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Abstract

This paper introduces two innovations in the design of
prefix adder carry trees: use of high—valency prefix cells
to achieve low logical depth and end—around carry adders
with reduced fan—out loading (compared with the carry se-
lect and flagged prefix adders). An algorithm for generating
parallel prefix carry trees suitable for use in a VLSI syn-
thesis tool is presented with variable parameters including
carry tree width, prefix cell valency, and the spacing of re-
peated carry trees. The area—delay design space is mapped
Sfor a 0.25um CMOS technology for a range of adder widths
as a comparative study.

1 Introduction

VLSI integer adders are critically important elements in
processor chips, they are used in floating-point arithmetic
units, ALUs, memory addressing, and program counter up-
date. The requirements of the adder are that it is primar-
ily fast and secondarily efficient in terms of power con-
sumption and chip area. Adders are also often responsi-
ble for setting the minimum clock cycle time in a proces-
sor. Discussions of addition techniques can be found in
[Omo94, Kor93, Hwa79].

Parallel prefix (or tree prefix) adders provide a good the-
oretical basis to make a wide range of design trade-offs in
terms of delay, area, regularity and power. Previous work
on parallel prefix adders can be found in [Kno99, Zim98,
BK82, KS73, KTM91, HC87, LF80] and a recent imple-
mentation study can be found in [MKA101]. The addition
problem can be expressed in terms of kill (k;), generate (g;)
and carry (c;) signals at each bit position, ¢ for a width, w
adder with the following equations (wherei =0,...,w—1
and ¢y is the carry-in):

ki =ai.b;

gi = a;.b;
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i—2 i—1
c=gi+ Y (9 Y, k) 3
J=0  k=jt+1
5;i=p; D¢ @

The direct implementation of these expressions creates an
adder with large complex gate towards the msb position of
the carry assimilation path. This single large complex gate
will be too slow in CMOS VLSI, so the design is modu-
larised by breaking it into trees of smaller and faster adders
which are more readily implemented [BK82]. The group
generate, G and group kill, K" signals at significance 7,
are calculated from bit positions m to n:

n—1

Gl =gn+ Y (Ki.g) m<n (5)
G =gn m=n (6)
n
Kr=>Yk m<n (7)
i=m

The carry expression in equation 3 can now be expressed
recursively using the group generate and group kill signals:
=G =G, +K' .GY_, 1<n<i-1
This allows modular sub—adders to be constructed and com-
bined to form trees. At one extreme case, the slowest and
smallest ripple carry adder can be recursively constructed
using equations 5 and 7 for m = n — 1, although it is not a
parallel prefix adder. All adders in the parallel prefix adder
design space differ only in the carry tree structure — the bit-

wise kill, generate and sum signals are the same.

Brent and Kungs e operator [BK82] is now introduced.
Let GK represent the pair (G}, K7*), then the following
expression:

GKp = (Gh+(KEGR.), K +K[",) = GKEeGKT" |
®
holdsforO<m<k-landk<n<w-1.



1.1 Properties

There are three properties that can be applied to modify
the structure of the carry assimilation process using the ‘e’
operator:

o associativity: GKJ* = (GK: ¢ GK]_|) ¢ GKI",

=GKk ¢ (GK]_, ¢« GK"))

G K sub-expressions have no serial dependence and
can be evaluated in parallel. This is the most impor-
tant property as it allows the design of parallel prefix
adders.

non-commutativity:

GKY e GK[" | # GK[" | ¢« GK},

A generate signal can only be propagated in the direc-
tion of increasing significance (group kill is commuta-
tive, however this property is not particularly useful).

idempotency: GKT" = GK! « GKT"
foorm<k<j<norm<k=j<n.

Two sub—expressions must meet or overlap if they are
to form a valid contiguous G K expression.

1.2 Prefix cell operators

Six prefix cells (three black and three grey) can now be
defined which implement the e operator as a function of the
number of GK inputs (or valency) of the prefix cell. The
valency-2, valency-3 and valency—4 black prefix cells (de-
noted as e2, e3 and e4, respectively) are shown in Figure 1
and represent a range of implementable gates in submicron
VLSI technology with a fan-in limit of four. A static CMOS
e, prefix cell schematic is shown in Figure 2 with optional
inverters at the outputs to buffer high fan-outs. Grey prefix
cells (denoted as os, 03 and o4) replace black prefix cells
at the final cell position in the carry tree before the sum is
calculated as only the group generate term is required to
calculate the final carry vector C = ¢, ..., Cy—1.

GKE  aKT

GKi, aKM
GKT aKT

Figure 1. Black Prefix Cell ¢ Operators: (a)
o, (valency-2), (b) ¢; (valency-3) and (c) e,
(valency-4).
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1.3 Previous prefix carry tree designs

Parallel prefix adders which represent a range of the
near-minimum logic depth design space are discussed be-
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Figure 2. A CMOS o, (valency—4) black prefix
cell schematic with optional output buffers.

low. All of the adders use valency-2 prefix cells and ex-
ploit the associativity property to parallelise the carry as-
similation. The Brent-Kung parallel prefix adder [BK82]
has a low fan-out from each prefix cell but has a long crit-
ical path and is not capable of very high speed addition.
The Ladner—Fischer adder [LF80] has a minimum logic
depth and recursively doubles the fan-out at each gate until
the last stage has a fan—out of w/2, and a wire that runs
half the adder width. It is the parallel prefix version of
the carry—select adder. The Kogge—Stone prefix architec-
ture [KS73] uses more than twice as many prefix cells as
the Brent—Kung adder to achieve the theoretical minimum
logic depth, O(logow) (using valency-2 prefix cells). The
Ladner—Fischer and Kogge—Stone carry trees represent two
end designs of minimum depth adders using valency-2 pre-
fix cells. Knowles [Kno99] gives an insight into the parallel
prefix adder design space and how they may be specified
and studies several key 32-bit minimum logic depth carry
tree designs using commercial VLSI layout tools. The study
was restricted to using valency-2 prefix cells, in common
with all of the other published work presented so far. This
work has been extended to larger wordlength adders using
higher valency prefix cells, and an algorithm is presented in
the next section to generate parallel prefix adders.

2 Synthesis of Parallel Prefix Carry trees

There has been much interest in the synthesis of VLSI
circuits to reduce the design time [WE9S, Zim98]. Adders
are one of the more frequently used circuits and their reg-
ularity makes them good candidates for VLSI synthesis,
which can also be used to assess design trade-offs. Two
such trade-offs are:

¢ Higher valency prefix cells
By using rows of higher valency prefix cells, there can
be less prefix cells in the critical path (and less used
overall) or shorter interconnect lengths since the num-



ber of assimilated carries is more than recursively dou-
bled at each row (tripled or quadrupled). A higher va-
lency used in the first row of prefix cells leads to a more
compact layout, if the cell pitch is not already limited
by wiring pitch, however, the delay of the prefix cell
increases with valency (fan—in).

Repeated carry chains

Repeated carry chains at fixed intervals can be made to
overlap and share common sub-adders. This results in
the availability of more carry signals to drive the fan-
out in the last stage of the carry tree. The Kogge-Stone
carry tree is the minimum case (repeat every bit) for
this technique, Han—Carlson’s carry tree repeats every
second bit and the Ladner-Fisher adder has one only
carry chain with maximum fan—out in the last stage.

2.1 Parallel prefix-tree algorithm

An algorithm is now presented which can construct the
design space of prefix carry trecs including those discussed
in Section 1.3. The carry tree is specified by the width of the
adder (w), the maximum number of prefix cell inputs (¢;) in
each row (7), and the stride (d) of the repeated carry chains.
A set of rules are defined for the iterative construction of
parallel prefix adders (with the minimum number of prefix
cell rows and the maximum carry assimilation distance per
row) below:

¢ Rule 1: Each e, prefix cell in row ¢ has a number of
inputs, p < g; and of the set p = {2,3,4} and prefix
cells have a constant stride across the row.

Rule 2: The span of bits assimilated in row ¢ is recur-
sively multiplied by ¢;. This maximises carry propa-
gation distance and minimises logic depth of the carry
tree.

Rule 3: The product of all g; equals the width. This
guarantees that all ¢; are a factor of the width (w).

Rule 4: Black prefix cells are converted to grey prefix
cells if they are in the final position of the carry tree
(output to a sum cell) and/or drive another grey prefix
cell input at the least significance.

Carry trees may also be truncated to a width less than
the product of all g; (rule 3) although this may not lead to
the best solution for small delay. Additional conditions for
the straight forward construction of end-around carry trees
include forcing the carry tree stride to be a factor of the
width (q; is then a common factor of the stride and width)
and enforcing rule 3. This ensures that repeated and shifted
carry trees are correctly aligned when prefix cells are placed
modulo the width. A carry tree is specified by the set:

®

w,d,eac,[q1qz - -]
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where eac = 1 to generate an end-around carry adder (see
Section 3). It was not necessary to specify the lateral fan—
out as reported in other work [Kno99] as this can be deter-
mined for a minimum depth tree. The iterative algorithm
describing how each adder is built is given in Figure 3. The
carry tree is constructed by creating a stride width slice and
copying it contiguously across the carry tree from the lsb to
msb. Sub-adders are needed to complete the carry assimi-
lation in the first rows if the stride is greater than the stride
is greater than ¢;. The prefix cells which extend past the
end of the carry tree are placed in cell locations modulo the
width. Redundant inputs or cells are trimmed from the carry
tree near the Isb if no carry-in is required. A carry-in may
be incorporated by retaining these inputs and injecting the
carry into them,

2.2 Algorithm implementation and design
study

A MATLAB program was written to implement the al-
gorithm and run to find the area and delay for all valid 8-
bit, 32-bit and 64-bit adder carry trees for a commercial
0.25um CMOS technology. This study is intended to com-
pare relative delays of carry trees under a set of implemen-
tation assumptions and is not an absolute indicator of adder
delay.

The design strategy is that prefix cells are constructed
using static CMOS gates and consist of a complex gate and
zero or more inverters to buffer the outputs. For higher va-
lency prefix cells beyond 4, the complex gates need to be
split to reduce the delay. The transistor sizing for each com-
plex gate is the transistor stack height times minimum size
and follows standard CMOS sizing rules [WE95]. Zero or
more inverters are added to each prefix cell output to min-
imise the delay based on this model. The buffers are indi-
vidually sized based on three times the previous stage size
to minimise delay. Although this is a simplistic approach
to transistor sizing, it achieves an acceptable trade-off with
design complexity and delay. The alternative is to minimise
the delay of the cach adder using linear programming tech-
niques to tune each transistor size which is beyond the scope
of this paper for such a large number of designs.

The prefix cells were characterised by building a table
of delays and areas based on HSPICE simulations derived
from layouts for each prefix cell using typical process pa-
rameters at 105C. The prefix cell delay parameters (as a
function of driving prefix cell valency) include the delay of
the complex gate and per fan-out delay for each receiving
cell valency or inverter as a function of drive strength. The
effect of wiring was taken into account based on RC delays
by adding a delay per cell pitch traversed for each wire as a
function of driving cell valency or inverter strength. It was
determined that the time of flight delay is negligible for the



w: Width

d : Carty-tree stride

q(i) : Number of cell inputs in each row
eac : end-around-carry

Inputs:
range of cell types
delay and area for each cell ty

delay/fan-out estimation

Technology constraints:

pe

wire load estimation for each cell type

1 i B

—
Create repeated carry trees:

(check inputs are valid)
as(0)=1;c=0;
whilec <w orc+led < w % carry tree counter
=1;cd=0
while cd <=w % row counter
s(r) = q(r)*rs(r-1) % row stride
ifr=1 (initialise carry tree inputs)
for b=rs(r) to width; step rs(r) % bit counter
tb = mod(b+c,width) % actual bit
if (no cell at bit(tb), row(r) )
(add black cell at bit(tb), row(r) )
(connect up to g(r) cell inputs)
if r>1 and d>2 and rs(r)<=d
(create sub-adder)
end for
led =cd
cd = q(r+1)*rs(r)
=T+l
end while
c=c+d
L end while

~

E !

p
Assimilate bits in the final row between
repeated carry chains

-

(Change last cells in each column to grey cells

)

i 8

r
Verification using operator rules
loop (row) = 1 to max
loop (bit) = 1 to width
if cell found
check associativity, idempotecy, increasing operator rules
end loop
end loop
loop (bit) = 1 to width
no end-around-carry case:
check PG range from | to bit
end-around-carry case:
check PG range from bit to eac to bit-1

end loop

( Calculate area and delay

)

Figure 3. Algorithm for generating parallel
prefix adders.

short distances traversed (up to 0.5mm) and it is assumed a
good ground return strategy is in place to reduce its effect
[CBFO1]. It is also assumed that all input operands arrive
simultaneously.

,g input
ap P.g inpl 1

7

P%

L=

G output
32,4[4242)[1210)

Figure 4. 32-bit carry tree : good so-
lution for small area — delay and area —
delay? metric.

p.g input

G output
3232[424][220]

Figure 5. 32-bit carry tree : small delay
solution (after Kogge—Stone adder).

Generated drawings of noteworthy carry trees are shown
in Figures 4 to 6. The string in the bottom left-hand comer
of each carry tree is the input specification (9) followed by
the number of inverters needed to minimise the delay for
each row (top to bottom) using the mode! described. Each
adder is functionally verified by the program after construc-
tion by applying the e operator properties from each output
bit to check the range of G.

A map of the area—delay relationship for around 120 gen-
erated carry trees are shown in Figures 7, 8 and 9 for nomi-
nal widths of 8-bit, 32-bit and 64-bit, respectively. The de-
lay does not include the bitwise propagate and generate or
the sum cells. Two curves are also shown in each figure for
area — delay = constant and area ~ delay® = constant
where the constant value is the adder design at the min-
imum of the respective metric. Other solutions close to
these curves are also a good choice if this is the design
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64,4[4444][2210)]

p.g input

G output

Figure 6. 64-bit carry tree : good solution for small area — delay and area — delay® metric.

metric. The end point carry tree designs of Kogge-Stone
and conditional sum along with the Han-Carlson carry tree
are marked. Wider adders than that specified also appear
in these figures and are due to the product of the row in-
put sizes being larger than the specified width (see Rule
4). These wider adders may be truncated to the specified
width, however, this does not significantly reduce the delay.
Although the 64, 1, [4 4 4] adder in Figure 9 has the small-
est delay in this study (three rows of valency—4 prefix cells
with low fan—out), it probably contains too many wires to
be practically implemented.

3 End-around carry Adders

Floating—point adders that speculatively calculate two
results based on exponent differences (near and far path)
use a significand adder in the near path which provides the
magnitude only of the result and performs no rounding. In
this case, an end-around carry (EAC) adder [Tya93] can be
used by effectively connecting the carry—out to carry—in. In
the context of a prefix adder [Bur98], the delay is the carry
propagation time across the adder plus the extra delay of the
selection logic (two gate delays but a large fan-out). The fo-
cus of the prefix EAC (or flagged) adder design is to reduce
the EAC operation to a single signal (carry—out) and drive
a large fan-out (carry—in) which can also be used for incre-
menting the result in the case of a rounding adder. An EAC
adder has the property that the carry distance is bounded by
the width of the adder. For example, if the carry—out was
as a result of a carry generated at the i*# bit and propagated
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along the width of the adder, the carry—in may propagate at
most to bit position ¢ — 1. Flagged prefix and dual carry
chain (carry select) adders propagate the carry along twice
the adder width. A parallel prefix carry tree analogous to
this is shown in Figure 10. Equations 5 and 7 can be ex-
tended in equations 10 and 11 to account for the EAC prop-
agation.

n+w-—1 .
G =gn+ Z (Ptt>e ggis,)

i=m

m>n (10)
n+w-—1

Fr= ][ p<i>o m>n (1)
i=m

Example 16-bit EAC parallel prefix adders were con-
structed using the algorithm in the previous section and are
shown in Figures 11-13. These EAC carry trees are poten-
tially faster than the flagged prefix adder and carry select
structures since it does not perform a reduction to a single
carry—out signal then drive the large number of flag cells or
multiplexers, however there are more long wires to route.
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Figure 7. Area vs. delay for 8-bit carry trees.
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Figure 8. Area vs. delay for 32-bit carry trees.
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Figure 9. Area vs. delay for 64-bit carry trees.
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Figure 10. EAC carry tree
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Figure 12. EAC carry tree(Han-Carlson)
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Figure 11. EAC valency-4 carry tree

p.g input

G output
164[442]

[\

RYAVYNY
.'.‘n\ ™

G output
161[2222]

Figure 13. EAC cérry tree(Kogge-Stone)
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4 Summary

This paper has introduced two innovations in the design
of prefix adder carry trees: high—valency adders with low
logical depth and end-around carry adders with reduced
fan—out loading (compared with the flagged prefix adder).
An algorithm for generating parallel prefix trees with vari-
able parameters was introduced and performance results de-
rived from SPICE simulations using a uniform sizing model
have been presented. It is clear that prefix adder trees pro-
vide a rich solution space for the design and implementation
of high—performance adders, owing to its structural flexibil-
ity. Although this study did not give clear indications of
which carry tree solution to use, it provides a set of carry
tree architectures which can be further studied to find the
best solution for a particular application and design metric.
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