
Floating Point Division and Square Root Algorithms and Implementation
in the AMD-K7 TM Microprocessor

Stuart F. Oberman
California Microprocessor Division

Advanced Micro Devices
Sunnyvale, CA 94088

stuart.oberman@amd.com

Abstract

This paper presents the AMD-K7 IEEE 754 and x87
compliant floating point division and square root algo-
rithms and implementation. The AMD-K7 processor em-
ploys an iterative implementation of a series expansion
to converge quadratically to the quotient and square root.
Highly accurate initial approximations and a high perfor-
mance shared floating point multiplier assist in achieving
low division and square root latencies at high operating
frequencies. A novel time-sharing technique allows inde-
pendent floating point multiplication operations to proceed
while division or square root computation is in progress.
Exact IEEE 754 rounding for all rounding modes and target
precisions has been verified by conventional directed and
random testing procedures, along with the formulation of a
mechanically-checked formal proof using the ACL2 theorem
prover.

1 Introduction

The AMD-K7 is an out-of-order, three-way superscalar
x86 microprocessor with a 15-stage pipeline, organized to
allow 500+ MHz operation. The processor can fetch, de-
code, and retire up to three x86 instructions per cycle, with
independent integer and floating-point schedulers. Up to
three operations per clock are dispatched from the 36-entry
floating-point scheduler to three floating-point execution
pipelines.

The AMD-K7 floating point unit [1] is an x87 compati-
ble FPU. This extension defined a stack architecture, along
with IEEE 754 [2] compliance for addition, multiplication,
division, and square root operations. All four rounding
modes of the standard are supported, along with three work-
ing precisions: single, double, and extended. All of the
fundamental computations are calculated with an extended
precision significand and exponent. Only at the conclusion

Latency / Throughput (cycles)
Operation Single Double Extended /

Internal

Division 16/13 20/17 24/21
Square Root 19/16 27/24 35/32

Table 1. AMD-K7 division and square root per-
formance

of an operation is the significand conditionally rounded to
a lower precision. The AMD-K7 processor also supports a
wider internal precision format, with an 18 bit exponent and
a 68 bit significand. Exactly rounded-to-nearest division is
supported at this precision as a means for computing highly
accurate transcendental functions.

In order to achieve high overall floating point perfor-
mance with high operating frequencies, we determined it
was necessary to minimize the latencies of the fundamen-
tal operations. Reducing the number of logic levels per
pipeline stage to increase operating frequency can easily
cause functional unit latencies to increase by a proportional
amount, with little net gain in overall performance. To real-
ize a true performance gain, improvements in the algorithms
for the operations are required to reduce the latency of the
fundamental operations.

This paper discusses the division and square root imple-
mentation in the AMD-K7 FPU. These algorithms reduce
the latency for these operations in a high clock-rate imple-
mentation, yielding the performance shown in Table 1. Al-
lowing out-of-order execution of operations provides some
amount of latency tolerance, since the machine can be kept
busy with independent work whenever it is present. How-
ever, we determined that to achieve high system perfor-
mance, the latency of all of the fundamental operations
must be minimized. Many software applications have long

dependency chains in their computation, and thus perfor-
mance becomes heavily dependent upon the latency of the
functional units themselves. While division and square root
are typically infrequent operations, it has been shown that
ignoring their implementations can result in significant sys-
tem performance degradation for many applications [3]. We
confirmed this result in our target workloads, and we there-
fore designed high performance division and square root al-
gorithms which could exploit our fast FP multiplier.

We discuss the theory of division and square root by
functional iteration and present the algorithms used in the
AMD-K7 FPU in Section 2. In Section 3, we examine the
design of the shared FP multiplier and demonstrate how the
division and square root algorithms use this hardware. We
analyze the various design issues that arose throughout the
project in Section 4. We discuss our verification strategies
in Section 5. We present optimizations to the implementa-
tion that improve overall FP performance in Section 6. We
draw final conclusions in Section 7.

2 Functional Iteration

2.1 Motivation

The most common algorithm used for division and
square root in modern floating point units is digit recur-
rence. One implementation of digit recurrence isSRT,
which has been used in many microprocessors. SRT di-
vision and square root use subtraction as the fundamental
operator to retire a fixed number of quotient bits in every
iteration. Unfortunately, it is this linear convergence to the
result that makes this algorithm class undesirable for our ap-
plication. For rapid computation of wide-precision results,
we desire better than linear convergence.

Unlike digit recurrence, division and square root by
functional iteration utilize multiplication as the fundamen-
tal operation. Multiplicative algorithms are able to take ad-
vantage of high-speed multipliers to converge to a result
quadratically. Rather than retiring a fixed number of quo-
tients and square root bits in every cycle, multiplication-
based algorithms are able to at least double the number of
correct result bits in every iteration. This class of algo-
rithm has been widely discussed in the literature, including
Flynn [4] and Goldschmidt [5].

There are two main forms of multiplicative iterations.
The Newton-Raphson division and square root iteration
uses a dependent chain of multiplications to converge to the
reciprocal / reciprocal square root. This algorithm is self-
correcting, in that any error in computing the approxima-
tion in a given iteration can be corrected in the subsequent
iteration, since all operations are dependent. The series ex-
pansion iteration, often calledGoldschmidt’s algorithm, re-
orders the operations in the Newton-Raphson iteration to

increase the parallelism and reduce the latency. However,
in this implementation the result is computed as the product
of independent terms, and the error in one of them is not
corrected. To account for this error, the iteration multipli-
cations require extra bits of precision to guard against the
accumulation of uncorrected rounding error.

The K7 implements a variant of Goldschmidt’s al-
gorithm to compute division and square root. Unlike
the previously-mentioned commercial implementations of
functional iteration, the K7 FPU has additional features to
support the constraints imposed by IEEE 754 and x87 com-
patibility, as well as extra K7 functionality. These include
1) Exactly-rounded IEEE 754 extended-precision results,
where the result may be also down-rounded to single or dou-
ble precision, 2) Exactly rounded-to-nearest internal preci-
sion division, with a 68 bit significand, and 3) Producing
the correct C1 bit to indicate whether roundup occurred.

2.2 AMD-K7 Division and Square Root Algo-
rithms

A division or square root operation in the K7 can be de-
fined by the function

DIV-SQRT(op,pc,rc,a,b,z),

with inputs as follows:

(a) op ∈ {OP-DIV ,OP-SQRT};

(b) pc is an external precision control specifier;

(c) rc is a rounding control specifier;

(d) a andb are floating point input operands.

In the caseop = OP-DIV , the outputz represents an appro-
priately rounded approximation of the quotienta/b; when
op = OP-SQRT, b is ignored and an approximation of

√
a

is returned.
A floating point representation for an arbitrary num-

ber x comprises three bit vectors, corresponding to the
sign, significand, and exponent ofx. A format is de-
fined by the number of bits allocated to the significand,
sig(x), and the exponent,expo(x), expressed together as
(sig(x), expo(x)). The formats that are supported by the
K7 floating point division and square root operations in-
clude(24, 8), (53, 11), and(64, 15), which correspond to
single, double, andextendedprecision as specified by IEEE
754. A widerinternalprecision,(68, 18), is also supported
for division. A combination ofop andpc determines the
target precision for the operation.

The rounding modes supported in the K7 are RN, RZ,
RM, and RP, which correspond to the rounding modes
round-to-nearest-even, truncation, round-to-minus-infinity,
and round-to-positive-infinity, respectively. A combination

2

Program Division:

BEGIN DIVISION: Input = (a,b,pc,rc) Output = (qf)

x0 = recip estimate(b)

d0 = ITERMUL(x0,b), r0 = comp1(d0)
n0 = ITERMUL(x0,a)
if (PC == SINGLE)
nf = n0, rf = r0
goto ENDDIVISION

d1 = ITERMUL(d0,r0), r1 = comp1(d1)
n1 = ITERMUL(n0,r0)
if (PC == DOUBLE)
nf = n1, rf = r1
goto ENDDIVISION

d2 = ITERMUL(d1,r1), r2 = comp1(d2)
n2 = ITERMUL(n1,r1)
nf = n2, rf = r2

END DIVISION:
qi = LASTMUL(nf ,rf ,pc)

rem = BACKMUL(qi,b,a), qf = round(qi,rem,pc,rc)

Figure 1. Program Division

of op andrc determines the rounding mode for the opera-
tion.

The K7 algorithm for division and square root is repre-
sented by the programsDivision andSquare Root, shown
in Figures 1 and 2. The division and square root programs
employ several K7-specific hardware functions which are
discussed in detail in the next section.

3 Hardware Organization

The division and square root programs are implemented
in hardware within a single execution pipeline. A state ma-
chine within the FP multiplier pipeline detects if a valid di-
vision or square root opcode is dispatched to the pipeline.
Upon receipt of an appropriate opcode, the state machine
begins sequencing through the appropriate states to realize
the programs of Figures 1 and 2. The state machine controls
several muxes within the multiplier pipeline, along with
enable signals to conditionally advance several registers.
These programs could be implemented in K7 microcode in-
stead of through a hardware state machine. However, all of
the microcode ops would need to go through the decoders
and central scheduler, greatly reducing the throughput of the

Program Square Root:

BEGIN SQRT: Input = (a,pc,rc) Output = (sf)

x0 = recipsqrtestimate(a)

t0 = ITERMUL(x0,x0)

if (PC == SINGLE)
df = ITERMUL(x0,a)
n0 = ITERMUL(t0,a), rf = comp3(n0)
GOTO ENDSQRT

n0 = ITERMUL(t0,a), r0 = comp3(n0)
d0 = ITERMUL(x0,a)

t1 = ITERMUL(r0,r0)
d1 = ITERMUL(d0,r0)

n1 = ITERMUL(n0,t1), r1 = comp3(n1)

if (PC == DOUBLE)
df = d1, rf = r1
GOTO ENDSQRT

t2 = ITERMUL(r1,r1)
d2 = ITERMUL(d1,r1)

n2 = ITERMUL(n1,t2), r2 = comp3(n2)
df = d2, rf = r2

END SQRT:
si = LASTMUL(df ,rf ,pc)

rem = BACKMUL(si,si,a), sf = round(si,rem,pc,rc)

Figure 2. Program Square Root

machine for independent operations. Thus, we chose to sup-
port maximum floating point throughput by implementing a
dedicated hardware state machine which only requires a sin-
gle opcode to be decoded and scheduled. Figure 3 shows a
block diagram of the FP significand multiplier pipeline in-
cluding additional hardware to support division and square
root computation.

3.1 Multiplier Overview

The multiplier pipeline is designed in static CMOS logic
to expedite design-time and circuit verification. The multi-
plier has a latency of four cycles, and it is fully-pipelined. It
is configured to operate on a maximum of 76 bit operands.
This maximum width is required to support exactly-rounded

3

MUX MUX

Booth 3 Encoders3X Adder

26 Booth Muxes

4-2 CSA

4-2 CSA

4-2 CSA

4-2 CSA

B
in

ar
y

T
re

e

3,2 CSA 3,2 CSA

Rounding
Constant
With No
Overflow

Rounding
Constant
 With
Overflow

(No Overflow) (With Overflow)

 or
Dividend

 or
Dividend

152b CPA 152b CPA 152b CPA

Below precision fixup Below precision fixup

Final Result Selection

Rounded Div/SqrtRounded Mul, Ni, Di, Ti Ri

EX1

EX2

EX3

EX4

Source A Source B
 Local
Bypassing
 A

 Local
Bypassing
 B

State Machine
Control

State Machine
Control

2
s,c

2 2

SB Logic

To Div/Sqrt
Round Logic

MSBs MSBs
To Div/Sqrt
Round Logic

To Local Bypassing To Local Bypassing

Q, Q-1, Q+1Round Control

Figure 3. Multiplier pipeline

68 bit division and this choice is discussed later. The mul-
tiplier is also configured to compute all AMD 3DNow!TM

SIMD FP multiplications [6]; the algorithms to support this
are not discussed here.

In the first cycle of the multiplier, EX1, overlapping
groups of four bits of the multiplier operand are inspected
as per the Booth 3 multiplier algorithm [7]. In parallel, a
special 78 bit adder generates the 3x multiple of the mul-
tiplicand. The Booth encoders generate 26 control signals
which control the selection of the 26 Booth muxes to form
the appropriately signed multiples of the multiplicand.

In the second cycle, EX2, the 26 partial products are re-
duced to two through a binary tree of 4-2 compressors. The
individual 4-2 compressors are designed in static CMOS
with single-rail inputs and outputs. While a static dual-
rail compressor with dual-rail inputs and outputs is typi-
cally faster than single-rail, it is also larger and requires
twice the routing resources. In our implementation, the in-
creased routing congestion and larger cells increased the
wire-lengths between compressors, increasing overall de-
lay compared with the single-rail design. The reduction
tree is fundamentally a parallelogram. However, we imple-
mented several folding and interleaving techniques which
resulted in a rectangular tree and left internal wire lengths
constant. The first portion of the multiplier rounding al-

gorithm is then applied. This algorithm involves adding a
rounding constant to the sum and carry outputs of the tree.
Since the normalization of the assimilated result is unknown
at this point, the addition is performed both assuming no
overflow occurs and assuming overflow occurs. The addi-
tions themselves are implemented using an additional level
of (3,2) carry-save adders. These (3,2) adders are also used
as part of the back-multiply and subtract operation BACK-
MUL which forms the remainder required for quotient and
square root rounding. The rounding constants used for the
different precisions and rounding modes are shown in Ta-
ble 2. The first four rows correspond to constants for reg-
ular multiplication operations, while the last three are for
division / square root specific operations. In this table,!x
implies the bit inversion ofx, and 24’b0 implies 24 zero
bits.

The third cycle, EX3, forms the three carry-assimilated
results. Two of these results are rounded results assuming
that either overflow or no overflow occurs. The third is the
raw unrounded result. In parallel, sticky-bit logic examines
the low order bits of the sum and carry vectors, as a function
of pc, to determine whether or notS +C = 0, using an op-
timized technique similar to those previously reported [8].

In the fourth cycle, EX4, the bits below the target pre-
cision are appropriately cleared. While the rounding con-
stant applied in EX2 insures that the result is correctly-
rounded, it does not guarantee that the bits below the tar-
get LSB are cleared, as required for x87 compatibility. The
LSB is then conditionally inverted for regular multiplication
operations under RN as a function of the sticky-bit to cor-
rectly handle the nearest-even case. Finally, the MSB of the
unrounded result determines whether or not overflow has
occurred, and it selects between the no overflow and with
overflow rounded results. For division and square root iter-
ations, an extra resultRi is also provided which is the one’s
complement of the regular unrounded multiply result for di-
vision and an approximation to3−N2 for square root. Both
of the results are available for local storage and bypassing
for use within the division and square root iterations. In the
case of the last cycle of a division or square root BACK-
MUL op, the appropriately rounded result is chosen from
the previously-computed target results:Q,Q+ 1, orQ− 1.

The unrounded result is also used in the case of IEEE
tiny results with the underflow exception masked; i.e. tini-
ness occurs when the computed rounded result is below the
minimum extended precision normal number. In this in-
stance the unrounded result is passed to a microcode han-
dler which can properly denormalize and round the result
as required by x87 compatibility. The unrounded result is
also used to determine whether roundup has occurred for
proper setting of the C1 condition code. Roundup occurs
when the rounded result differs from the unrounded result,
and the C1 bit can be set appropriately given this informa-

4

SINGLE DOUBLE EXTENDED INTERNAL

RN (24’b0,1’b1,126’b0) (53’b0,1’b1,97’b0) (64’b0,1’b1,86’b0) (68’b0,1’b1,82’b0)
RZ 151’b0 151’b0 151’b0 -
RM (24’b0,(127(Sign))) (53’b0,(98(Sign))) (64’b0,(87(Sign))) -
RP (24’b0,(127(!Sign))) (53’b0,(98(!Sign))) (64’b0,(87(!Sign))) -

LASTMUL (25’b0,1’b1,125’b0) (54’b0,1’b1,96’b0) (65’b0,1’b1,85’b0) (69’b0,1’b1,81’b0)
ITERMUL (76’b0,1’b1,74’b0)
BACKMUL (!Dividend[67:0],(83(1’b1)))

Table 2. Rounding constants

tion. For division and square root, the unrounded result is
synthesized by appropriately choosing betweenQ − 1 and
Q.

The extra multiplier hardware required to support divi-
sion and square root iterations that actually impacted total
area included flip-flops to store intermediate results, an in-
crementer, and the state machine. We estimate that division
and square root support accounts for about 10% of the total
area of the multiplier unit. Designing a parallel SRT divider
with similar performance would have required substantially
more area and circuit design than our implementation re-
quired. We therefore conclude that this implementation rep-
resents a good balance of performance and area.

3.2 Special Iteration Operations

3.2.1 RecipEstimate and RecipSqrtEstimate

The initial approximationx0 to the reciprocal ofb, in the
caseop = OP-DIV , is derived from a pair of tables, each
containing210 entries, which we represent by the func-
tions recip-rom-pand recip-rom-q. For op = OP-SQRT,
a separate pair of tables, each containing211 entries, repre-
sented by the functionssqrt-rom-pandsqrt-rom-q, is simi-
larly used to derive an initial approximation to the recipro-
cal square root ofa.

The basic theory of compressing reciprocal ROM ta-
bles using interpolation is discussed in [9]. We imple-
mented an optimized and simplified reciprocal and recip-
rocal square root estimate interpolation unit which provides
the best compression and performance for the requirements
of our algorithms. This interpolation unit is also used to
form the values for the AMD 3DNow! reciprocal and re-
ciprocal square root functions PFRCP and PFRSQRT. Each
p table entry is 16 bits, while theq table entries are each 7
bits. The total storage required for reciprocal and reciprocal
square root initial approximations is 69 Kbits.

To form an estimate, the appropriate set ofp andq tables
is accessed in parallel. The results are added and the 16
bit sum is appended to a leading 1 to produce the recipro-
cal or reciprocal square root estimate. The latency for this
process is three cycles. By exhaustive test we determined

that the reciprocal estimate is accurate to at least 14.94 bits,
while the reciprocal square root estimate is accurate to at
least 15.84 bits.

3.2.2 ITERMUL(x,y)

This is a multiplication operation ofx andy that forces the
rounding to be round-to-nearest. It assumes that each of the
input operands are 76 bits wide, and the 152 bit interme-
diate result is rounded to 76 bits. This wider precision is
required to accommodate the uncorrected rounding errors
which accumulate throughout the iterations.

3.2.3 LASTMUL(x,y,pc)

This is a multiplication operation ofx andy that forces the
rounding to be round-to-nearest. It performs the rounding to
a precision one bit wider than the target precision specified
by pc. For division, just prior to the rounding of this opera-
tion, the double-width productQ′ is required to be accurate
to at least

−2−(pc+2) < Q−Q′ < 2−(pc+2) (1)

whereQ is the infinitely precise quotient, andpc is the tar-
get precision in bits, where 1 ulp for such apc bit number is
2−(pc−1) [10]. Exact rounding requires that the result have
an error no worse than±0.5 ulp, or 2−pc. Our rounding
algorithm requires the result to be computed to an accuracy
of at least 1 more bit. Further, since the final quotient result
can be in the range of (0.5,2), 1 bit of normalization may be
required, requiring 1 more bit of accuracy. For square root,
just prior to the rounding of this operation, the double-width
productS′ is required to be accurate to at least

−2−(pc+1) < S − S′ < 2−(pc+1) (2)

whereS is the infinitely precise square root, andpc is the
target precision in bits. Since the square root result is in the
range [1,2), it has a looser constraint on the accuracy of the
input to this operation.

After rounding and normalizing topc + 1 bits through
the LASTMUL op, the resulting valueR′′ satisfies

−2−pc < R−R′′ < 2−pc, (3)

5

where R is either the infinitely precise quotient or square
root as appropriate. Thus, the value can have an error of
(-0.5,+0.5) ulp with respect to the finalpc bit number.

3.2.4 BACKMUL(b,q,a)

This op is a multiplication operation that operates on the
two source operandsb and q, and it also accepts a third
operanda. The 152 bit intermediate product of the two
sources in carry-save form is added with an inverted ver-
sion of the third operand, with the low-order bits filled with
1’s as shown in Table 2. These three values are then in-
put into the rounding carry-save adders in EX2, with the
unused lsb carry bit set to one, realizing the function of
b× q+ TwosComp(a). This implements the negative ver-
sion of the back multiply and subtraction operation to form
the remainder, i.e.

b× q − a

is implemented instead of the desired

a− b× q.

The sign of this remainder is thus the negative of the true
remainder sign. This operation returns two bits of status:
whether the sign of the remainder is negative, taken from
a high order bit of the result, and whether the remainder
is exactly zero, using fast sticky-bit logic. Sinceq could
be rounded to any of four precisions, the high order bit is
chosen high enough to allow it to suffice for all of the pre-
cisions.

3.2.5 comp1(x)

This operation returns the one’s complement by bit inver-
sion of the unrounded version of the currently-computed
product. The unbiased exponent is forced to either -1 or 0
depending upon whether the result should be in the binade
[0.5,1) or [1,2). Using the one’s complement instead of the
two’s complement in the iterations adds a small amount of
error. However, this error is taken into account when de-
signing the width of the multiplier and the required accu-
racy of the initial approximations.

3.2.6 comp3(x)

This operation returns an approximation to3−x
2 of the un-

rounded version of the currently-computed product. This
approximation is formed by bit inversion and shifting.

3.2.7 round(qi,rem,pc,rc)

The rounding function assumes that a biased trial resultqi
has been computed withpc+1 bits, which is known to have
an error of (-0.5,+0.5) ulp with respect topc bits. The extra
bit, or guard bit, is used along with the sign of the remain-
der, a bit stating whether the remainder is exactly zero, and

Guard Rem- RN RP RM RZ
Bit ainder (+/-) (+/-)

0 =0 trunc trunc trunc trunc
0 - trunc trunc/dec dec/trunc dec
0 + trunc inc/trunc trunc/inc trunc
1 = 0 RNE inc/trunc trunc/inc trunc
1 - trunc inc/trunc trunc/inc trunc
1 + inc inc/trunc trunc/inc trunc

Table 3. Action table for round function

rc to choose from three possible results, eitherq, q − 1, or
q + 1 which are equal toqi truncated topc bits and decre-
mented or incremented appropriately. The rounding details
are shown in Table 3.

For RN, in the case of an exact halfway case, it is nec-
essary to inspectL, the lsb ofq to determine the action. If
L = 0, then the result is correctly rounded to nearest-even.
Otherwise, the result is incremented to the closest even re-
sult. It should be noted that for division where the preci-
sion of the input operands is the same as that of the result,
the exact halfway case can not occur. Only when the result
precision is smaller than the inputs can such a result occur
and rounding be required. For the directed rounding modes
RP and RM, the action may depend upon the sign of the
quotient estimate. Those entries that contain two operations
such aspos/negare for the sign of the final result itself being
positive and negative respectively.

This function, along with the computation ofq − 1 and
q + 1, is implemented in parallel with the BACKMUL op-
eration. The status information from the BACKMUL op is
used as input to the ROUND function to quickly choose and
return the correctly-rounded result.

3.3 Performance

The AMD-K7 implementation of the programsDivision
andSquare Rootthrough a hardware state machine yields
the performance summarized in Table 1. The latencies in-
clude the time to form the initial approximation and the ap-
propriate number of iterations. The scheduling of the spe-
cial iteration multiplications is optimized to simultaneously
minimize the latency of the operations and the number of
extra storage registers required to hold intermediate results,
as well as maximize the throughput.

4 Design Issues

The two primary design variables for the implementation
of iterative division and square root are the minimum accu-
racy of the initial approximation and the minimum multi-
plier dimensions. We performed an initial loose error anal-
ysis using Mathematica to bound the worst case errors, and

6

we based the design upon this analysis. We used formal
verification later to confirm the validity of our results.

To determine the accuracy of the Goldschmidt iterations,
it is necessary to consider all of the sources of error in the
final result. When converging to a result using Goldschmidt
iterations, there are three possible sources of error in the
pre-rounded result:

• Error due to initial approximation =ε0

• Error due to use of one’s complement, rather than true
two’s complement in the iterations =εones

• Error due to using rounded results in the iteration mul-
tiplications =εmul

4.1 Division

4.1.1 Multiplier Dimensions

In this analysis, we consider the worst case output precision,
internal precision with a 68 bit significand, such that three
iterations of the algorithm are required to form an approxi-
mation toQ = a

b . Further, we assume that for performance
reasons, the one’s complement is used rather than the two’s
complement. The FP multiplier used in the iterations takes
two inputs each of widthn bits and produces ann bit result,
such that 1 ulp for the result is2−(n−1).

We wrote a Mathematica program that implemented the
Division program with three iterations. The errors due to
multiplier rounding were separated in the iterations. This is
to correctly account for the fact that the rounding error in the
successiveDi refinements are self-correcting, while those
in theNi refinements are not. Rather, theNi refinements
suffer the additive error of the multiplies intrinsic to theNi
step itself as well as the error in theDi step. Also, at each
point where the rounding error is multiplied by the ratio of
the two input operands, the worse case operand values in
the range [1,2) were substituted in order to maximize the
worst-case possible error.

From Mathematica, the final error in the final2n bit pre-
rounded quotient estimateq after three iterations is:

εq = −ab7ε80 + 10εmul + 2εones (4)

The initial approximation error is treated later. However,
it is readily apparent that with an approximation accurate
to at least2−14, the error in the final result due to the initial
approximation after three iterations is on the order of2−104,
and thus is not of concern. Instead, obtaining the required
accuracy for exact rounding of internal precision results is
dominated by the errors due to the multiplier dimension,
εmul andεones.

The value ofεones is a constant value of -1 ulp. The
ulp error of multiplication rounding is±0.5 ulp. However,

Precision Iterations Error
Single 1 abε20
Double 2 ab3ε40

Extended / Internal 3 ab7ε80

Table 4. Initial approximation error for recip-
rocal

due to possible overflow before rounding, the mathemati-
cal value, with respect to the binade of the input operands
for the specific multiplication, can be as much as±1 ulp.
To provide the most conservative constraints, the±1 ulp
value is used in the analysis for all of the rounding errors
due to multiplication. Substituting these values into the ex-
pression for the pre-rounded quotient estimate yields a loose
constraint on the final error in the result:

−2−(n−5) < εq < 2−(n−5) (5)

The design challenge becomes determining the mini-
mum number of bits required for the multiplier. For the K7
FPU, the widest precision requiring exact division rounding
is internal precision withpc = 68. For internal precision 1
ulp is 2−67. The constraint for exact rounding of this pre-
cision is that the final double-width quotient estimateN3
formed in the LASTMUL op have errorεN3 given by

−2−70 < εN3 < 2−70 (6)

as per Equation 1. By equating the required precision with
the precision obtained through the iterations using ann by
n bit multiplier:

2−(n−5) = 2−70 (7)

n = 75

Thus, the minimum required number of bitsn to guaran-
tee exactly-rounded internal precision quotients is 75. To
provide even more margin in the design, we implemented a
76x76 bit multiplier.

4.1.2 Table Design

Mathematica analysis was used to determine the contribu-
tion of the initial approximation error of the reciprocal to
the final pre-rounded result for each of the target precisions.
This is shown in Table 4.

For single precision division, the constraint on the error
in the final double-width quotient estimate formed in the
LASTMUL op for exact rounding as per Equation 1 is given
by:

−2−26 < εN1 < 2−26 (8)

7

Accordingly, for the worst case witha = b = 2, the maxi-
mum value forε0 can be determined:

2× 2× ε20 < 2−26

ε0 < 2−14

For double precision division, the constraint for exact
rounding is:

−2−55 < εN2 < 2−55

and thus the maximum value forε0 is

ε0 < 2−14.75

For extended precision division, the constraint for exact
rounding is:

−2−66 < εN3 < 2−66

and thus the maximum value forε0 is

ε0 < 2−9.25

The tightest constraint on the initial approximation to the
reciprocal is from double precision, whereε0 < 2−14.75.
This guided the design of our reciprocal estimate which has
an error of at most2−14.94.

4.2 Square Root

We consider the worst case output precision, extended
precision, such that three iterations of the algorithm are re-
quired to form an approximation to

√
a. Further, we assume

that for performance reasons, a variant of the one’s comple-
ment is used rather than a subtraction from three.

We wrote another Mathematica program which imple-
mented theSquare Rootprogram with three iterations. The
analysis shows that the worst case error in the final2n bit
pre-rounded square root estimates, formed in the LAST-
MUL op, due only to rounding and one’s complement after
three iterations for extended precision is:

εs = 7εmul + 2εones (9)

This error is less than that produced by internal precision
division, so it is not an influencing factor on the dimension
of the multiplier.

The tabulation for initial approximation error is shown
in Table 5.

For single precision, the constraint on the accuracy of the
double-width square root resultS formed in LASTMUL for
exact rounding of square root, as per Equation 2, is given
by:

−2−25 < εS < 2−25 (10)

Accordingly, the maximum value forε0 can be determined:

12ε20 < 2−25

ε0 < 2−14.3

Precision Iterations Error

Single 1 3
2a

1.5ε20

Double 2 27
8 a

2.5ε40

Extended 3 2187
128 a

4.5ε80

Table 5. Initial approximation error for recip-
rocal square root

For double precision, the constraint for exact rounding is
given by

−2−54 < εS < 2−54

and the maximum value forε0 is

ε0 < 2−15.2

For extended precision, the constraint for exact rounding
is given by

−2−65 < εS < 2−65

and the maximum value forε0 is

ε0 < 2−9.8

Accordingly, the tightest constraint on the initial approx-
imation of the reciprocal square root is from double pre-
cision, whereε0 < 2−15.2. This guided the design of our
reciprocal square root estimate which has an error of at most
2−15.84.

5 Verification

Verification for the division and square root implemen-
tation was focused on whether we could compute exactly-
rounded results at all target precisions with all required
rounding modes, given our choice of algorithms, multiplier
dimensions, and initial approximations. We followed two
parallel paths for verification: directed random vector test-
ing and formal proofs.

5.1 Directed Random Vectors

For division, we wrote a C program which would gen-
erate random input operands such that the results would be
very close to rounding boundaries. The theory of this pro-
gram is based upon work of Kahan [11], and it is similar
to that available in the UCBtest suite [12]. The program

8

operates in either single, double, or extended precision sig-
nificand modes. It generates random divisors at the target
precision, and it uses appropriate equations to generate a
dividend such that the resulting quotient lies very near the
rounding point between two machine numbers. Hundreds
of thousands of vectors were run both on the RTL and gate
models at the three precisions to verify IEEE rounding com-
pliance, with no rounding errors found. Internal precision
division was not verified using this procedure.

Similarly, for square root we wrote another C program
which would directly generate operands whose square roots
were very near rounding points. The theory for this operand
generation process is based upon other work of Kahan [13].
These operands were run on the RTL and gate models at the
three IEEE precisions, with no rounding errors found.

While this process of directed random vectors simulation
gave us confidence that our algorithms and design choices
were correct, it did not provide a guarantee. With vector-
based verification, only exhaustive simulation can guaran-
tee correctness. Given our limited available design and ver-
ification time, exhaustive simulation was not feasible.

5.2 Formal Proofs

To gain more confidence in the correctness of all of our
design choices, we developed a mechanically verified proof
of the multiplication, division, and square root operations.
The proof is based on a formal description of the hardware,
derived from an executable model that was written in C and
used for preliminary testing. The details of the proof are not
included here due to space limitations, but they are available
at [14].

Two main theorems were formed regarding the correct-
ness of the computed results from our implementation; one
for division and one for square root. The statements of cor-
rectness are based on the exact rounding requirements of
IEEE 754. Every step in the proof of these theorems has
been formally encoded in ACL2 logic and mechanically
checked with the ACL2 theorem prover [15], in the inter-
est of eliminating the possibility of human error. The input
to the prover, culminating in formal versions of these two
theorems, consisted of more than 250 definitions and 3000
lemmas.

The proof provides several results confirming the cor-
rectness of our algorithms and implementation. First it
demonstrates that the accuracy of our initial approximations
is sufficient for all of our target precisions. The number of
bits of accuracy is not parameterized in the proof, so we can
only confirm that our estimates are sufficient. However, the
dimension of the multiplier is a parameter in the proof. In
the formalization of the model, the multiplier width is rep-
resented as a parameterM , the minimum value of which
was to be determined. The proof confirms what our earlier
analysis showed, that correctness requires onlyM ≥ 75.

6 AMD-K7 Optimizations

6.1 Multiply under Division / Square Root

One of the disadvantages to the use of multiplication-
based division and square root with a single multiplier
is the loss in throughput for regular multiplication opera-
tions. State-machine implementations of iterative division
and square root typically require use of the shared multiplier
resource for the duration of the iterations. Although the la-
tencies for the resulting operations can be low, as shown
by our implementation, the shared multiplier is blocked un-
til the operations complete. In the K7 design, it was not
acceptable to completely block the multiplier pipeline for
every division or square root operation. While these oper-
ations are not very frequent, they occur with enough fre-
quency in our target workloads that blocking the multiplier
would significantly degrade overall performance.

With a four cycle multiplier, we determined that the mul-
tiplier was only being utilized for approximately half of the
cycles throughout the iterations. Each iteration of the al-
gorithms requires two or three possibly parallel multipli-
cations, but the next iteration can not begin until comple-
tion of the previous one. We configured the controlling
state-machine to detect such unused cycles in the multiplier.
It notifies the central scheduler several cycles in advance
whenever this occurs. This provides the scheduler suffi-
cient time to appropriately schedule an independent mul-
tiplication operation in the unused cycle. The only added
overhead to support this mechanism is a small amount of
storage in the pipeline to keep some status computed in the
first few cycles until it is required during the BACKMUL
operation at the conclusion of the division or square root op-
eration. The properly-scheduled independent multiply op-
erations can then use the available hardware seamlessly.

We modeled this mechanism as part of our performance
analysis. We modeled 1) the pipeline being completely
blocking for division / square root, 2) our implementation,
and 3) a completely non-blocking division / square root
unit. The implementation of our time-sharing scheme of the
multiplier provides over 80% of the performance of a com-
pletely non-blocking division / square root unit. We deemed
this level of performance more than satisfactory given the
very small amount of overhead required.

6.2 Early Completion

In order to improve division performance further, we de-
sired to reduce the latency for certain types of operands. FP
division of a number by a power-of-two in theory amounts
to just a reduction in the exponent, with the significand un-
changed. Accordingly, such an operation could have a la-
tency much lower than a typical division computation. In
the case of x87 FP, the computation can be slightly more

9

complicated, as the significand itself needs to be condition-
ally rounded to a lower precision based upon the control
word.

As the K7 can execute instructions out-of-order and tol-
erate variable latency, we allow division operations to have
variable latencies. The controlling state machine notifies
the central scheduler a fixed number of cycles in advance
when the division or square root operation will complete.
The scheduler uses this information to schedule dependent
operations and subsequent division or square root instruc-
tions. So long as the latency is at least as long as the noti-
fication period, divides and square roots can be any number
of cycles.

Thus, the K7 is able to complete the computation of quo-
tients where the divisor is exactly a power-of-two in only
11 cycles, regardless of the target precision. The exponent
adjustment occurs during the initial approximation lookup
phase, while the rounding of the significand occurs using
the LASTMUL and BACKMUL ops. Since the minimum
required notification time for the scheduler in this instance
is seven cycles, this latency is acceptable. Division opera-
tions where the dividend is exactly zero are also handled by
this mechanism. To simplify the implementation, they use
the same sequence of events, returning a zero result in 11
cycles, regardless of the target precision.

7 Conclusion

We have presented an x87 and IEEE compatible imple-
mentation of division and square root using quadratically-
converging algorithms, demonstrating that they are a practi-
cal and potentially superior alternative to linear-converging
algorithms. Using a high performance shared multiplier,
we minimized the total die area required while maximizing
system performance. Our formal proofs and directed testing
show that both high performance and correctness of opera-
tion are simultaneously achievable.

8. Acknowledgements

The author wishes to thank James Fan for his contribu-
tion to the physical design of the multiplier pipeline, David
Russinoff for his contribution to the verification of the algo-
rithms, and Norbert Juffa for his assistance throughout the
design process.

References

[1] A. Scherer, M. Golden, N. Juffa, S. Meier, S. Ober-
man, H. Partovi, F. Weber, “An out-of-order three-
way superscalar multimedia floating-point unit,” in
Digest of Technical Papers, IEEE Int. Solid-State Cir-
cuits Conf., 1999.

[2] ANSI/IEEE Std 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic, 1985.

[3] S. F. Oberman and M. J. Flynn, “Design issues in
division and other floating-point operations,”IEEE
Trans. Computers, vol. 46, no. 2, pp. 154–161, Feb.
1997.

[4] M. Flynn, “On division by functional iteration,”IEEE
Trans. Computers, vol. C-19, no. 8, pp. 702–706, Aug.
1970.

[5] R. E. Goldschmidt, “Applications of division by
convergence,” M.S. thesis, Dept. of Electrical Engi-
neering, Massachusetts Institute of Technology, Cam-
bridge, Mass., June 1964.

[6] S. Oberman, F. Weber, N. Juffa, and G. Favor, “AMD
3DNow! technology and the K6-2 microprocessor,”
in Proc. Hot Chips 10, pp. 245–254, Aug. 1998.

[7] A. D. Booth, “A signed binary multiplication tech-
nique,” Quart. Journal Mechanics and Applied Math-
ematics, vol. 4, no. 2, pp. 236–240, 1951.

[8] J. Cortadella and J. M. Llaberia, “Evaluation of
A+B=K conditions without carry propagation,”IEEE
Trans. Computers, vol. 41, no. 11, pp. 1484–1488,
Nov. 1992.

[9] D. DasSarma and D. Matula, “Faithful bipartite ROM
reciprocal tables,” inProc. 12th IEEE Symp. Com-
puter Arithmetic, pp. 12–25, July 1995.

[10] S. F. Oberman,Design Issues in High Performance
Floating Point Arithmetic Units, Ph.D. thesis, Stan-
ford University, Nov. 1996.

[11] W. Kahan, “Checking whether floating-point division
is correctly rounded,” Prof. Kahan’s Lecture Notes,
1987.

[12] “UCBTEST Suite,” available from
http://www.netlib/org/fp.

[13] W. Kahan, “A test for correctly rounded SQRT,” Prof.
Kahan’s Lecture Notes, 1996.

[14] D. Russinoff, “A mechanically checked proof
of IEEE compliance of a register-transfer-level
specification of the AMD K7 floating-point di-
vision and square root instructions,” available at
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

[15] R. S. Boyer and J. Moore,A Computational Logic
Handbook, Academic Press, Boston, MA, 1988.

10

