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Abstract

We propose relaxing the restricted form of faith-
ful rounding used in prior 32-bit Logarithmic Number
System (LNS) implementations. Unrestricted faithful
rounding yields a three- to six-fold savings in VLSI
ROM size (or four- to six- fold savings in FGPA ta-
ble size) with only modest increase in error. This can
be acceptable for the DSP and multimedia applica-
tions in which the non-standard LNS is a candidate for
adoption. Such applications are cost sensitive, and the
tremendous cost reduction of the LNS model proposed
here should argue very favourably for its adoption.

1. Introduction

A wide variety of applications in areas such as digi-
tal signal processing (DSP), and control systems make
heavy use of real addition, subtraction, multiplication
and division. Fixed-point number systems can main-
tain constant absolute precision using scaled integer
arithmetic. Although fixed-point arithmetic is fast,
it is not as power efficient (limiting battery life) for
multiply-intensive applications [22] compared to the al-
ternative we will consider here. Also, fixed point usu-
ally needs hand-crafted scaling factors at each step of
the computation. Often, the designer must experiment
with many different scalings to optimise these design
parameters. Overflow is also a continual worry for the
designer. For example, the dynamic range of a signed
32-bit fixed-point system is only from 0 to 231 — 1.
In application areas such as mobile communications
and multimedia, where time-to-market pressures are
paramount, designers often decide it is not worth the
effort to use fixed point.

Instead, it is easier for designers to use floating-
point number systems that automatically attempt to
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maintain constant relative precision. This is because
the floating-point system carries scaling information
(the exponent) within each machine representation in
addition to a fixed-point mantissa and sign. Conse-
quently, floating-point systems have a much larger dy-
namic range than fixed-point systems using the same
number of bits. For example, the popular IEEE-754
standard [11] specifies single-precision with an 8-bit
integer exponent (1 < F, < 254), a 23-bit mantissa
(Fys) and a sign bit (F,;). The mantissa is a fixed-
point fraction scaled by 272, i.e., 222 . F,, is an in-
teger. The real value represented by IEEE-754 single
precision® is (1— 2F,)(1+F,,)2~12™+Fe_ The dynamic
range of normalised single precision is from 27127 o
21?7, The hardware that implements this is more com-
plicated and requires more power than that for fixed
point. An important disadvantage of floating point is
that the absolute spacing of representable numbers in-
creases abruptly at exact powers of the base—doubling
at binades like 0.5, 1.0, 2.0.

A less well-known option for such applications is
the Logarithmic Number System (LNS) which offers
many of the advantages of fixed-point and floating-
point number systems. The central mathematical idea
behind LNS, which is to maintain a logarithmic rep-
resentation throughout all computation (including ad-
dition), was first described by Leonelli[9] in 1803. In
1971, Kingsbury and Rayner [13] developed the first
modern application for LNS: digital filtering. Several
researchers, notably Swartzlander et al. [23], rediscov-
ered this simple mathematical idea and applied it to
many application areas, such as the FFT. Interest in
LNS is growing. For example, Stouraitis [21], Lewis
[16] and Chen and Yang [6] describe practical ways to
achieve higher precision. A thorough bibliography [26]

Hgnoring special cases such as denormals, subnormals (Fe =
0) and NaNs (F. = 255). The -127 is a bias that reflect choices
about overflow and underflow.



contains over one hundred references.

LNS maintains perfectly constant relative precision
by replacing the mantissa with a fixed-point, rather
than integer, exponent. The value of a 32-bit LNS rep-
resentation similar to IEEE-754 is (1 — 2L,)2128+L
where L, is the sign bit (of the value) and 0.0 < L, <
256.0 is an unsigned fixed-point logarithm? (having the
same scaling as F, and occupying the same number of
bits as the combination of F¢ and F,,,). The above is an
example of a possible LNS that has 8 bits before and
23 bits after the radix point of L, to create a system
similar to IEEE-754 single precision.

When precision requirements are low to moderate
and multiplication is more frequent than addition, LNS
is more cost effective than floating point. For such ap-
plications, LNS is faster [7, 16] and/or consumes less
power [20, 22] than similar fixed-point or floating-point
alternatives. These advantages have been noted in ap-
plications such as battery-powered hearing aids [20],
digital filtering [21, 13], neural nets [3], graphics®, and
hidden-Markov speech recognition [24]. The footprint
of such applications is similar to burgeoning markets
for portable computing/communication devices.

Another advantage of LNS is that relative precision
is constant rather than wobbling as with conventional
floating point, and thus can be more accurate in the
sense of having a lower worst case error. The signifi-
cance is not lost at discrete points but rather dimin-
ishes gradually. The LNS representation is thus inher-
ently more accurate in this sense than floating point
(for the same number of bits). Prior LNS implementa-
tions [16, 7] have attempted to implement nearly this
full accuracy by computing the logarithmic approxima-
tion of a sum with about three more bits of significance
than the target precision (F = 23 above) so that the
rounded result is better than the equivalent floating-
point result. The novel contribution of this paper is to
explore modest weakening of this accuracy criterion in
exchange for large hardware savings.

2. LNS Arithmetic

LNS represents a real number using a sign bit and
a finite approximation of the logarithm of the absolute

2L, = 0 is used to represent the smallest value =2 0.0.

3Graphics (as opposed to signal processing) applications
sometimes require delicate decisions be made consistently about
which side of a surface a point is on. This might be a challenge
with logarithmic systems, because calculation of differences is
difficult in LNS. Even so, this does not appear to have prevented
the application to LNS to graphics. For example, animation for
Jay-Jay the Jet and other television series was performed on
the IMI500 graphics engine, a 12-bit LNS processor designed by
George P. Semerau, Joseph Edwards and Frank Ford Little [14].
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value of that real number. The representation of a
product or quotient is formed by adding or subtracting
the logarithms* and XORing the sign bits.

Thus, as has been noted many times in the liter-
ature, when the operands are exact, the product or
quotient is exact. This is an advantage compared to
floating point, where only a small subset of products
and quotients of exact operands produce exact results.

In practice, however, LNS input operands are sel-
dom exact. More typically, the LNS product or quo-
tient propagates the relative errors of the inputs. Un-
like floating point, no additional relative error accrues
due to truncation. A weaker way to characterize this
is that LNS inherently provides round-to-nearest prod-
ucts and quotients.

LNS addition and subtraction are not so easy, either
to implement or to analyze. Given real values z and y,
addition uses the property that z+y = y-(1+=z/y). The
advantage of this form is that a dyadic function (z +y)
has been reduced to a monadic function (increment).
In order to carry out the increment operation in LNS,
the hardware needs an implementation of the addition
logarithm,

sp(2) = log, (1 + b%) 1)
and the subtraction logarithm,
dy(2) = logy |1 — b7|. 2

When the signs of the operands are the same, log, |z +
y| = log,, |y|+ss(log, |z|—log|y|). When the signs of the
operands differ, a similar approach holds, using dj, but
the case of £ = —y must be handled specially, which
is analogous to the special case of division by zero in
the floating point system. Because of commutativity,
the roles of z and y could be interchanged, thus it is
common (but not required) to assume |z| < |y

3. Review of the Brown Model

The Brown model [5] postulates axioms that de-
scribe essential abstract properties of a floating-point
number system without specifying much about imple-
mentation detail. Although it is possible to include
many of the desirable features of the IEEE-754 floating-
point standard [11} into an LNS implementation [2],
the Brown model is a good starting point to develop a
model of LNS. In Brown’s notation, z’ is the smallest
interval bounded by model numbers (i.e. having ex-
act representations) that contains an arbitrary real or
interval z. If z is real but not a model number, the
end points of =’ will be adjacent model numbers (the

4With a compensation for the bias of -128.



nearest and next-nearest points to z). In other words,
z lies between these two points.

Brown’s main axiom states that for a binary oper-
ator * (such as + or - ) if the interval &’ * ¥’ does not
overflow, then the model representation of  *y is con-
tained in (2’ *xy')’. We are concerned with the imple-
mentation of a feasible LNS system that satisfies this
axiom. To do so, we need only consider the case that
2 and y are model numbers. Thus, z’ and y’ are also
model numbers. In LNS, if we multiply or divide, we
will always obtain another model number (unless the
desired result overflows). The problem is LNS addi-
tion. The perfect result,  + y, is not a model number.
However, it is possible to satisfy the axiom by ensuring
that the hardware returns either of the two adjacent
end points that define the interval (z + y)'.

4. Rounding Modes

IEEE-754 demands that the implementation be ca-
pable of a round-to-nearest mode for the arithmetic op-
erations, which is stronger than what the Brown model
requires. Although the cost of implementing a round-
to-nearest mode is reasonable for floating-point arith-
metic, this is not so for LNS.

The Brown model only demands what has been
called a faithful rounding mode (8§].

Definitions: Round-to-nearest mode always
produces the nearest representable point to
the exact value. Faithful rounding mode pro-
duces either the nearest or next-nearest point.
Faithful is further categorised here as unre-
stricted or restricted. Unrestricted faithful
rounding may choose either nearest or next-
nearest representations, regardless of the re-
sulting error. Restricted faithful rounding
may choose the next-nearest LNS point only
if the error is no worse than the worst pos-
sible floating-point error. For this reason,
we also refer to this as Better-than-Floating-
Point (BTFP) rounding mode. For this pa-
per, nearest means the exact LNS value which
has the ratio with z that is closest to 1.0. This
is slightly different than IEEE-754, where it
means the exact floating-point value which
has the difference with z that is closest to 0.0.

5. Is Round-to-Nearest Impractical?

Unlike floating point, where the sums and differences
of exact operands often (but not always) produce exact
results, LNS sum and differences never produce exact
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results (except in the case £ = y) because s, and dp
are irrational functions that must be approximated and
rounded to some finite precision.® For low-precision
implementations, these functions can be pre-computed
to high accuracy, rounded any way desired (includ-
ing round-to-nearest) and burned into a small ROM
(direct-table-lookup). As the precision increases, the
size of the ROM for direct-table lookup grows expo-
nentially. For precision approaching that of IEEE-754
single precision, the most practical approaches instead
involve either interpolation [15, 16] of s; or compu-
tation of logs and anti-logs [6]. Both approximation
approaches face the table maker’s dilemma: without
computing the function to exorbitantly high precision
[18], there are cases where it is impossible to round to
the nearest. Thus, round to nearest is impractical.

Instead, all previous LNS implementations obtain-
ing precision comparable to IEEE-754 have at best used
faithful rounding. Because of the difficulty of comput-
ing dp, some implementations [16, 1, 3] have further
relaxed accuracy requirements near the singularity of
dy. This can be justified by the belief that accurate dj
results are often irrelevant in this region when small
differences are added to larger quantities. This de-
pends on the application, and requires experimentation
and/or very careful analysis. This willingness to accept
less than faithful rounding near the singularity will be
referred to as relaxed-difference-rounding,.

6. Better-than-Floating-Point (BTFP) is Pos-
sible

Despite some acceptance of relaxed-difference-
rounding, two recent VLSI interpolator designs im-
plementing LNS addition [16, 7] have chosen a rather
strong and restricted form of faithful LNS rounding
over all regions (including the singularity®). This ex-
tra strong form of faithful rounding will be referred to
here as better-than-FP (BTFP). As this name implies,
this guarantees that for LNS and floating-point rep-
resentations with comparable range and precision, an
LNS unit that adheres to a BTFP mode will produce a
smaller worst-case relative error than the comparable
floating-point unit that adheres to an IEEE-754 round-
to-nearest mode. The actual errors in both systems are
random variables which can be characterized by several
statistics, of which the worst-case error is the easiest

5The problems of multiplication in floating-point are analo-
gous to those of addition in LNS, but not as severe since floating-
point multiplication does not involve an irrational function.

8In considering design alternatives prior to fabrication of his
interpolator, Lewis [16] examined both a strong and weak error
model (the same as strong except the weak model uses relaxed-
difference-rounding).



to derive. For a particular computation, the LNS unit
may be more or less accurate than the floating-point
one, but over a large random set of computations, the
upper bound on the BTFP LNS errors will be smaller
than the upper bound on the IEEE-754 errors.

This may seem paradoxical since BTFP is a faithful
mode that does not always round to the nearest LNS
representation whilst IEEE-754 always does round to
the nearest floating-point representation. Yet BTFP
mode is possible because of the inherent superiority
of the LNS representation. This superiority is the re-
sult of the following: floating point exhibits a wobbling
relative precision which makes the maximum relative
error twice that of the minimum relative error. On the
other hand, LNS maintains a constant relative preci-
sion, which is roughly log,(2) = 0.69 of the maximum
floating-point relative error.

This log,(2) factor makes it possible for approxima-
tions of s or dp near the midpoint between the nearest
and next-nearest quantised LNS representations to be
rounded either way and still achieve results that on
average are superior to floating point.

Figure 1 shows the LNS number line in the region
near 1.0. The picture would be analogous for any rep-
resentable point as relative errors are being considered
(divide by the number in question to arrive at 1.0). The
left end point is the real value 1.0, which has an exact
LNS representation of 0. The right end point repre-
sents the smallest exact value larger than one, namely
e= V2m1+ log, (2) - 2=F, assuming base b = 2 and
that there are F' bits of precision. Suppose that a real
number 1.0 < z < € is to be represented. The value of
z lies between the nearest and next nearest end points
of the interval [1,€]. In unrestricted faithful rounding
analogous to the Brown model, either end point would
be an acceptable rounding. In BTFP rounding how-
ever, the rounding must go to the nearest when z is
sufficiently close to an end point. Only when z is in a
special region defined in the middle of the interval is
it possible for the rounding to go either way. Figure 1
shows this situation as a point in this special region,
and two arrows diverging from this point indicating
the two acceptable rounding results. Let u = 2-F
be the weight attached to the least-significant bit of
the b = 2 LNS representation. The representations
below the number line in Figure 1 are fixed-point log-
arithms that correspond to the real values above the
number line. Obviously, zero represents 1.0. u repre-
sents € ~ 1 +log,(2) - u.

If the number of bits for the logarithm were not
fixed at F, the exact LNS representation of the real
z would be log,(z). Instead, the quantized hardware
must choose either zero or y for the representation of
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z which lies in the interval [1, €].

There are two cases possible: the nearest represen-
tation could either be on the right (x) or on the left
(0). Without loss of generality, we will only consider
the case when the nearest point is on the right, which
makes /2 < logy(z) < . (The picture would be sym-
metrical if we assumed the nearest point were instead
on the left.)

Definition: § is the distance from the geomet-
ric midpoint of two adjacent exact LNS rep-
resentations in which rounding to either point
is allowed for BTFP results.

For a distance of d to the right of /2, rounding to the
right or left end point is permitted for BTFP rounding.
The real value represented by the rightmost point that
can be rounded to the left and still maintain BTFP
behaviour is 2#/2+% x 1 +log, (2)(1/2 + 8). The maxi-
mal BTFP relative error is thus log,(2)(u/2 + §). Set-
ting this equal to the maximal IEEE-754 round-to-
nearest error (/2 = log,(2)(1/2 + §)) and solving for
& = (loga(e) — 1) - u/2 ~ 0.22154 defines the region
where arbitrary rounding is permitted. This ensures a
result at least as accurate as IEEE-754.

Lewis [16] used a similar derivation to determine
data-path widths in a practical BTFP interpolator.
The intent here is slightly different: to estimate the
probability that rounding to next nearest is permitted,
assuming 7 is uniformly distributed in the p/2 < z < u
interval. This probability is p = 6/(u/2) = log,(e) —
1 = 0.443.

7. Is BTFP Cost Effective?

Although BTFP mode is initially appealing as a de-
sign goal, the question this paper addresses is whether
that goal is a cost-effective one. To do this, we need to
consider the cost, which relates primarily to the ROM
sizes required. The following only considers s, inter-
polation, as this avoids the question of dp. The re-
sults are similar for d, interpolation, but to arrive at
these results requires the designer to make several de-
cisions about implementing the singularity region that
are not relevant to the issue at hand. Furthermore, re-
dundant LNS [1] allows useful computation with only
sp by keeping separate positive and negative sums that
are combined only at the end of a computation, thereby
avoiding d, computations until the end.

Lewis [16] uses quadratic Lagrange interpolation
with a ROM containing 768 words” to achieve BTFP
rounding of s, for F = 23. Each word consists of F

In general, Lewis uses roughly 3 - 2/ +(F~4)/31 words.



bits plus sufficient guard bits®. Thus, Lewis requires
a memory with 10 address bits.® Lewis’ simulations
indicate that a ROM with this number of words is the
smallest possible to achieve the BTFP goal with two-
multiplier Lagrange interpolation.

Coleman’s LNS interpolator [7] also achieves BTFP
results using two fixed-point multipliers. Coleman does
not use Lagrange interpolation, but rather a novel “er-
ror correcting” scheme. The number of ROM words for
sp in Coleman’s interpolator is double that of Lewis’s.

We have designed a new quadratic interpolator sim-
ilar to the Lagrange interpolator proposed by Lewis[16]
but that uses the minimal amount of ROM to achieve
unrestricted faithful rounding. By relaxing our design
goal from BTFP faithful rounding to unrestricted faith-
ful rounding, our s, interpolation with F° = 23 can be
implemented with as few as 234 words. This is a three-
and six-fold improvement in ROM size compared to the
prior implementations [16] and [7], respectively. Our
interpolator only requires eight address bits.

Is BTFP mode worth over three times the ROM
size? As this is in part a philosophical question, the
extent to which empirical evidence can persuade LNS
designers to use or abandon BTFP mode depends upon
underlying assumptions. If LNS is seriously being con-
sidered as a replacement for floating-point in general-
purpose computation [10], then perhaps the peace of
mind that BTFP mode affords is worth its extreme cost
regardless of empirical evidence. On the other hand,
if (more realistically) the designer sees LNS filling a
niche role in areas like signal processing or multime-
dia, empirical evidence about accuracy may persuade
the designer to use unrestricted faithful rounding in-
stead.

8. Simulation

To study the effects of alternative rounding meth-
ods, addition and subtraction routines were imple-
mented that randomly choose either the nearest or
next-nearest representable LNS point to the “exact”
result (computed with double-precision floating point
from inputs that were similarly truncated during ear-
lier computations). By choosing between nearest and
next nearest at random, we avoid concerns over the
merits of various prior interpolation techniques, and
focus instead on what accuracy criteria such methods

8The minimum number of guard bits required has typically
been determined by exhaustive simulation [15, 16] and is not
considered here. Two to four guard bits are typical.

%In custom VLSI, this memory would only occupy an area
proportional to the 768 words used, but in an FPGA, the memory
configurations are available only in power-of-two sizes, hence this
table would require 1024 words.
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should strive towards. The random selection is per-
formed without regard to the value of 2. This over-
estimates the effect of rounding to non-nearest since
for b = 2 and 2z < —25, the nearest value to s(2) is
zero, which is easily realisable in an actual hardware
implementation.

The routines allow specification of the probability, p,
that the next nearest is chosen. Also the routines can
be configured either for unrestricted or for restricted
random selection between the nearest and the next
nearest. If the selection is unrestricted, any result, no
matter how close to the nearest point, may be chosen
at random to round to the next nearest. If selection
is restricted, only those results where BTFP relative
error is possible may be chosen at random to round to
the next nearest.

When p = 0 either in the unrestricted case or in
the restricted case, the routines implement round-to-
nearest. In the restricted case, for situations where
rounding to next nearest would be BTFP, the deci-
sion whether to round to next nearest is based upon
p/p = 2.25p, which makes the outcome comparable to
the unrestricted case. This was done on the assump-
tion of a uniform distribution of the truncated part of
results, which was empirically observed in the simula-
tions described below.

For the unrestricted case, 0 < p < 1 is meaningful,
where p = 1 rounds every result to the next nearest,
which has the effect of dropping about 1.5 bits of preci-
sion. For the restricted case, 0 < p < p is meaningful,
where p = p rounds every result to the next nearest
when BTFP behaviour is possible.

9. FFT Example

One area in which LNS has been applied success-
fully is DSP [21]. One of the most common algorithms
in DSP is the Fast Fourier Transform (FFT), which
comes in many variations and has been the subject of
previous LNS studies [17, 23, 12]. One of the simplest
variations is the radix-two FFT, which takes 2" com-
plex points that specify a periodic time domain signal,
and produces 2" complex points that specify the cor-
responding frequency spectra. A 2™-point FFT uses n
stages, where each stage involves 2" complex multiply-
accumulate operations. Each complex product involves
one of the constant 2” roots of unity. The implementa-
tion here of each complex multiply accumulate involves
four real additions and four real multiplications.

The FFT is reasonable for this study as the struc-
ture of the FFT allows an error in a single computation
of the first stage to have the potential to propagate to
every computation in the final stage. Whether such an



error propagates depends on the relative magnitudes
involved. (Adding a large exact number to a small in-
exact one diminishes the relative error; adding a small
exact number to a large inexact one does not.) In this
particular case, the input is a real-valued 25% duty-
cycle square wave plus complex white noise (generated
pseudo-randomly). Since this makes the real compo-
nents larger than the imaginary ones for the majority
of computations in the early stages, in general slightly
greater error is propagated to the real components of
the final stage than to the corresponding imaginary
components. Thus, error in the real components pro-
vides a metric to compare the effects of variations in
rounding.

The FFT is re-run 250 times for a particular round-
ing at a particular precision (F) and number of FFT
stages (n) but with different pseudo-random noise.
Thus, 250n2" complex multiply-accumulate operations
occur, which would be implemented in hardware by
using 1000n2™ LNS interpolations. The 2" real re-
sults from those 250 runs are compared against a full
double-precision FFT, and the normalised RMS error
(i.e. RMS scaled by 2F) is tallied for a particular F
and n. In other words, each normalised RMS error is
calculated from 250 - 2" numbers that are the result of
1000n2™ roundings, which is on average 4n rounding
steps per number. The experiment ran with values of
n between 5 and 11, corresponding to between 20 and
44 rounding steps. For each n, the simulation is run for
F between 17 and 26. This range (F' >> n) was chosen
to avoid any artifacts inherent to the FFT that occur
when the points on the unit circle are not represented
with adequate resolution.

We can derive a lower bound to verify that our simu-
lations are sensible. Let E, be the average BTFP error
at probability p, Ey be the round-to-nearest LNS er-
ror (BTFP error at p = 0), E, be the maximal BTFP
error, Epp be the maximal floating-point error and
U, > E, be the unrestricted error at probability p. By
the definition of BTFP, Epp > E,. Thus, Ey/Epp <
Ey/E,. In theory, round-to-nearest LNS is at most
log, (2) better than the round-to-nearest floating-point
error, i.e. log,(2) < Ey/Eypp. We therefore expect
log,(2) < Eo/E,. Of course, at p = p, we expect
E,/E, = 1. From these two points, a simple linear
model would then predict E,/E, > log,(2)+log, (2)p ~
0.69 + 0.69p for 0 < p < p, which all of the following
simulation results obey fairly closely.

To put the results in this form requires two steps.
First, the simulator determines the normalised RMS
errors (E, - 2F') from restricted faithful rounding with
p = p, which represents the worst case that could still
be considered better than floating point. Then, the
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simulator is run with both restricted (Ej, - 2F) and un-
restricted (U,-2) rounding for values of p from 0.01 to
0.06. The normalised RMS errors reported from both
of these runs are divided by the corresponding E, - oF
(computed with the same F' and n) to give a ratio of
how much worse the extreme case of BTFP (and by ex-
tension, floating point) is than the LNS rounding under
consideration.

The data for restricted rounding with an FFT size
of n = 11 are plotted in Figure 2. The triangles are
the observed error ratios (for each precision 17 < F <
26) and E,/E, ~ 0.71+ 0.73p is the fitted line. The
standard deviation of the difference between the fitted
line and the observed points is 0.0067. Similar results
were observed for:

n=10, E,/E,~0.72+0.75p
n=9, E,/E,~0.72+0.78p
n=8, Ep/E,~072+0.71p
. n=7, FE/E,~0.72+0.81p
n=6, E,/E,~072+0.72p
n=2>5, Ep/E,~ 0.73+ 0.65p.

The standard deviations between these fitted lines and
the observed points grows to 0.0014 at n = 5. This
may be attributable to the fact that the number of
roundings per point plotted decreases from 22,528,000
to 160,000. The fluctuation in slopes for n < 7 may be
related to this as well.

Similar simulations were performed for unrestricted
faithful rounding. The data for unrestricted round-
ing with an FFT size of n = 11 are plotted in Fig-
ure 3. Here dashes are the observed error ratios and
Up/E, = 0.72 + 2.25p is the fitted line. Similar results
were observed for:

n=10, U,/E,~0.72+2.34p
n=29, Up/E,~0.7242.28p
n=28, Up/E,~0.72+2.10p
n="7 Up/E,~0.72+2.16p
n=6, Up/E,=0.73+2.07p
n=235, Up/E,~0.73 4+ 2.07p.

The standard deviations are similar to the restricted
case, and thus the slopes for larger n may be more
realistic. It appears the slope does increase slightly as
n increases.

It is worth seeing how far this linear model holds.
One interesting point is when unrestricted rounding
has the worst possible probability permitted in re-
stricted rounding. With n = 11, our model pre-
dicts U,/E, = 1.72. In our simulations we observéd*



1.65 < U,/E, < 1.72, which is in close agreement to
the prediction. Taking this to the extreme, we can
compare the probabilistic results above to a highly
pessimistic scenario when rounding is always to the
second-nearest value (i.e., p = 1). Here, our model
predicts < Ui/E, = 2.97 whilst we observe 1.80 <
U,/E, < 2.92, which is in close agreement. Thus lose
about one and one half bits of precision in this pes-
simistic case.

By solving 0.72 4+ 2.3p < 1 we estimate p < 0.12 will
yield U, < E,, which seems a reasonable criterion for
the design of an unrestricted faithful interpolator. In
other words, if we design an unrestricted interpolator
that rounds to the next nearest no more than 12 per
cent, of the time, we would expect FF'T results at least
as good as the extreme case of BTFP, which in turn
would be at least as good as IEEE-754.

From the fitted lines, we can estimate U,/E, —
E,/E, ~ 1.6p. Using this, we can estimate the percent-
age increase (g) of U, over Ep, as ¢ = 1.6p/(0.72+2.3p).
A design goal of holding U, < ¢E, could be satisfied
by p < 0.72¢/(1.6 — 2.3q). For example, a five-per-cent
bound requires p < 0.024 whilst a ten-per-cent bound
requires p < 0.052. In fact, the tradeoffs in the design
of a practical unrestricted interpolator are more com-
plicated than these estimates [4]. Even so, the simula-
tion data from which these estimates were derived are
sufficiently encouraging that such hardware would be
usable for LNS applications similar to the FFT, where
marginal additional RMS errors of this nature will not
interfere with the functionality of the application.

10. FPGA Implementation

There is increasing interest in FPGA-based recon-
figurable computing, which enables the best number
representation to be selected at will. Table-based LNS
arithmetic seems well suited to the resources of FPGA
architectures [24]. Unfortunately, prior LNS designs
require too much table space for F' = 23. For example,
the Xilinx Virtex FPGA family [25] offers two kinds
of resources: 4-input-bit Look Up Tables (LUT) used
primarily to implement logic, and larger block RAMs
configurable for 8- to 12- address bits. The chip we
are using (XCV300) has 3072 LUT slices and 64K bits
of block RAM on chip that must be shared between
LNS tables and data storage. With prior techniques
[16, 7], if it would fit at all, the table for an F = 23
LNS adder would be too big to allow any reasonable
on-chip data storage. With the memory savings pro-
posed in this paper, the block RAM of such an FPGA
could be configured with one or two LNS adders plus
data storage. We have shown how 24K bits (compared
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t0 [16]) or 56K bits (compared to [7]) per adder could
be released for data storage in such a chip (assuming
power-of-two table sizes as required by the FPGA ar-
chitecture). This represents 37 or 87 per-cent savings,
respectively.

The total system must include the cost of the mul-
tiply/add interpolator datapath. Assuming four guard
bits, Xilinx Foundation 2.1 reports that a datapath
similar to [16] requires 9 per-cent of the available LUT
slices. While there are many alternative datapath de-
signs too numerous to describe here, the 9 per-cent cost
figure is a good estimate of the cost of the datapath for
either the prior or the proposed interpolators. Since
the predefined area assigned to block RAM cannot be
traded for the predefined area assigned to LUTs, it is
hard to describe a single figure of merit (like area) for
FPGA implementations as would be done for VLSI im-
plementations. In an attempt to do so, the proposed
LNS tables can be implemented with 16 per-cent of
LUTs instead of block RAM. This compares favourably
with a large 64 per-cent (for [16]) and an impossible
128 per-cent (for [7]). Thus, the design alternatives re-
quire 25, 73 and 137 per-cent of the LUT slices. Under
these assumptions, our design offers almost a three-
fold (73/25) improvement compared to [16] and more
than a five-fold (137/25) improvement compared to [7].
Since custom ROMs in VLSI are denser than LUTs, the
cost savings in VLSI for unrestricted faithful rounding
would not be as great, but would still be worthwhile.

Observations similar to this paper in the domains of
fixed- and floating-point numbers have led to propos-
als for truncated multipliers [19]. There, the conclu-
sion is that by going from an error of ulp/2 to ulp (or
slightly more), substantial cost and power savings can
be achieved. The estimates of three- to five-fold cost
reduction above did not consider the additional savings
that accrue from truncated multiplication in the inter-
polator. Such substitution may be permitted because
of our unrestricted faithful rounding model.

11. Conclusions

Although some early LNS implementations produce
unrestricted faithful [15] or even weaker than faithful
rounding [21], the recent trend has been towards re-
stricted faithful rounding [16, 7]. We question this lat-
ter criterion, and give preliminary evidence that it is
not the most appropriate model for LNS rounding in
the applications for which LNS is a leading contender.

We have shown for a well-known DSP application
(FFT) that there is only a small distinction between
the less costly unrestricted faithful rounding proposed
here and the restricted faithful (BTFP) rounding used



by these prior F=23 LNS implementations. Perhaps
because all the data is typically comparable in mag-
nitude, FFT calculations appear to be fairly resilient
against arithmetic peculiarities introduced by unre-
stricted faithful rounding. Whether other plausible
LNS applications would be as tolerant as FFT’s is the
subject of our current research.

This paper reports the result of probabilistic round-
ing simulations and avoids details of interpolator hard-
ware implementation. The probability p provides
a concise figure of merit for faithful interpolators.
Elsewhere we describe details on implementation of
unrestricted-faithful interpolators[4].
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Figure 1: The exact real values (1.0 and €, shown as circles) are above the number line, with their LNS representations
below. If an arbitrary real value is in the region defined by 0, it can round either to € or 1.0 (nearest or next-nearest) and
still be BTFP. If the value is larger than 2***%, the value must round to € (nearest). This figure only considers the case
when the real value is between 2* and €. The maximum probability allowed in BTFP mode for rounding to next nearest

is p=8/(u/2).

Real values: 1.0 Ve = o2 QW2 £
= 1+log.(2)u/2 = 1+log.(2)(W2+d)
Round
either
way
<+ >
Round
d onlyto €
Logarithmic
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Figure 2: Observed points (triangles) and fitted line, 0.71 Figure 3: Observed points (dashes) and fitted line, 0.72 +
+ 0.73p, in 250 simulations of the FFT with n=11 and 17 2.25p, in 250 simulations of the FFT with n=11 and 17 <
< F < 26 for restricted faithful LNS rounding. The F < 26 for unrestricted faithful LNS rounding. The
abscissa is 100 times the probability (») of rounding to abscissa and ordinate are the same as in Figure 2.

next nearest and and the ordinate is RMS error as a ratio

of maximal (p=p) BTFP error.
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