprocal square root used for initial
approximations for multiplicative division and square
rooting, respectively.

References

[1] G. Dahlquist, A. Bjorck, and N. Anderson eds., Numer-
ical Methods, Prentice-Hall, 1974.
[2] P. M. Farmwald: ‘High bandwidth evaluation of elemen-

tary functions,” Proc. of 5th Symposium on Computer
Arithmetic, pp. 139-142, 1981.

[3] T. Nishimoto: ‘Multiple/Divide Unit,” U.S. Patent
4337519, June 1982.

[4] N. Takagi: ‘Studies on Hardware Algorithms for Arith-
metic Operations with a Redundant Binary Represen-
tation,” Doctoral dissertation, Dept. of Information Sci-
ence, Kyoto University, Aug. 1987.

[5

N. Takagi: ‘Arithmetic unit based on a high speed mul-
tiplier with a redundant binary addition tree,” Proc.
SPIE, vol. 1566, pp. 244-251, July 1991.

[6] C.N.LyuandD. W. Matula: ‘Redundant binary Booth

recoding,” Proc. 12th Symposium on Computer Arith-
metic, pp. 50-57, July 1995.

[7] M. Ito, N. Takagi, and S. Yajima: ‘Efficient initial ap-
proximation for multiplicative division and square root
by a multiplication with operand modification,” IEEE
Transactions on Computers, vol. 46, no. 4, April 1997.

[8] D. DasSarma and D. W. Matula: ‘Faithful bipartite
ROM reciprocal tables,” Proc. 12th Symposium on
Computer Arithmetic, pp. 17-28, July 1995.

