Modular Multiplication and Base Extensions in
Residue Number Systems

Jean-Claude Bajard
LIRMM
Montpellier, France
bajard@lirmm. fr

Laurent-Stephane Didier

Université de Bretagne Occidentale

Brest, France

laurent-stephane.didierQuniv-brest.fr

Peter Kornerup
SDU/Odense University
Odense, Denmark

kornerup@imada. sdu.dk

Abstract

We present a new RNS modular multiplication
for very large operands. The algorithm is based
on Montgomery’s method adapted to residue arith-
metic. By choostng the moduli of the RNS system
reasonably large, an effect corresponding to a redun-
dant high-radiz implementation is achieved, due to
the carry-free nature of residue arithmetic. The ac-
tual computation in the multiplication takes place
in constant time, where the unit of time is a few
simple residue operations. However, it is neces-
sary twice to convert values from one residue sys-
tem into another, operations which take O(n) time
on O(n) processors, where n is the number of mod-
uli in the RNS systems. Thus these conversions are
the bottlenecks of the method, and any future im-
provements in RNS base conversions, or the use of
particular residue systems, can immediately be ap-
plied.

1. Introduction

Many cryptosystems [16, 5, 11] employ modu-
lar multiplications and exponentiation on very large
numbers (possibly one or two thousand bits), and
various algorithms have been proposed [3, 9, 23, 21,
20, 12]. Most of them use redundant (possibly high-
radix) standard number systems and Montgomery’s
modular multiplication [10]. On the other hand the
Residue Number System (RNS) is also of particu-
lar interest, because of the parallel and carry free
nature of its arithmetic [19, 22].

Note that the Montgomery modular multiplica-
tion takes place in a modified residue system, where

0-7695-1150-3/01 $10.00 © 2001 [EEE

59

operands and results contain an extra factor M,
for some suitably chosen value of M. Mapping in
and out of this residue system is simple, and its
cost may be amortized over many multiplications,
when these are used for modular exponentiation.
However, if applied to RSA encryption [16] as well
as decryption (i.e., both ends using the same RNS
system), we may just as well assume that the mes-
sage itself is considered the RNS representation of
a number, thus mapping in and out of the RNS
system is not necessary. This is particularly inter-
esting for the Fiat-Shamir authentification protocol
[5, 11}, where only modular multiplications are used
(no exponentiation). We shall thus not further dis-
cuss the implications of using this modified residue
system.

We have previously [1, 2] proposed two RNS
versions of the Montgomery algorithm for modu-
lar multiplication. To compute A * B mod N, an
intermediate value @ is to be determined such that
Ax B+ @ * N is a multiple of M, the product
of the moduli of the RNS base. The quotient Q
was computed digit-wise in a Mixed Radix System
(MRS). The result of one pass of the algorithm was
then obtained in an auxiliary RNS base, using O(n)
(the size of the RNS base) RNS computations. The
first version was a direct translation of the classi-
cal Montgomery algorithm for weighted representa-
tions to RNS. We just used MRS as a weighted sys-
tem associated with the RNS. The second version
then was an improvement of the first: we showed
that a MRS representation of 4 was not necessary
and that we could precompute some values to re-
duce the complexity of the algorithm.

Here we propose to compute @ with a single
parallel RNS calculation in one RNS base, but to
be able to divide out the factor M it is neces-

sary to convert () into an auxiliary RNS base, such
that we can evaluate the result of the algorithm,
R=(AxB+Q@Qx*N)* M1, in the auxiliary RNS
base. The major costs now lie in conversions from
one base into another. Two such O(n)-time paral-
lel conversion algorithms are described, where the
first and classical one based on [17] unfortunately
cannot be employed for the conversion of Q. But it
can be used to convert the result R back into the
original base, allowing it to be used as an operand
for another multiplication. For the first conversion
it turns out to be sufficient to allow an offset to be
present in the residue, i.e., it need not be properly
modulo reduced, it just has to belong to the cor-
rect residue class. Then using the above mentioned
method for converting back to the original system
removes the un-wanted offset. Any other base ex-
tension algorithm (without extra modulus) may be
appropriate. Note that for regularity purposes, we
want base conversions which can be executed on
simple cells (the n residue “channels”), which ex-
cludes the use of O(log(n))-time algorithms where
multi-operand addition in a cell is performed in a
tree structure.

Section 2 introduces the notation used in the
residue and the mixed radix systems employed. In
Section 3 the Montgomery algorithm is briefly in-
troduced and its adaption to the RNS system is
discussed, together with a brief proof of correct-
ness. Section 4 then introduces the two conversion
algorithms and their use for our new modular mul-
tiplication algorithm. Section 5 combines the ba-
sic RNS multiplication with the conversions, and
finally Section 6 contains some conclusions.

2. The Residue Number Systems

We begin with a short summary of the RNS sys-
tem, and introduce our terminology:

e The vector {m;,mq,---,m,} forms a set of
moduli, called the RNS-base B,, where the
m;’s are mutually prime.

e M is the value of the product []}_, m;.

e The vector {z;,---,z,} is the RNS represen-
tation of X, a positive integer less than M,
where

z; = | X|m; = X mod m;

Due to the Chinese Remainder Theorem, any
X less than M has one and only one RNS-
representation. Addition and multiplication mod-
ulo M can be implemented in parallel in linear space
(O(n) channels), and performed in one single step

60

without any carry propagation, by defining +
and X ., as component-wise operations (8, 19, 22]:
A+pns B ~laj +bjlm,, for j € {1,---,n}

A X, s B~la; X bjlm;, forj € {1,-.-,n}.

We also define “exact division”, A <+, B, as-
suming that B divides A, ged(B, M) = 1:
R=A+,,,B ~ #fjforje{l,---,n}

where #; i3 computed as:

fj =]aj X (B)m:

, 1

m;j

where (X);1 denotes the inverse of X modulo m;
for X and m; relatively prime.

We shall also introduce an auxiliary base B
{f, e, -, Ma} with M = [[;, M;, where M is
coprime to M. In this system the RNS representa-
tions of an integer X is:

Xpns = {T1,%2, -+, 25}

and we shall assume that M > M.

3. The RNS algorithm

Based on the original M-reduce algorithm by
Montgomery [10] we want to compute the modu-
lar product, ABM~! mod N, for given A, B, N and
M, where N < M and M is chosen such that re-
ductions modulo M are “easy”, which will be the
case when M is the product of the moduli of the
RNS system used. As we shall see below, to be able
to perform the computations in RNS arithmetic, we
will have to use two RNS systems, as also used in
(1, 2, 15, 7]. Hence the operands A and B must be
available in both systems. And when for exponen-
tiations the result of a multiplication may be used
again as input for other multiplications, the result
should also be delivered in both systems.

In the M-reduce algorithm we compute an inter-
mediate value @, @ < M, such that: AxB+Q N
is a multiple of M. Then in RNS the representa-
tion of Ax B+ @Q * N in B,, is composed only of
zeros. As we have Q < M, @ can be easily ob-
tained in the RNS base B,,. For i = 1..n, we have
(a; *b; + g; ¥n;) mod m; = 0, and thus deduce that
for i = 1..n we have:

(2)

But note that since A * B + Q * N is a multiple
of M, it cannot be represented in the system with
base B,. Hence to compute the final result R =
(A* B+ @ * N)* M™~! it is necessary to compute

@i = (—a; * b;) * (n;): mod m;.

its value in an RNS system using another base B;,
and thus not only to have A, B and N available in
B; , but also to convert @ into that system. Hence
we obtain the following algorithm:

Algorithm 1 RNS Modular Multiplication

Stimulus: A residue base B, , {m1,mq, -+, m,},
where M =[], m;
A residue base Bz, {mi,Mmq, -,Mz},

where M = H?=1 m;
where gcd(M,M)=1and M < M

A modulus N expressed in RNS in the
two bases, with gcd(N,M) =1,

and 0<2N < M

Integer A given in RNS in the two RNS
bases

Integer B given in RNS in the two RNS
bases with Ax B< M xN

Response: An integer R < 2N ezpressed in the
two RNS bases such that
R = ABM~(modN)

Method: Q ¢ (—A X, us B) X,ns N1 in By,
Conversion of the representation of Q
from B, to By
R+ (A Xans B +§gvs Q Xpns N)

X ans M lin Bﬁ
Conversion of the representation of R
from Bj to B,

Since Q@ < M and AB < MN it follows that
R < 2N, and it is easy to see that the result R sat-
isfies R = ABM~!(modN). With this version of
Montgomery’s algorithm, base conversions are the
major operations of the algorithm, as the two RNS
computations can be performed in parallel on all
the individual residues.

Remarks:

The direct construction of the result AB mod N
(say for the Fiat-Shamir Algorithm) needs a second
pass of the algorithm with R and (M2 mod N) (a
precomputed value) as inputs. With A, B < N, as
R < 2N < M and (M? mod N) < N, all the condi-
tions of the algorithm are satisfied. But if we want
to use this algorithm for exponentials, we must note
that it is necessary to require 4N < M, since the
repeated squarings requires results of the algorithm
to be used as operands, and thus A and B will only
be bounded by 2N.

4. Base conversion

All conversions of RNS representations from one
base B,, into another Bj, satisfying ged(M, M) =1,

61

where M, M are the products of the moduli of the
systems, must in some way or other implicitly calcu-
late the value of the numbers represented. For our
purpose here we want conversion algorithms, which
can be executed on a set of simple processors avail-
able for the RNS computations (the “channels”).

4.1. Using an extra modulus

We consider Xgys {z1,%2,...,Zn} repre-
sented in the system B,, with X € [0, M[and con-
struct X using the Chinese Remainder Theorem
(CRT) [8] by the following expression:

n
X = (Z ;| M|, M,.) mod M 3)
i=1

-1 . .
where M; = 2 and |My|,,. is the inverse of M;
modulo m;. Thus we have:

z; ifj=3i

—1
(:L',- IMiIm; Mi) mod m; = { 0 else

The normal use of this method is to reconstruct
the integer value of X in a classical number sys-
tem. Now if we only want to obtain the residue
of X modulo m;, we could use the expression {3).
But the modulo-M reduction gives some problems
evaluating the residues modulo /m;. However, an
alternative form of the CRT allow us to write

n
>

i=1

4)

i | M,

M;=X+aM
mi

for some value of & where 0 < a < n.
In 1989 Shenoy et Kumaresan [17], proposed to
use an extra modulus m; to evaluate a:

a= ||M|v_nlz (Z “ze i) |m,.M* o |X|,,,,) (5)
i=1 = e
Thus it is now possible to compute #; = |X I;;j
by
n
g =Y ||z IMz'I;i) My —JeM|; (6)
=1 i m; ;i

for j = 1..s. Observing that the constants |M;|;;},
IMil,,,., 1M} |M|;, and |M;];; can be precom-
puted, then o and #; are evaluated with n + 1 mul-
tiplications and n additions. The only dependence
on a is in the last multiplication and addition to
compute Z;. Thus, in parallel using max{n,7) + 1
channels, a and all the Z; can be evaluated in n+2
multiplications and n + 1 addition steps.

Note that the value of a is bounded by n, which
in practice is much smaller than the other moduli

m;,t = l..n. Hence the extra channel computing a
can operate with a modulus m; > n smaller than
the rest, possibly even a power of 2.

As a < n, the term |oM I;r;j in (6) and the prod-

uct by |M I,;l, in (5) could be read from tables, thus
only n multiplications will be needed.

However, a major drawback of this method is
that, to compute ¢, one must know one extra
residue, |X|, , which cannot be computed by
(2) for Q in our algorithm, since (|A|m.[Blm. +
|Q|m.|Nlm.) mod m, is unknown. But if an extra
residue for R can be computed by some means then
this algorithm can be used to convert the represen-
tation of R.

4.2, Allowing an offset in the residue

Considering again equation (4), it expresses
which residue class modulo M that X belongs to,
and when applied to Q we may not need to know
the value of a to proceed. Thus by the CRT

n
Q=Y |ulMil;| Mi=Q+aM (1)
i=1 mi
for some value of @ where 0 < a < n.
When Q has been computed it is possible to com-
pute R as

R=(AB+QN)M™ = (AB+QN + aMN)M™!
= (AB+Q@QN)M™! +aN

so that R = R = ABM~! (mod N), which is
sufficient for our purpose. Also, assuming that
AB < NM we find that R < (n+2)N since a < n.

Given the residue representations of A, B and
N in the system B, it is thus possible to compute
the residue representation of Q in B by (2), and
by (7) to convert it into the representation of Q
in the other residue system g, including possibly
an extra residue. In this system R can now be
computed, and finally converted back to the sys-
tem B using the method of Shenoy and Kumaresan.
For applications like in RSA where many modular
multiplications are needed, it is not necessary to
have the intermediate results perfectly reduced, it
is sufficient at the very end of the computation to
find the value of a. But the value of N has to
be bounded (n + 2)2N < M, since this together
with AB < NM assures R < (n+ 2)N. For single
multiplications the first Montgomery pass can be
performed using (4) obtaining R < (n + 2)N with
R = ABM~! mod N+8N. For the second pass the
inputs are R and M2 mod N, and if an algorithm
with exact conversion is used then an R is found
saitisfying R < 2N.

62

5. The RNS multiplication algorithm

Figure 1 describes the execution of our algo-
rithm, illustrating the time and area complexities.
Although it is possible to use maximal parallelism
in the form of n+47i+1 channels, max(n,#) + 1 will
be sufficient most of the time. The only place where
more processors could be employed is to perform the
computation of the product AB in the system B,
so that it is available when @ has been converted.
The time complexity is approximately 2(n + 7)T,
where T is the time for one table look-up plus one
modular multiply-add operation. For applications
in cryptology, say with N ~ 21924 it ig possible to
choose n = i = 33, where each channel is realized
by a very simple 32-bit processor, i.e., a total of 34
processors. Each processor has to be able to com-
pute additions and multiplications, modulo some
specific 32-bit primes, and to store some 32-entry
look-up tables of 32-bit constants.

RNS operations in B RNS operations in B

E—ABN -1 model

Extension of O

from B to gﬁ_
using the CRT

R=(AB+QN)M™!

Extension of R
from B; to B
using
Shenoy-Kumaresan

i < >

"~ moduli of Bx

PR

n moduli of B

Extra modulus m,

Figure 1. Evaluation of Ax B x M~ in RNS

Example We consider the systems B;
{3,7,13,19,29}, Bs = {5,11,17,23,31}, the extra
modulus m, = 8 and operands A, B and N. Thus,
we have M = 150423 and M = 666655.

In B, Mg In En Base 10

3 71319 29| 8 |5 11 17 23 31
Al13 914 25211 8 2 5 5| 26386
B|15 1 925{3 {1 1 121 19| 72931
Ni{12 611277 (2 7 9 14 19| 14527

The computation of A x B x M~ mod N is de-
tailed as shown in the following table.

In B, mz In B, Computation

2 3 5 11 8 Q + (—Ax B) x N™! = 143993
1 3 8 14 | Extension of Q from B, to B.
2 5 12 6 7
2 0 16 16 16
0 2 14 17 29
4 10 0 19 20| Q=444830 = 143993 + 2 + 150423
3 5 10 1 15| R+~ (AxB +QxN)xM!

12 12 4
17
10 13 10

= O N N O
S NNWD
() 0
(=] (S}
[
[3]]

W Wt W g OO = Ww

Conversion of R through
Shenoy and Kumaresan algorithm

—

=a)

R =55753 = (12172 + 3 * N) mod M
=(AxBx M 'modN +3+N)mod M

5.1. Using specific sets of moduli

The use of specific moduli can improve conver-
sion methods using either the Chinese Remainder
Theorem or a Mixed Radix System. Many such
systems have been previously published using small
sets of three or more moduli like {2% —1,2%,2% + 1}
for the most popular set. The benefit of such sys-
tems is twofold. First, since operations modulo
2% _ 1, 2% or 2% 41 are reduced to simple logic oper-
ations, RNS operations are easier in such systems.
Second, the values involved in CRT or MRS conver-
sion algorithms are simple numbers which greatly
simplifies the conversion computations.

A recent result published in [6] shows that a con-
version from RNS to binary using the set {2% —
1,2% 25-1 — 1} has a O(k) space complexity, and a
delay equal to one 2k — 1-bit adder and two k — 1
adders without any lookup table.

However, as discussed above for applications in
crypto-algorithms, much larger systems are needed.
The only two systems we have found with a pa-
rameterizable number of moduli of the form 2% &
1, are the systems {2™ - 1, 92'm 4 1 92'm
1,---,22"™ 4 1} proposed in [14], and systems
{2™ £ 1,2"2 £ 1,---,2"¢ £ 1} in [18] where the
exponents nj,nsg,---,ny are mutually prime, not
divisible by 3.

The first kind of systems are extremely un-

25 | M2 mod N = 12580 with R as input
Montgomery with exact extension

AB mod N = 9257

balanced. Actually, the largest modulus approxi-
mately equals the product of all the remaining mod-
uli, i.e., it is of about the same size as v M, where
M is the system modulus. The second kind of sys-
tems are also un-balanced when a dynamic range of
say 1024 bits is needed. It is even simply impossi-
ble with 32-bit processors to find sufficiently many
such mutually prime moduli pairs of the form 2F+1.
And with 64-bit processors at least 20 pairs of mod-
uli of the form 2* + 1 will be needed, in which case
the system can hardly be considered balanced.

5.2, Using 32-bit prime moduli in the channels

As the operations inside the channels are com-
pletely independent, we can use any representation
for the residues there, that we may find convenient.
Employing say 32-bit processors, addition modulo
a 32-bit prime is not that difficult, the problem is
modular multiplication. Just as it is possible to use
Montgomery modular multiplication for the very
large operands employed in cryptographic applica-
tions, it is also possible to use this type of modular
multiplication for the operations inside the individ-
ual channels of the proposed system. But when
information is transfered in and out of the channels
(e.g., for broadcasts), it is then necessary to con-
vert into and from the representation used in the
particular channel.

63

The trick in Montgomery modular multiplication
is to substitute difficult modular reductions (say
by a 32-bit prime) by simpler reductions, here by
232 This is done by mapping operands into another
residue system, so with m prime let

for 0<a<m let [a]m=a2%? modm
then it is easy to see that
[a+ b]m = |lalm + [b]mln,

where the outer reduction is an ordinary reduction
modulo m.

Multiplication in this system can be performed
by Montgomery’s M-reduce algorithm:

Algorithm 2 M-reduce(t)

Stimulus: An integer t such that 0 <t < rm.
Integer constants m,r,m’,r~! such
that gcd(m,r) = 1,7 >m > 2 and
rrl —mm’ = 1.

Response: An integer u, u = (tr~!) mod m.

Method: ¢ := ((t mod r)m') mod r;
u:= (t +qm)divr;

ifu>m then u:=u-—m;

Thus with » = 232, since M-reduce([a]m[b]m) =
ab22 mod m = [ab);, the product [ab),, can be
computed with 3 ordinary 32-bit multiplications
and 1 or 2 ordinary additions, given suitable con-
stants. Mapping into and out of this residue system
is performed by M-reduce, multiplying with con-
stants |r?|n,, respectively 1.

6. Conclusions.

With this new approach to modular multiplica-
tion in RNS, we observe that base extension is a
key operation. All the complexity is due to this
transformation. Shenoy and Kumaresan proposed
an efficient method based on the CRT, by which a
logarithmic time complexity can be obtained with
n? processors. Utilizing n parallel RNS channels
the algorithm can be implemented in n + 1 steps,
using one additional channel for an extra residue.

But since such an extra residue cannot be ob-
tained for the quotient @, and if the computation
is to be performed on the set of parallel RNS proces-
sors, some other mechanism must be employed. In
[15] and [7] various fixed-point computations were
used to obtain approximations to « in (4), and in
that way perform the base conversion of both @ and
R. We realized that the conversion of ¢ need not
be “exact”, an “approximation” () is sufficient to
obtain an R in the same residue class as the result
R.

64

Compared to other number systems, RNS can
be considered a real parallel system. Our method
is easily implementable with processors connected
by a bus, where communication is reduced to at
most one broadcast per step.

If modular multiplication is implemented on pro-
cessors which do not support arithmetic on the full
data-width (say 1024 bits), we believe that an RNS
implementation is preferable to a high-radix imple-
mentation. Given a number of smaller (say 32-bit)
processors, parallelism is easier to exploit in RNS
with O(n) processors, than in a redundant ordinary
radix system. And it is not necessary to employ the
full n+ 7+ 1 processors for maximal parallelism, or
almost as good, max(n,#) + 1, any number will do,
even a single processor.

References

[1] J.-C. Bajard, L.-S. Didier, and P. Kornerup,
An RNS Montgomery Modular Multiplication
Algorithm, IEFEE Transaction on Computers
47(7), pp. 766-776, 1998.

J.-C. Bajard, L.-S. Didier, P. Kornerup and
F. Rico, Some Improvements on RNS Mont-
gomery Modular Multiplication, SPIE’s In-
ternational Symposium on Optical Science and
Technology 30 July - 4 August 2000, San Diego,
California USA.

E.F. Brickell. A Survey of Hardware Imple-
mentations of RSA. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO 89, LNCS-
435, pages 368-370. Springer-Verlag, 1990.

S.E. Eldridge and C. D. Walter. Hardware im-
plementation of Montgomery’s modular multi-
plication algorithm. IEEFE Transaction on Com-
puters, 42(6):693-699, June 1993.

A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signa-
ture problems. In Advances in Cryptology - Pro-
ceedings of Crypto’86, pages 186-194, 1986.

A. A. Hiasat and S. H. Abdel-Aty-Zohdy.
Residue-to-binary arithmetic converter for the
moduli set (2%,2% — 1,281 — 1), IEEE Trans-
actions on Circuits and Systems II: Analog and
Digital Signal Processing, 45(2):204-209, 1998.

S. Kawamura, M. Koike, F. Sano and
A. Shimbo. Cox-Rower Architecture for Fast
Parallel Montgomery Multiplication. Proc. EU-
ROCRYPT 2000, LNCS 1807, pages 523-538,
Springer Verlag, 2000.

D.E. Knuth. Seminumerical Algorithms, Vol-
ume 2 of The Art of Computer Programming.
Addison-Wesley, 2 edition, 1981.

L

[9] P. Kornerup. High-radix modular multiplica-
tion for cryptosystems. In G. Jullien M.J Ir-
win, E. Swartzlander, editors, 11th IEEE Sym-
posium on Computer Arithmetic, pages 277-
283, Windsor, Canada, 1993. IEEE Computer
Society Press.

[10] P. Montgomery. Modular multiplication with-
out trial division. Mathematics of Computation,
44(170):519-521, April 1985.

[11] S. Micali and A. Shamir. An improvement
of the Fiat-Shamir identification and signature
scheme. In Advances in Cryptology - Proceed-
ings of Crypto’88, pages 244-247, 1988.

[12] H. Orup. Simplifying Quotient Determina-
tion in High-Radix Modular Multiplication. In
S. Knowles and W. H. McAllister, editors, Proc.
12th IEEE Symposium on Computer Arith-
metic. IEEE Computer Society, 1995.

[13] P. Paillier. Low-cost double-size modular ex-
ponentiation or how to stretch your cryptopro-
cessor. In H. Imai and Y. Zheng, editors, Second
International Workshop on Practice and Theory
in Public Key Cryptography, PKC’99, LNCS-
1560, pages 223-234. Springer Verlag, 1999.

[14] F. Pourbigharaz and H. M. Yassine. A signed-
digit architecture for residue to binary trans-
formation. IEEE Transactions on Computers,
46(10):1146-50, 1997.

[15] K. Posch and R. Posch. RNS-Modulo Reduc-
tion in Residue Number Systems. IEEE Trans.
on Parallel and Distributed Systems, 6(5):449-
454, May 1995.

[16]) R. L. Rivest, A. Shamir, and L. Adleman.
A method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21(2):120-126, 1978.

[17] A. P. Shenoy and R. Kumaresan. Fast base
excension using a redundant modulus in RNS.
IEEE Transactions on Computer, 38(2):292-
296, 1989.

[18] A. Skavantzos and M. Abdallah. Implemen-
tation issues of the two-level residue number
system with pairs of conjugate moduli. IEEE
Transactions on Signal Processing, 47(3):826-
38, 1999.

[19] N. Szabo and R. L. Tanaka. Residue Arith-
metic and its application to Computer Technol-
ogy. McGraw-Hill, 1967.

[20] M. Shand and J. Vuillemin. Fast Implemen-
tations of RSA Cryptography. In M.J. Irwin
E. Swartzlander and G. Jullien, editors, Proc.
11th IEEE Symposium on Computer Arith-
metic, pages 252-259. IEEE Computer Society,
1993.

65

[21] N. Takagi. Modular Multiplication Algorithm
with Triangle Addition. In M.J. Irwin, E. Swart-
zlander and G. Jullien, editors, Proc. 11th IEEE
Symposium on Computer Arithmetic, pages
272-276. IEEE Computer Society, 1993.

[22] F.J. Taylor. Residue Arithmetic: A Tutorial
with Examples. COMPUTER, pages 50-62,

May 1984.
[23] C.D. Walter. Systolic Modular Multiplica-
tion. IEEE Transactions on Computers, C-

42(3):376-378, March 1993.

