Exponentiation using Division Chains

Colin D. Walter

Computation Department, UM.LS.T,
PO Box 88, Sackville Street, Manchester M60 1QD, UK.

http://www.co.umist.ac.uk/

cdwl@sna.co.umist.ac.uk

Abstract

Exponentiation may be performed faster than the
traditional square and multiply method by iteratively
reducing the exponent modulo numbers which themselves
require few multiplications, such as those with few non-
zero bits. For a suitable choice of such divisors, this
reduces the expected number of non-squaring
multiplications by over half at the cost of a single extra
register. The method is applicable 1o exponentiation in
any multiplicative group where squaring is as expensive
as multiplication and not cheaper than integer division.
In particular, both hardware and software
implemeniations of the RSA crypto-system can benefit.

1 Introduction

Fast exponentiation is becoming increasingly
important with the widening use of encryption. Whereas
the most startling improvements in speed are achieved
through the use of dedicated hardware for multiplication,
some small gains can also be made at the software level.

The expected number of multiplications (including
squarings) to compute A° in the traditional way, using
square and multiply, 1s approximately %10g2 e, The pre-

calculation or intermediate calculation of auxiliary powets

of A enables some unnecessary repetition of work to be |

avoided. There are several methods for reducing the
average number of operations to about %log, ¢ using
storage for only one or two extra powers of A, but the
variance of the distribution is high: there is a very real
chance of still requiring Zlog,e or even more
operations. With more storage, the coefficient 4/3 can be
further reduced {6] but the lower limit is still above 1 [4]
since Llog2 e_l squarings are certainly necessary to
generate a number as big as A®. Thus, as fast registers are

normally very limited in number, the use of more storage
is actually likely to retard the exponentiation: the cost of

1063-6889/97 $10.00 © 1997 IEEE

92

communication with slower memory may easily outweigh
any minimal reduction in the coefficient.

This paper describes another technique which uses
only one register more than the minimum for the standard
square and multiply method, achieves an average
coefficient below 5/4, and is consistently close to its
average. Some pre-computation is requited to establish a
suitable sequence of squarings and multiplications, with
better results obtained from greater effort. A simple
version of the technique achieves 5/4 with a pre-
computation effort equivalent to only a few
multiplications of integers the size of the exponent.

2 Notation and Literature Review

On a sequential machine, any exponentiation by e can
be described by an addition chain ay, ay, ay, as,..., an,
where ay=1,a,=eand, foreachi>0, a;= a;+ a, for

some j, k <i[4]. The ith multiplication performed is A%

= A9xA™ and exponentiation by e takes n multiplications.
Storage requirements for any chain can be worked out
easily from the sequence itself, although if there is a
choice of j and k for any i then the minimum storage might
not be clear. For given small exponents e, the minimal
numbet of multiplications can be found by a search of all
addition chains for . As an NP-hard problem [1],

‘however, such a search is impractical for the typical

decryption keys e found in RSA cryptography.
Suppose ¢ = zrjfzo e 27 is the binary representation of

2. The standard method of square and multiply can be
performed by processing the bits of e in either direction.
First, a Horner-style evaluation
A® = (((A*)ZAen—1)2m)2 A61)2 Ac0
corresponds to an addition chain with a;,; = 24; (square)
or @iy = a; + do (multiply). This requires just 2 storage
d, .
registers, containing A = A ° and the partial result Al
respectively. Alternatively, rather than squaring the
partial result and multiplying in A as required, A can be

repeatedly squared and the resulting power multiplied into
the partial result when needed:

A° =(A2°)e0 (Azl)”‘ (Azz)ez ...(Azn)‘"

Here the first of the two registers now contains A% for i
= 0,1,..., n. For natural number arithmetic this requires
larger registers than Horner’s method, but there is no
difference for finite rings or real approximations. The
number of multiplications, excluding squarings, is one less
than the Hamming weight of e, i.e. one less than the
number of non-zero bits in e; on average |logy e]/2.

By expressing the exponent using the radix m and pre-
computing the powers A’ for i = 1, 2, ..., m—1 we obtain
the m-ary method [4]. This follows the Horner style
evaluation above, requiring repeated raising to the mth
power and multiplying by an A" It is usually convenient
to pick m as a power of 2. Then the number of squarings
is roughly the same as before, but the number of other
multiplications excluding pre-computations reduces (o
Llog,, e)(m—1)/m on average. This is good for larger

m, but storage requirements become prohibitive very
quickly.

Half the memory can be saved by pre-computing A’ for
odd i only [6].. The exponent is recoded as ¢ =
eq+ mo(e, + my(ey +my(..(e,; +m,1€,)...))) where
m; = m is chosen whenever it makes ¢; odd, and otherwise
m; = 2 is chosen with ¢;= 0. Then

A = ((((A%)"n=1 A%1)™-2)™ ATY™ A%

This requires m/2 registers besides the partial result, about
|_10g2 eJ - —;-logz m+1 squarings if m is a power of 2, and

about |log,e|/(log, m+1) other multiplications on

average besides any used for the pre-computations. (For i
< n there are on average as many cases of m; = m as m; =
2.) Taking m = 2 gives the binary method above with
coefficient 3/2. Taking m = 4 means a third register, which
holds A%, and this reduces the coefficient to 4/3.

If the inverse A~ exists and can be calculated cheaply,
then any sequence of 1s can be replaced by the sequence
10..0T. Starting from the least significant bit of e,
whenever two adjacent 1s are encountered with no carry
from lower down, the lower 1 is replaced by 1 and a
carry of 1 generated to the upper 1. Similarly, for a carry
of 1 into 10, the lower 0 is replaced by T with a carry up
to the 1. Otherwise carries propagate up as usual. On
average the carry is 1 in 50% of cases, 2/3rds of these are
into a foltowing 1. Similarly, a carry of 0 is to a digit 0 in
2/31ds of cases. Thus, after this modified Booth recoding,
a 0 digit occurs on average, in 2/3rds of all cases. So again
about —‘;—logz e multiplications by A or A™' are required

93

[7]. Storage is 3 registers, one for each of A, A~ and the
partial result. This method can be combined with the m-
ary method (see [2], [5]). Further similar methods include
[31.

3 The Division Chain Method

A pew means of reducing the number of
multiplications arises from the iterative application of a
decomposition e = de' + r where r is usually the least
non-negative residue of e modulo d. At each repetition
the divisor d is selected by reference to a pre-determined
set of pairs (d,r) and the powers AY and A" are computed.
Since A° satisfies the relationship

Ae = (Ad)e'Al‘

it suffices to multiply A" into a partial product register and
re-apply the process to the remaining problem of raising
A" 10 the power e'. Including all residues for some divisor
such as 2, 3 or 5 guarantees each step is possible and that
termination occurs, When ¢’ = 0 has been processed the
partial product register contains the required output.

We assume that it is known how best to calculate A
and A". So divisor / residue pairs (d,r) must be selected
from a set for which this information is known. Then at
each step the cheapest such decomposition can be chosen
from this fixed set of pairs. A sequence of pairs (d,r) used
to direct an exponentiation will be called a division chain
by analogy with the addition chain description, Although
it is usually the case, we see later that the residue need not
always be the least non-negative one. However, if no
choice of residue is ever permitted, then the sequence of
divisors suffices to determine the division chain.

When d = 2 at each step, this technique is just the
standard square and multiply method described above. If
r = 0 at each step it becomes the facror method of [4]. So
the division chain method here generalises both of these.

If F(e) is the minimum number of multiplications used
to compute A® by any method, then the decomposition
shows F(e) < F(e)+F(d)+F(r)+1, where the inequality
arises partly because # may be 0 or some multiplications
which are used to form A? may also be used in
constructing A”. However, F(e) = F(e)+F(d) because
F(e) is of order log(e). So such a step can only be useful
if A and A" are both cheap to compute. In particular, this
is the case whend =2"+1 and r=0, 2"'+1 or 2™ for
some m < n. Then the formation of A” is a by-product of
computing A%, In general, useful pairs (d,r) normally have
the property that r lies in an addition chain for d of
minimal length or, at worst, r is the sum of two members
of such a chain. Consequently, if f{e) is the number of
multiplications this method yields, and there are sufficient

such pairs (d,r), then we will have fie) = feN+fd)
at each step and can expect to obtain a reasonably
efficient scheme for exponentiation.

With suitable restrictions on the divisors d and
residues r, only three storage registers are needed,
although more can be used. One register holds the partial
result which is the product of all the A" from previous
steps. The other two are used to form A using an addition
chain that requires only two values to be kept. When the
components required for A" are formed, they are
multiplied into the partial result register and so do not
interfere with the calculation of A%,

As an illustration, we show how to compute A%
starting with the divisor 17. First, A** = (A')°A° where
B = A" and A® are computed in 5 multiplications using the
addition chain (1, 2, 4, 8, 9, 17), and A% is placed in the
partial product register. This leaves B to be calculated
and multiplied into the accumulating product. Using the
divisor 4 next, B® = (B*)’. We obtain C = B* with 2
squarings and must then compute C° for multiplying into
the partial product. Using the divisor 4 again, C° =
(CH'C. The C'is multiplied into the partial product, then
¢* is computed with two squarings and the result finally
multiplied into the partial product to yield A*®, So
exponentiation by 349 can be done this way with 11
multiplications rather than the 13 required by the binary
and A, A? methods.

4 Calculation of the Coefficient

We will demonstrate the value of the method with a
small set of divisors, Suppose the strategy is as follows:

If e =0 mod 2 then d = 2
elseif e = 0 mod 3 then d = 3
elseif e = 1,2,5,8 mod 9 then d = 9
else {e = 4,7 mod 9} then d = 3

Let f(e)=clog,e be the average number of squarings

plus multiplications expected for a random exponent e.
Then f(e) can be expressed fairly accurately as a sum of
terms px(m+fie/d)), one for each case (d,r), where p is
the probability of the case arising, d is the associated
divisor, and m is the number of multiplications required to
form A and A” and multiply A" into the result. For e=
5 mod 9, we can use the addition chain (1, 2, 4, 5, 9) so
that 4 multiplications yield both A? and A", giving m =
5. The other values of m are clear.

The probabilities p are less obvious since application
of the method causes the residue classes to be no longer
uniformly distributed. Action depends entirely on the
residue of e modulo the lowest common muitiple of the

94

divisors, namely 18, and not on any previous exponent.
The sequence of residues for successive exponents forms
a Markov chain for which the stochastic transition matrix
P = (py) is easy to construct: pj is the probability of
obtaining the new exponent ¢’ = j mod 18 from an
exponent e =i mod 18. For example, ¢ = 18k+7 requires
d =13, yielding ¢’ = 6k+2 = 2, 8 or 14 mod 18. So p;, =
P78 = p1aa = 1/3. The probabilities p; of exponents which
are i mod 18 eventually stabilise: the row vector p = (p))
satisfies p = pP and can be calculated easily. It turns out
that p; onty depends on i mod 6, with py = ps = p1p = 1/36,
etc. The relative frequencies of the 18 classes are given in
the following table, which can readily be used to check
that these yield the equilibrium values.

e d| Rel]| Distrib of new e mod 6
mod 18 fregq| 0O 1 2 3 4 5
0,6,12 |2 4 2 - - 2 - -
2,8,14 |2 10 - 5 - - 5 -
4,10,16 |2 10 - - 5 ~ - 5

3 317 (- 2 - - - -

o 3l |- - - oz -

15 37)1 - - - ~ -

1 91 | 1 - 1 - 1 -

7 I e

13 31)L - - - ~ 3 -

5 91 I - 1 ~ 1 -

11 9| toi 1 - 1 - 1

17 9l J - 1 - 1 - 1
Freg sums: 48 4 S 10 6 10 9

So the 4 cases of the algorithm have probabilities 1/2, 1/8,
1/4 and 1/8 respectively. In consequence,
fley = (172)(1+f(el2)) + (1/8)(2+f(ef3))
+ (1/4)(5+f(el9)) + (1/8)(3+fe/3))
Then using fle/d) = fle) — fid) = fle) - clogd we obtain
0 = (1/2)(1=clogy2) + (1/8)(2~clog,3)
+ (1/4)(5-2clog,3) + (1/8)(3—clog,;3)
So ¢ = 1.4064.

Better values for the coefficient ¢ arise from the use of
more divisors. Consider:

If e = 0 mod 33 then d = 33
elseif e = 0 mod 17 then 4 = 17
elseif e = 0 mod 2 then d = 2
elseif e = 0 mod 5§ then d = 5
elseif e = 0 mod 3 then d = 3
elseif e =1,2,4,8,16,17,32 mod 33

then d = 33
elseif e =1,2,4,8,9,16 mod 17

then d = 17
else case e mod 90 of

1,17,77,29,43,47,67,83 :d =3
7,11,13,31,41,49,61,71,79,89: 4 = 2
19,23,37,53,59,73 :d =09
end.

The complex final case is engineered to enable useful
factors such as 2, 3, 5 or 9 to be picked up on the next
iteration. As before the residue classes modulo 90x11x17
are not equi-probable. The transition matrix P has grown
to around 22 entries and made the direct solution of pP=
pP infeasible. However, if i is the suitably scaled all 1s
row vector then p = lim, ,, iP" In practice

convergence is fairly rapid. The Euclidean distance
between successive values of p is almost halved at each
iteration, and so another decimal place of ¢ is established
on every fourth iteration. After just 7 iterations we obtain
the correctly rounded ¢ = 1.3566. When the divisor 65 is
included in a similar fashion to 33, c is reduced to 1.343,

The time complexity of finding p is driven by the
number of non-zero entries in P. The matrix has size /x/
where [is the lowest common multiple of the moduli used,
and it has not far short of in non-zero entries where n is
the number of different divisor/residue pairs considered.
Thus, adding more than a few small divisors makes the
vector p too big and the computation too time consuming
for a direct solution, and it forces a statistical approach to
estimating c.

To achieve a coefficient less than the 4/3 of the A, A®
method, take the following divisors:

2, 3, 5,9, 17, 33,
97, 127, 257, 513,

49, 65,
1025

and allow residues which are either 0, or are in a minimal
addition chain which uses just two memory fields, or are
the sum of two residues in such a chain, At each iteration
simply choose the divisor & for which the ratio m/log.d is
least, where m is the number of multiplications associated
with the residue which occurs. Then, on average, random
512-bit integers require under 670 multiplications —
almost 2% fewer than the 4, A® method,

In each of these strategices, there is a constant ratio
between the average number of divisions of the exponent
by a divisor and the average factor by which the exponent
is decreased at each step. So generating the division chain
has the same time complexity as forming the product of

95

two numbers with the size of the exponent. If squaring the
base number requires a comparable effort (as in the RSA
cryptosystem) then the effort to create the division chain is
equivalent to a constant number of squarings. This is
therefore cheaper than the A, A* method as long as the
exponent is large enough.

S Choice and Ordering of Divisors

From the last section the formula for ¢ is

- z,' pimy
Z,- pilog, d;

where the sum extends over the cases i which occur
with probability p, have divisor d; and require m;
multiplications. Thus, if the relative probabilities of these
cases remain essentially unchanged, it is worth adding any
new pair (d,r) with a ratio m/log,d which is better than the
current value of c. In particular, in addition to using
numbers with the form 2"+1, we might also consider
divisors d of Hamming weight 3 (i.e. 3 non-zero bits)
with residues r which are 0 or are generated en route to d.
Then a minimal addition chain using just two registers
will require #+2 multiplications where the highest power
of 2 in d has order n. Useful examples therefore include
49 and 97, both with ratios under 5/4 for these residues.

c

It is a matter of only a few minutes computing to
generate all optimal and near optimal addition chains for
all potentially useful divisors up to 10 or so bits in length,
say, and hence establish the smallest number of extra
additions which will generate each residue. Here we
should relax the apparent restriction r < d since, to
minimise multiplications, it may be necessary to go
beyond the least non-negative residue. Thus 11 mod 13 is
only obtained with a minimal number of multiplications
within the suggested memory restrictions by allowing r =
12+12, However, if both r and r+d are equally cheap to
compute, it may make sense to select the one which makes
the next exponent e’ even so that the beneficial (2,0) could
then be applied.

Using all d up to over 3x2'°, optimal division chains
were constructed for e up to over 2°°. The frequencics of
pairs (d.r) were recorded, and this confirmed the relative
uselessness of pairs with a poor ratio m/logad unless d was
small. It also showed that composite d in this range are
often superfluous since it frequently requires no more
multiplications to use thair factors as divisors instead.

The obvious order in which to arrange the
divisor/residue pairs is in increasing cost per bit, i.e.
following the order of the ratios m/logyd. However, larger
divisors have a longer lasting effect than smaller ones, and

so they are better (resp. worse) choices if they have
similar but above (resp. below) average ratios. To be
more precise, if d is applied to the exponent e, then we
can expect m + clogy(e/d) = m — clogy(d) + clogy(e)
multiplications on average. This is minimised if a divisor
is chosen for which m—clog,d is minimal. Thus, the best
order for selecting pairs (d,r) should be close to that
determined by the values of m—clog,d. Indeed, this
explains the order in the second example of Section 4
where (2,0) is not the best first choice. In situations such
as the last case of that example, any divisor that will be
picked up automatically for the next iteration needs to be
taken into account when assessing relative merits.

6 Large Exponents

The well-known algorithms described in Section 2,
such as square and multiply, all prescribe a single course
of action, as do the strategies described here so far for
division chains. In all cases the high variance means
frequent poor results. However, for division chains
considerable choice is possible. Fixing a specific order
for trying divisors usually yields a sub-optimal method. A
better coefficient ¢ is obtained when the best chain is
selected from all those generated by extending partially
constructed chains using every possible divisor. This also
reduces the variance and hence gives a good value more
reliably. Unfortunately, it is not feasible for a large
exponent — there are too many combinations to evaluate
all possibilities. The search space must be reduced.

Suppose the division chain (dy,r1), (da.re), (da.r3), ...,
(d,.r:) reduces the exponentiation problem from the power
¢ to the power ¢’. Then e =r + de’ where d=
didy...d, and (normally) r < d. The number of
multiplications m associated with the chain is the sum of
the numbers m; associated with each pair (d,r;), namely
the number of multiplications required to form the d; and
rith powers and multiply the rith power into the existing
partial product. If ' is still large compared to d then e is
essentially reduced by a factor d for the cost of m
muldplications. Thus, given a number of such chains, the
best one to choose is the one for which m/log,d or,
better, m—clog,d is minimal. This process can be repeated
to reduce ¢’ in its turn. Eventually e’ becomes small
enough for the value of r to affect the choice of chain
noticeably (say e’ < d), and then a table might be used to
complete the division chain optimally.

This yields an algorithm for large exponents. Fix a
suitable length k for the division chain segments to be
considered. The larger the choice of k, the longer the
algorithm takes to complete, but the better the result.
Now repeatedly perform the following:

96

i) generate all reasonably priced chains of k divisors
to reduce the current value of the exponent;

ii)

iii) apply this sub-chain to reduce the exponent.

select the cheapest one under the chosen criterion;

The iterative procedure should terminate when the current
value of the exponent becomes less than the upper limit of
a pre-calculated table of optimal chains for small
exponents. Of course, if in the last few iterations &
divisors were to reduce the exponent to close to 0 so that
the costing criterion becomes inaccurate, then the
offending chains can be curtailed earlier, say at the point
where the exponent falls into the range of the table.
Finally, with the exponent in the range of the table, the
best way of completing the chain can be looked up.

To cost this, suppose S is the sum over all divisors of
the probability of the divisor being useable to extend a
division chain. Assuming a close to uniform distribution
on residues of exponents modulo the lowest common

multiple of the divisors, § is approximately zin,- /d;

where n; is the number of residues associated with the
divisor d;. Thus S will be at most the number of divisors
being used. To extend any division chain by one pair,
there are roughly S possible choices (assuming successive
choices are mostly independent). Suppose that L is the
result of averaging the logarithms of the divisors used in
an optimal sub-chain, weighted according to their
frequencies, i.e. the average number of bits by which a
divisor in such a chain reduces the exponent. Assume
finally that T is the logarithm of the maximum exponent in
the look-up table. Then, for exponents of N bits, the
above algorithm will require about (N-T)/Lk iterations,
each of which generates about S* sub-chains. So the work
involved is roughly proportional to

S"(N-T)/Lk

times the effort required to perform a single division of
the exponent by a divisor. This shows that very large
exponents are not much more difficult to deal with than
smaller ones; the work is proportional to the square of the
number of bits,

For good performance, k must not be too small since
then the sub-chains would not be particularly good on
average. Hence the best savings in time are made through
a sensible choice of acceptable pairs, thereby reducing S.
An obvious choice is the set of pairs used most frequently
over a large range of optimal chains. Furthermore,
picking large k may be a waste of effort since the average
reduction in numbers of multiplications declines
exponentially with k (see Table 2 below).

Many variations in the algorithm are clearly possible.
For example, the subchains could be bounded by limiting

the divisor product rather than by k, or & might be varied
when there is no good subchain of a specific length at
some point. Also, only the initial few pairs of optimal
sub-chains might be selected at each iteration and the test
for optimality (which contains an approximation to ¢)
might be varied dynamically. If a good chain is still not
obtained, choosing a different first divisor or using all
mitial subchains is also possible.

7 Test Results

We next consider test results from a specific
implementation’ of the algorithm in order to establish that
a coefficient of 5/4 is generally obtainable for exponents
of the size used in, say, the RSA cryptosystem. None of
the improvements suggested in the last paragraph were
included for the tabulated results.

First, for divisors d up to 28 the minimal addition
chains using only two registers were generated and a table
was constructed of optimal division chains for exponents
up to over 2%°. In any subrange the method was found to

use fewer than ;,S-logz e multiplications and squarings on

average. In particular, between 2" and 2'°, apart from a
few short chains such as those for 2" itself and 2°+2¢
with a < 15, almost 90% require 19 or 20 multiplications,
under 1.5% require 21, and none require more. Hence the
variation in numbers of multiplications is very small,
unlike for the binary or A, A® methods. Essentially no
exponents require too many multiplications, but there is an
increasing tail of exponents which can be dealt with using
fewer multiplications than expected, and it is this that
makes searches for better division chains worthwhile.

Next, over ranges of at least 2'” exponents of order
above 2% and divisors up to 3x2°, the average value of
mflog,e was calculated for optimal chains and found to be
about 2% under 5/4. Indeed, successive ranges show this
ratio has a tendency to decrease as the exponents increase.
This is because once the reduction operations have made
the exponent less than the maximum divisor, the choice of
future divisors becomes progressively more limited. This
leads to a poorer ratio for smaller exponents.

The coefficient for the whole of a large exponent is
essentially of the form (21 m;) / (21 log, di) where each

miflog,d; comes from an optimal subchain. From the
above experimental data each such term should be less
than 5/4 on average since each d; will fall within the range
investigated (unless k is large). So the expected
coefficient ought to be better than 5/4. Although a given
sub-chain being optimal at one step undoubtedly confers

¥ Demonstrated at the conference.

97

some properties on the next exponent, the division process
seems to minimise most of these effects. So the relevant
multiplicative properties of successive exponents appear
to be mostly independent for successive steps of the
algorithm. Thus, individual steps resulting in a large
number of multiplications should not affect the rest of the
algorithm. Indeed, for larger exponents which require a
greater number of steps, the variance in the distribution of
the number of multiplications should be smaller. Thus
extreme cases will be evened out and this virtually

guarantees finding a sequence for ¢ with under %logZ e
multiplications.

To test 512-bit exponents and investigate how small a
coefficient ¢ might be possible, 2'* of the most frequently
used divisor/residue pairs were chosen from optimal
chains of exponents up to over 2% using divisors up to
about 3x2'°. Choosing k = 4, an average of under 631
multiplications was achieved for randomly generated 512-
bit exponents, with a standard deviation of under 4 (see
Table 1). This clearly improves on the coefficient 5/4.
Assuming the distribution is close to normal, a total of at
most 640 multiplications or squarings can be effectively
guaranteed for over 98% of all 512-bit exponents. In
comparison, the square & multiply and A, A*> methods

average 2x511 = 766.5 and about $x511 = 681.3

multiplications with standard deviations of about 11,3 and
6.2 respectively.

k 1 2 3 4
Av. No. Mults. | 649.4 636.1 632.3 630.9
Stand.Dev. | 345 33 34 39

Table 1. Multiplication numbers for 2'2 (d.n) pairs.

Only a few divisors are actually required in order to
achieve an average of under 5/4. Consider again the 12
divisors 2, 3, 5, 17, 33, 49, 65, 97, 129, 257, 513 and
1025. The 182 most frequently occurring divisor/residue
pairs were selected. Then with &£ = 5 the algorithm yielded
an average of around 639 multiplications, so that ¢ < 5/4
for all larger k (see Table 2).

k 1 2 3 4 5
Av. No. Mults. | 667.6 6475 644.0 641.3 639.5
Stand. Dev. 4.9 4.7 4.5 4.4 4.8
Av.No.Divs. | 188 198 211 207 202

Table 2. Multiplication numbers for the 12 listed divisors,

The cost of this particular scheme for a random
exponent of N = 512 bits is easy to estimate. The sum in

section 6 for approximating S shows there are about 4.85
ways of extending any subchain by one more pair, and, if
202 divisors are applied on average, the typical divisor
has N/202 bits. So L = 2.5. Averaging over a few sub-
chains would also give L. If no look-up table is used,
there are around 202/k =~ 40 iterations of the algorithm in
which %= 2620. So a complete chain is obtained with an
effort of roughly 2620x40 divisions of 512-bit numbers
by numbers averaging 6 or 7 bits.

As this is the equivalent of about 2'° multiplications of
pairs of 512-bit numbers, the effort is only justified in
RSA cryptography if the key is re-used a number of times.
However, for k = 1 or 2 the effort is reduced to around 10
or 28 such multiplications respectively. This leads to
about the same computational effort as the A, A® method if
searching for a multiplication scheme must be done for
every iteration.

Finally, about 2° pairs for 29 divisors with low
Hamming weight were considered: the 12 above together
with 9, 41, 43, 81, 83, 161, 163, 193, 321, 323, 385, 641,
643, 769, 1281, 1283 and 1537. Here numbers of the
forms 5x2"+1 and 5%2"+3 have a minimal addition chain
of length n+3 by using the sequence 1, 2, 3, 5, 10, 20, ..,
5%x2", 5%2"+1 or 5x2"+3. The work involved can be
estimated from Table 3 using S = 7.1: about 13 and 53
512-bit multiplications’ worth of effort for Xk = 1 and 2
respectively. Overall there is again little difference with
the A, A® method unless the same RSA key is re-used.

k 1 2 3 4 5
Av. No. Mults. | 655.4 639.9 636.3 634.1 632.9
Stand. Dev. 4.0 3.6 3.6 4.0 47
Av. No. Divs, 139 157 160 164 169

Table 3. Statistics for the 29 listed divisors.

Comparing the contents of the three tables, it is clear
that adding further divisors brings diminishing returns. It
would be interesting to know the theoretical limit of the
method: on average, how many multiplications are
required in an optimal division chain if all divisor/ residue
pairs are possible and a given fixed number of registers
are allowed?

8 Conclusion

A straightforward, cheap algorithm has been described
for reducing the number of multiplications normally
performed in an exponentiation. Almost no extra memory
is required. The average improvement is better than
established methods with the same memory requirements.

98

Furthermore, the method is adaptable to a wide range of
space and time resources, providing a variable search
space from which better evaluation orders can be found.
For any exponent e and very high probability of success, it
has been shown how to find a scheme requiring under

%logze multiplications or squarings when only three

registers are available.

Acknowledgement: The author would like to thank the
anonymous referee who corrected the argument in Section
4 and kindly improved the presentation by supplying a
table similar to that given.

Bibliography
[11 P. Downey, B. Leony & R. Sethi, “Computing Sequences
with Addition Chains”, SIAM J. Comput. vol. 3 (1981),
pp. 638-696.

0. Egecioflu & ¢. K. Kog, “Fast Modular
Exponentiation”, Comm., Control & Signal Processing,
ed. E. Arikan, Elsevier Science, 1990, pp.188-194.

L. C. K. Hui & K.-Y. Lam, “Fast square-and-multiply

exponentiation for RSA”, Electronics Lerters, vol. 30, no.
17 (Aug 1994), pp. 1396-1397.

D. E. Knuth, “The Art of Computer Programming”, vol. 2,
“Seminumerical Algorithms”, §4.6.3, 2nd Edition,
Addison-Wesley, 1981, pp. 441-466.

C. K. Kog, “High radix and bit recoding techniques for
modular exponentiation”, International J. Computer
Mathematics, vol. 40 (1987), nos. 3-4, pp 139-156.

Y. Yacobi, “Exponentiating Faster with Addition Chains”,
Advances in Cryptology - Eurocrypt 90, Lecture Notes in
Computer Science, vol. 473, Springer-Verlag, 1991, pp.
222-229.

C. N. Zhang, H. L. Martin, & D, Y. Y. Yun, “Parallel
Algorithms and Systolic Array Designs for RSA
Cryptosystem”, Proc. of the International Conference on
Systolic Arrays, K. Bromley, 8.Y. Kung & E.
Swartzlander (Eds.), Computer Society Press, San Diego,
California, May 25-27, 1988, pp. 341-350.

(2]

(3]

(4]

(51

(6]

[7]

