1063-6889/97 $10.00 © 1997 IEEE

Fraction-free RNS Algorithms for Solving Linear
Systems

. Peter R Turner
Mathematics Department, US Naval Academy, Annapolis MD 21402
prt@sma.usna.navy.mil

Abstract

This paper i3 concerned with overcoming the arith-
metic problems which arise in the solution of lin-
ear systems with integer coefficients. Specifically,
solving such systems using (integer) Gauss elimina-
tion or its variants usually results in severe growth
wn the dynamic range of the integers that must be
represented. To alleviate this problem, a Residue
Number System (RNS) can be utilized so that large
integers can be represented by a vector of residues
which require only short wordlengths. RNS arith-
metic however cannot easily handle any divisions
that are needed in the solution process. This pa-
per presents fraction-free algorithms for the solution
of integer systems. This does involve divisions —
but only dwisions where the result is known to be
an ezact integer. The other principal contribution
of this paper 4s the presentation of an RNS division
algorithm for exact integer division which does not
require any conversion to standard binary form. It
uses entirely modular arithmetuic, perhaps including
a step equivalent to RNS base extension.

1. Introduction

This paper is concerned with the computer arith-
metic aspects of one of the fundamental problems
of scientific computing, the solution of systems of
linear equation. Specifically we are concerned here
with systems in which all elements of the coefli-
cient matrix and the right-hand side are integers.
Such systems arise in many practical applications in-
cluding signal processing tasks where data are often
expressed as integers reflecting the resolution and
quantization of the signals. This was discussed in
the context of adaptive beamforming in [7].

The biggest single difficulty with solving integer
systems is the growth in the integer dynamic range

218

during (integer) Gauss elimination. (Of course,
other algorithms can be used but they are typically
less readily modified to integer computation.) This
difficulty can be countered by the use of Residue
Number Systems, RNS. This allows a large dynamic
range to be accommodated without needing a very
long integer wordlength.

The basic idea of a residue number system is that
an integer is represented by its residues modulo each
of a basis set of (usually prime) numbers. (See [3],
[10], for example.) Using an RNS basis of L rela-

tively prime integers {p1,p2,...,pL}, an integer a is
represented by the vector (as, ag, . .., az) of residues
defined by

ar = amodp, = (a)pk (k=1,2,...,L) (1)
The dynamic range of this system is the product of
the basis elements: M = [[r_; px which is to say
that a set of M consecutive integers can be repre-
sented uniquely in this system. Often the range used
is symmetric so that if M = 2P + 1 integers in the
interval {—P, P] can be represented. The integer a
can be recovered by use of the Chinese Remainder
Theorem, CRT.

RNS arithmetic has the additional advantage of a
natural parallelism since addition, subtraction and
multiplication can be performed entirely within the
various modular arithmetics. Specifically, for two
integers a, b represented as in (1),

a+b= §<a1 + b1)p1 , {ag + I)2>p2 yor-a oL + bL)pL

axb= (a1 % b1)m,(a2 X bz)pz,...,(az, X bL}pL

The operations in the different moduli are inde-
pendent and so can be performed simultaneously if
parallel modular arithmetic channels are available.

Much of the recent literature on RNS arithmetic
has been devoted to the development of RNS divi-
sion algorithms. Division is not a natural RNS (or

even integer) operation. Typically RNS division al-
gorithms require use of the CRT or some extended
RNS basis. See [2], [4], [6], [8], for example.

One of the more promising approaches to reducing
the growth in dynamic range is to use fraction-free
algorithms. The first significant progress in such al-
gorithms for linear algebra problems was made by
Bareiss [1). His algorithm can be simplified and ex-
tended, for example, to fraction-free LU decompo-
sition of a matrix., The difficulty with using this
approach in RNS arithmetic is that it requires divi-
sions of complete submatrices by a common factor.
However, these divisions are not completely general.
These common factors are known and are generated
automatically by the algorithm. It follows that in
all cases the results are known to be exact integers.
Such divisions can be achieved within the RNS sys-
tem using entirely modular arithmetic. The advan-
tages of parallelism are thus retained with, perhaps,
one additional step. This step is logically equiva-
lent to base extension for any moduli for which the
quotient takes the indeterminate form 0/0.

These last developments are the contribution of
the present paper. In Section II, we describe the
fraction-free algorithms for linear systems. The
main novelty comes from the extension of the basic
idea to a fraction-free equivalent of LU factorization
which allows multiple systems with a common coef-
ficient matrix to be solved more economically. The
central role of exact integer division becomes ap-
parent. Section III is primarily concerned with this
problem. We present a simple algorithm for RNS
division where the result is known to be an ezact
wnteger in advance. For algorithms such as those of
Section II, this is an important development which
may render RNS arithmetic a practical approach to
the solution of integer linear systems.

2. Fraction-free algorithms for linear
systems

We begin with a brief description of fraction-free
Gauss elimination, FFGE. The algorithm presented
here is a simplification of Bareiss’s original algo-
rithm. It remains valid for symbolic computation
in more general ring settings but we shall concen-
trate here on its application for integer arithmetic.
This version of the algorithm resulted from a com-
parison of the floating-point and integer divisionless
forms of Gauss elimination [11].

The essence of the algorithm can be seen by con-
sidering a 3x 3 matrix. From the comparative analy-

sis mentioned above, we see that the result of divi-
sionless Gauss elimination starting with the (inte-
ger) matrix

a b ¢
d e f
g h i
is an upper triangular matrix
a b c
ae—db af —dc
axdet A

The key observation here is that the final element
has the factor a. If this factor is removed (by exact
division) the diagonal will now consist of the princi-
pal minors of increasing size of the original matrix.
Moreover for a larger matrix, every element below
or to the right of the 3, 3 position will have this fac-
tor a at this stage since the computation for every
such position is essentially identical. This factor is
therefore removable form the entire active matrix.
A similar comment applies at each subsequent stage
of the elimination — except that the common factor
“moves” down the diagonal. These factors can be
systematically removed as the algorithm proceeds.
The following algorithm (written using MATLAB
subscript notation to help highlight potential paral-
lel operations) describes this procedure for the aug-
mented matrix [A[b] so that the final column is iden-
tified with the right-hand side of the original system.

Algorithm FFGE Fraction-free Gauss elimination

Input
Compute
fori=1:n-1
forj=i+4+1l:n
Qjitlintl = Qi ¥ Qg ip 1int1 — Q5,4 * Qi itimdl
if(E>1)
Qi1einitlintgl = ai+1:n,i+1m+1/ai-—l,i—1
Qit1in,i = 0
Output (modified) augmented matrix A
It is immediately apparent that FFGE is not
division-free but it is fraction-free since all divisors
are exact factors of their dividends. The algoritbm
above has no mention of pivoting. If a zero pivot is
encountered then the simplest pivoting strategy is
to interchange this row with the first row having a
nonzero entry in the pivot column. This is also the
pivoting strategy recommended in both [1] and [11}.

n X (n+ 1) augmented matrix A

Example 1 The above algorithm applied to the fol-
lowing system produces the result shown below. It
18 easy to check that the leading diagonal consists of
the determinants of the principal manors of A.

219

2 9' 00 11
10 3 0 3} | 6
A=l6 55 0| P~ 16
6 8 6 4 24
gives the output
2 9 0 0 11
0 6 0 6 12
0 0 30 132 162
00 0 =102 -102

The entries in the final triangular (or, strictly, ech-
elon) matrix are all determinants of minors of the
original augmented matrix. Specifically, the ¢, j-th
entry is the determinant of the minor consisting of
rows 1,2,...,% and columns 1,...,7—1, 5. This fact

may perhaps be exploited in other settings such as.

using resultants to solve systems of polynomial equa-
tions.

" Tt is clear that the removal of these common fac-
tors necessarily reduces the dynamic range require-
ment, Since we are concerned with integer arith-
metic these factors all have magnitude of at least
1. What is not immediately apparent is the extent
" to which the dynamic range is reduced. General
bounds are difficult to establish and are unrealisti-
cally pessimistic due to allowing for all worst cases.
A more useful indication of the savings achieved
can be obtained from a simple comparison of the
final values for a,y, by the Algorithm FFGE and by
the divisionless algorithm, This comparison was in-
troduced in {11]. A simpler characterization of this
is obtained in terms of the matrix elements in the
fraction-free algorithm.

Let a,; denote the values obtained from Algorithm
FFGE. Denote by a2, the final value obtained by
divisionless Gauss elimination for the n,n element
of A. Then we have an, = det A and

apn = (077%a55% + nz) det A (2)

This growth factor is a realistic estimate of the sav-
ing in dynamic range achieved by the fraction-free
algorithm. Even for the very small dimensional ex-
ample above, this represents a saving of a factor of
24 in the magnitude of ag4.

For a 12 x 12 matrix with initial entries repre-
sented by 8-bit integers, we may conjecture a “typi-
cal” magnitude of initial entries around 16 (approx-
imately the square-root of the initial range). Even if
we assume that no growth in the diagonal entries the

ratio oD,/ det A given by (2) is [[, 16* = 16%5 =
2220, That is some 220 bits have been saved from
the effective wordlength demanded by this dynamic
range growth!

The use of Gauss elimination in its basic form
is greatly restricted by the fact that if subsequent
systems with the same coefficient matrix are to be
solved then the complete solution process must be
repeated. In the general real arithmetic setting this
problem is easily overcome by the simple modifi-
cation of GE to a LU factorization algorithm by
storing the multipliers in the subdiagonal positions.
This is not so immediately available in the fraction-
free setting: [1] includes variations on the original
algorithm which do not include a fraction-free LU
factorization algorithm. The principal reason for
this difficulty is that the removal of the common
factors has different effects on different parts of the
matrix. This means that the resulting upper trian-
gular system is not a simple factor of the original
matrix.

However, the overriding objective of the LU fac-
torization is not the factorization but the faet that
subsequent systems can be solved without starting
from scratch. In this sense, we can indeed obtain a
fraction-free LU algorithm — and the forward and
back substitution algorithms needed to complete the
solution process. The modifications to Algorithm
FFGE for the “factorization” are precisely equiva-
lent to those for floating-point computation. The
“multipliers” turn out to be just the corresponding
matrix entries which can then be used to mimic the
matrix operations for the right-hand side during the
forward substitution. (This means that the subdiag-
onal entries in the pivot column are left unchanged.)
The back substitution can then be completed pre-
cisely as for Gauss elimination itself. This algorithm
is also described in [9]. Again, in the interest of sim-
plicity, we omit any mention of pivoting from the
algorithm description.

Algorithm FFLU Fraction-free “LU factorization”

Input n X n matrix A
Compute
fori=1:n~—1
forj=i+1:n
05 341m = GG ¥ Gt lin — Q4,6 * Qiitlin
if@E>1)
Aiflin,id-lin 1= ai+1:n,i+1:n/ai—1,'i-—1
Output (modified) matrix A
The only significant changes from the FFGE algo-~
rithm are that the command to replace the “zeroced”

220

elements with 0 is omitted, and the row operations
apply only to the coefficient matrix. The right-hand
side is not mentioned in this algorithm. The two
“factors” are stored together by overwriting the orig-
inal matrix as usual. Unlike the conventional LU
factorization both L and U have the same diagonal.

Example 2 The above algorithm applied to the ma-
trix of Example 1 produces the result shown below.

290 0
0303
A=16 55 0
6 8 6 4
gives the output
2 9 0 0
0 6 0 6
6 —44 30 132
6 —38 36 —102

from which we obtain

0 6 0 0
L=1g _44 30 0
6 —38 36 —102
29 0 0
s_|06 0 6
00 30 132
00 0 —102

The prodﬁct of these matrices is

4 18 0 0
0 36 0 36
12 -210 900 3696
12 -174 1080 14928

which bears little apparent resemblance to the orig-
inal matrix A.

To see the effect of this algorithm we need first to
detail the forward and back substitution algorithms
which yield an integer vector which is a scaled copy
of the true solution (with a known scale factor) so
that the exact solution can be obtained in either the
rationals or the integers as appropriate. (The scale
factor is the determinant of the original matrix.)

Algorithm FFsolve Fraction-free forward and back

substitution

221

Input n x n matrix A (from FFLU), right-hand
side b ’
Compute (Forward substitution)
r:=b
fori=1:n-1
forj=i+1l:n
Ty = Qi *Tj5 — Qi % T
if(E>1) rji=rjfa—1,i-1
Compute (Back substitution)

d = Gnn
fori=n-1:-1:1
rii=dx*xr;

forj=n:-1:4+1
Ti =T — Qi ¥T5

T 1= T84
Output scaled solution r, scale factor d.

It is easy to see from the lop structure that these
forward and back substitution procedures require
O (n?) operations compared with O (n®) for the
FFLU phase. (The actual operation counts of course
vary from the floating-point case due to the “cross-
multiplications” and the removal of the common fac-
tors.) This is precisely the same comparison as is
valid for the floating-point situation and so the same
complexity benefits are derived from this method.

“Example 3 The above algorithm applied to the sys-

tem of Example 1, using the factorization wn Exam-
ple 2, produces the results shown below.

The “factors” found in Example 2 are

2 0 0 0 29 0 0
0 6 0 o0{ o6 0 6
6 —44 30 0{’]l0 0 30 132
6 —38 36 -102 00 0 -102

The forward substitution phase yields the vector
r =(11,12,162, ~102)’ and the back substitution, in
turn, gives r =(—102, ~102, ~102,~102)" and d =
—102 from which the integer solution is easily ob-
tained. In the situation where there is no integer
solution, r and d would yield the rational solution.

The solution for a different right-hand side
b =(20,18,31,56)' is obtained by simply recom-
puting Algorithm FFsolve. In this case we get
r = (20, 36,618, ~408)’ from the forward substitu-
tion and then r =(-102, —204, ~306, —408) still
with d = —~102 results from the back substitution.
Again the exact solution is easily computed.

Just as with the FFGE algorithm we can easily
obtain a comparison of the elements generated by
this FFsolve and those that would be obtained form

a divisionless back substitution. The comparison is
similar to that summarized in (2) - except that we
should note that the matrix entries for the division-
less algorithm would already have suffered that first
growth. The combined effect is therefore that the
saving in dynamic range is much enhanced.

If the systems are to be solved on a parallel com-
puter then it is easy to modify the FFGE algorithm
to perform fraction-free Gauss-Jordan decomposi-
tion to take advantage of the ease of elimination
both above and below the diagonal. The details are
omitted here, see [9].

There is an obvious difficulty in implementing
these algorithms in a residue number system. RNS

- arithmetic does not (in any simple way) admit divi-
sion and, clearly, the removal of the common factors
in these algorithms is division—intensive. However,
these are not general RNS divisions but are known
to be exact integer operations since the divisors are
known factors of the various numerators. Such an
operation is amenable to RNS arithmetic without
the need to leave the naturally parallel environment
of residue arithmetic. The next section is concerned
with the implementation of exact integer division in
RNS arithmetic,

3. Exact RNS integer division

We first recall our basic notation for a residue
number system. For our exact integer division al-
gorithm it is necessary that all modulr are prime
so that we have an RNS basis {py,po,...,pr} of L
prime numbers.. The reason that each modulus is
required to be prime is simply that each ring 2,,
is then a field which is to say that every element
has a unique multiplicative inverse. The dynamic
range of this system is M = Hﬁ=1 pr which would
normally be used to represent either the set of inte-
gers {0,1,...,M —1} or, for M = 2P + 1, the set
{-P,~P+1,...,P}. For most linear algebra ap-
plications of RNS arithmetic the symmetric range is
more suitable.

A second convention that we adopt throughout
this section is that all divisions under discussion are
known to have ezact integer results. In this spe-
cial context, division can be performed within the

RNS system. The only complication that can arise

is that a limited base-extension is sometimes needed.
Strictly, the term base-exztension is inappropriate
here: what may really be needed is the residue of
the quotient relative to one (or more) modulus for
which the division is undefined. For this reason we

222

shall refer to base-completion when such operations
are needed. ’
The exact division algorithm is based on the fact

. that if all residues are nonzero and division is known

to be exact, then modular division can be used. This
is stated more precisely as part of the following ele-
mentary theorem on modular arithmetic.

Theorem 4 Suppose m,n,q are integers, all repre-
sentable in the RNS, and such that q = m/n. Then
(1) For any k such that ng 0,

g = (), = (ma/na),, ®)

(2) If ny, = 0, then my, = 0 also, and g is not
defined by (3).

The first part follows immediately from the facts
that multiplication is a modular operation and that
Zp, is an algebraic field. The proof of the second
part simply depends on the observation that if nj, =
0, then n is a multiple of pk. Since m is an integer
multiple of n, it follows that my = Oas well.

Equation (3) also shows that if ny, 0 for every
k, then such exact divisions are modular operations.
The primary significance of the second part is that
for any modulus for which the denominator has 0
residue so does the numerator. That is, the only
difficulty arises from a quotient of the form 0/0 in
one or more moduli. (We cannot have z/0 where

z#0.)

Example 5 As a first ezample we consider the
RNS system using the basis primes 3,5,7,11, and
13 which are each representable using just 4 bits,
The symmetric dynamic range for this RNS is
[-~7507,7507). (This system is sufficient to accom-
modate all the computation for the linear systems
of Section II, including all interim results obtamned
before the removal of known factors.)

One of the divisions which takes place early in

~the LU factorization is 264/2. Now 264 s rep-

resented in our RNS by the wvector (0,4,5,0,4)
while 2 is (2,2,2,2,2). The modular dunsion then
yields (0,2,6,0,2), as can be readily verified. These
residues are indeed the representation of the quotient
132 in this particular RNS.

Later in this solution process the division
(—3060) /30 must be performed. The apparent
problem here is that the residues of the numerator
and denominator are (0,0,6,9,8) and (0,0,2,8,4).
The divisions for the first two moduli are undefined.
Since (82),, = (64);; = 9, it follows that the final

three residues of this quotient are 3,8,2 which are
the true residues of the result —102 relative to the
moduli 7, 11 and 13. The question now is “Does
this provide a generally applicable technique?” The
answer is “Yes” as is seen from the following fairly
elementary result. For simplicity we shall state this
result in the context of a symmetnc dynamic range
[P, P].

Theorem 6 Suppose m,n,q are integers, all rep-
resentable in the RNS, and such that ¢ = m/n
and that ngy = 0 for some k. Then |g| <
P/px. It follows that q is representable in the
RNS wunth basis {p1,p2,...,00}\pk. Further-
more, q can then be obtained by base-completion.

(That is base-extension fmm {p1,p2,...,00} \Pk
to{phPZ) ,PL})

To see the first part, we simply observe that if
ng = 0, then my, = 0 and so m = m'pg,n = n'py.
Since |m/|, |n| < P, it follows that |m/|, |n’| < P/pk
and therefore jg| < P/pg, too. That ¢ is rep-

resentable in- that reduced RNS. is then immedi-

ate. Once that representation is obtained base-
completion necessarily yields the remaining residue
k-

We note that if more than one ny is zero this The-
orem can be applied recursively to obtain the ap-
propriate quotient. Of course, the base-completion
could be performed simultaneously for all “undeter-
mined” residues. The problem of base-extension has
been considered in several contexts. One simple de-
scription of a general purpose algorithm based on
conversion to a mixed-radix system is given in 5],
see also [10].

We now summarize this RNS division process.

Algorithm RNSdiv Exact RNS integer division

Input Integers m, n represented in the RNS with ba-
sis {p1,p2,--.,pL}; nis known to divide m.
Compute
For every k such that ng #0, qx = (mk/nk)ph
For any k for which nix = 0, obtain gx by base-
completion
Output Quotient g represented by (¢1,42,...,9L)-
Example 7 We return to the ezample above, where
the divsion (—3060) /30 is to be performed in the
RNS unth basis 8,5,7,11,and 13.

~ The RNS representations of the numerator and
denominator are (0,0,6,9,8) and (0,0,2,8,4). We
deduce, from the first step of the algorithm, that

223

g7 = 3,911 = 8, and ¢13 = 2, as before. To com-
plete the algorithm, we apply a base-extension al-
gorithm to obtain g3, g5. It is readily verifiable that
the residues given above are the representation of
—102 in the symmetric RNS with basis {7,11, 13}.
Any correct base-extension algorithm for a symmet-
ric RNS will therefore yield the remaining residues
93 =0,¢5=3.

It is worth noting here that not all base-extension
algorithms which are valid for the dynamic range
[0, M] remain valid for symmetric dynamic ranges.
However, if the algorithm of Gregory & Matula [5]
is modified so that “symmetric” residues are used
throughout, it will return the correct residues for the
base-completion phase here. For the above example,
we would first convert the quotient to its symmetric
mixed radix form:

g=ag+a1(7)+az(7)(11) 4)

where the coefficients are constrained to satisfy
-3<a£3,-5<a; £5-6 <ag <6. This
is achieved with entirely modular arithmetic and

-yields, for this case, ap = 3, a1 = —4,a2 = —1, Now

evaluating the right-hand side of (4) relative to the
remaining moduli 3 and 5 gives g3 = 0,¢95 = 3, as
expected.

The Algorithm RNSdiv above allows exact integer
division to be performed in the RNS without the
need for conversion to standard binary form. Its use
within fraction-free linear algebra makes the use of
RNS arithmetic for such problems more practical.

There is of course still some problem of range
growth but the fraction-free algorithms help to con-
trol this. For the example system we have used
here, the final factored matrix and solutions gener-
ated numbers no greater than 162 (in absolute value)
while the second system generated elements as large
as 618. (Before the removal of common factors how-
ever, substantially larger quantities may occur such
as the —3060 used in the division example above.)
To illustrate the savings made by the fraction-free
algorithm in the range growth, we simply observe
that if division-free versions of the same algorithms
were used, the solution of our first example gener-
ates integers as large as 146,880. The fraction-free
algorithm has reduced the dynamic range for this
4x4 example by a factor of about 1000. At least
three more moduli (each needing 5 bits instead of
4) would be needed for this. The comparison of the
results of the forward elimination phase summarized
in (2) and the corresponding analysis for FFsolve il-
lustrate that this sort of saving in the dynamic range
is typical of what may be expected.

4. Conclusions

In this paper we have presented a new approach
to the solution of linear systems of equations using
RNS arithmetic. This resulted from two distinct
developments. The first was a (simplification and)
extension of the fraction-free Gauss elimination al-
gorithm of Bareiss [1] to a more powerful algorithm
which has the properties of a conventional LU fac-
torization algorithm. These fraction-free algorithms
rely on the identification of certain known common
factors which arise during the elimination. Because
they are known factors, it follows that their removal
can be accomplished by exact integer division.

The removal of these common factors has two dis-
tinct benefits. Firstly, the dynamic range needed
for the computation is substantially reduced. This
‘makes the integer solution of such systems more fea-
sible. The reduction of the dynamic range growth
leads to the second benefit and the second main de-
velopment of this paper. Fast integer computation
can often be enhanced by the use of RNS arithmetic.
The drawbacks have always been the dynamic range
growth and the lack of a good RNS division algo-
rithm. The second development. addresses this last
issue. In the event of integer division where the re-
sult is known to be an exact integer, we have pre-
sented an algorithm for RNS division which only
uses modular arithmetic. This algorithm combined
with the fraction-free algorithms makes a realistic
approach to the solution of linear systems using RNS
arithmetic and its natural parallelism.

Simple illustrative examples demonstrated the
merits of these algorithms: simplicity of the linear
algebra and the RNS exact division algorithm even
in the situation where some residues of the denom-
inator are 0, and a dramatic reduction in the dy-
namic range which would of course become much
more extreme for larger (more realistic) systems.

Acknowledgement The author is grateful to the
Naval Academy Research Council and the Of-
fice of Naval Research for financial support un-
der grant N0OOO1496WR20018.

References

[1] E.H.Bareiss, Sylvester’s identity and multistep
integer-preserving Goussion elimination, Math
Comp 22 (1968) 565-578.

[2] W.A.Chren, Jr., A new residue number system
division algorithm, Comp. Math. Appl. 19

224

-~ (1990) 13-29.

[3] G.LDavida and B.Litow, Fust parallel arith-
metic vie modular representation, SIAM J
Comp 20 (1991) 756-765.

[4] D.Gamberger, New approach to integer division
in residue number systems, Proc ARITHI10,
IEEE Comp Soc, Washington DC, 1991, pp 84-
91.

[5] R.T.Gregory and D.W.Matula, Base conver-
sion in residue number systems, Proc ARITHS,
IEEE Comp Soc, Washington DC, 1975, pp
117-125.

[6] M.AHitz and E.Kaltofen, Integer division mn
residue number systems, IEEE TC 44 (1995) -
983-989.

[7] B.J.Kirsch and P.R.Turner, Adaptwe beam-
forming using RNS arithmetic, Proc ARITH11,
IEEE Comp Soc, Washington DC, 1993, pp 36-
43. '

[8] Mi Lu and J-S.Chiang, A novel division algo-
rithm for the residue number system, IEEE TC
41 (1992) 1026-1032.

[9] G.C.Nakos, P.R.Turner and R.M.Williams,
‘Fraction-free algorithms for linear and poly-
nomial equations, NAWCADPAX TR, NAWC

. Alireraft Division, Patuxent River, MD, 1997

[10] N.S.Szabo and R.1.Tanaka, Residue arithmetic
and its application to computer technology,
McGraw-Hill, 1967,

[11) P.R.Turner, A simplified fraction-free integer
Gauss elvmination algorithm, NAWCADPAX
96-196-TR, NAWC Aircraft Division, Patuxent
River, MD, 1996

