High-Performance Architectures for Elementary Function Generation

Jun Cao*, Belle W. Y. Wei, Jie Cheng
Department of Electrical Engineering
San Jose State University
One Washington Square
San Jose, CA 95192-0084
(408)924-3881
FAX: (408)924-3925
bwei@email.sjsu.edu

Abstract:

High-speed elementary function generation is crucial
to the performance of many DSP applications. This paper
presents three new architectures for generating elementary
Sfunctions with IEEE single precision using second-order
interpolation. These designs have been developed through
a combination of architectural innovations and algorithm
developments. They represent a range of trade-off between
the use of memory modules and computational circuits.
Our most memory intensive architecture uses one third less
memory than alternative schemes while incurring no time
penalty and minimal additional circuitry.

1. Introduction

Elementary functions such as trigonometric func-
tions, square-root, reciprocal, etc. are essential to many
DSP applications. These functions are often implemented
in software routines [4]{5], which are too slow for numer-
ically intensive or real-time applications. The perfor-
mance of these applications depends on the design of a
hardware function generator. One common hardware
scheme employs ROM lookup tables to interpolate func-
tional values using linear or second-order approximation
functions. Second-order interpolation produces significant
memory savings as shown by Jain [8], whose design
reduces the memory size from 129 kb to 22 kb for the
square root function at the expense of more complex cir-
cuitry. It presents a favorable cost-performance trade-off
in comparison with first-order interpolation [8].

This paper presents three different hardware algo-
rithms for second-order interpolation generation elemen-
tary functions up to IEEE single precision. It is a
continuation of the work presented in [1]. The three
architectures represent a range of cost-performance trade-

*

. This work is supported in part by NSF grant MIP-
9321143

0-7695-1150-3/01 $10.00 © 2001 [EEE

136

offs in terms of hardware complexity, memory require-
ments and circuit speed. The first scheme, the Hybrid
method, uses a second-degree interpolation polynomial
passing through evenly-spaced nodes. Different from
existing designs [8][9][12][13], the Hybrid scheme stores
a combination of the polynomial’s coefficients and func-
tion values for fast function interpolation. The Dynamic
Range Reduction (DRR) scheme, the second method,
stores reduced values of target functions and achieves
approximately 7% memory savings compared to the
Hybrid scheme. The third scheme uses a composite poly-
nomial generated by combining two neighboring second-
degree polynomials. The composite polynomial is proven
to have the minimum approximation error and requires at
least 30% less memory than the Hybrid method.

Our design implements function generation for
cosine, sine, reciprocal, square root, and power of 2 func-
tions. Three steps are involved in finding Y=f(X) using
table lookup, where Y and X are in IEEE single-precision
floating point format: range reduction, interpolation and
reconstruction. It is the interpolation step that is the focus
of this paper. Range reduction and reconstruction steps
are discussed in [2][6][12][13][14][15].

In this paper, Section II gives an overview of range
reduction and reconstruction steps for the functions of
interest. Section III presents background information on
second-degree polynomial approximation. Sections IV, V
and VI present the three hardware algorithms and archi-
tectures. Their performance and hardware requirements
are compared with those of existing schemes in the last
section, Section VII.

2. Range Reduction and Reconstruction

In calculating Y=f(X), X is first mapped to x such that
x is bounded by [A, B]. Then f(x) is interpolated from

f=x;) with x; € [A, B]. Lastly, a reconstruction step is
used to compensate the range reduction done in the first

step in order to compute Y.

A. Number Format

The number format used in our design is the IEEE
single-precision floating point format where number X is
represented by 32 bits with the leading bit as the sign bit.
The remaining 31 bits consist of a 23-bit mantissa (M) and
an 8-bit biased exponent E. The value of X is given by
EQ. (1) where the 1 to the left of the binary point is
implied. As a result, the effective precision of the repre-
sentation is 24 bits.

X = +1.Mx25 7)]

B. Reduction and Reconstruction Steps

cos(X),

sin(X):x = X—nT—C

> n= INT(X‘%)—))CE [O,Zﬂ
After reduction, computing cos(X), sin(X) will be equiva-
lent to calculating cos(x), sin(x) if n is even, and equiva-
lent to calculating sin(x), cos(x) if n is odd. For negative
values of «x, we utilize the identities:
cos(—x) = cosx and sin(—x) = —sinx. No recon-
struction step is required.

A loss of precision is introduced in carrying out the
reduction step. In particular, consider the case when X is
close to an integer multiple of 7. Thus, the IEEE require-

ment of maintaining the accuracy of 2724 for the final
result cannot be achieved for cosine and sine calculations.

The reduction and reconstructions steps for the other
functions are well presented in [13]. Table below contains
the resultant range after the reduction step. For these
functions, the reduction step does not introduce any loss
in precision. Therefore, we can maintain an accuracy of

224 for the results of these functions.

Table 1: Input Range After Reduction

Function Range
Ccosx/ sinx T
03]
2X (_2, 1]
[1,2)
Jx [1,4)
1 [1,2)
X

3. Function Interpolator

A direct table look-up is the simplest method for cal-
culating any function y = f(x) where the input x can be
used as the address to look up y. This scheme would use
an inordinate amount of memory as the number of table
entries is an exponential of the input’s data width. If we
are to reduce the number of entries, using and storing only
N+1 evenly spaced points in the functional domain, e.g.
(%0, Y0)» (x1, ¥1)s .. (ops Ya), ANy entries that are missing
from the table must be interpolated by means of interpo-
lating polynomials. For instance, a unique second-degree
interpolating polynomial can be defined for a subinterval
with two end points, (x;, y;) and (x;,1, ¥;,1), and an addi-
tional third point. One example for the additional third
point is the midpoint of the subinterval, (x,,, y,,) where
X, =(x;1+xp/2. Figure 1 illustrates the interpolation
method in which the interpolation range is k=x;,,-x; and

the interpolating polynomial is P,(x)=bx*+ax+c. The
function’s coefficients, a, b, and ¢, can either be calculated
on-the-fly from tabulated function values (stored function
values) or precomputed and stored as stored coefficients.
Using the method of stored function values, each interpo-
lation subinterval needs to store three function values.
However, since it shares its end points with its neighbor-
ing subintervals, it is effectively storing two function val-
ues. With the stored coefficients method, the subinterval
needs to store three coefficients. As a result, the stored
Sfunction values method uses one third fewer look-up table
memory entries with the expense of extra hardware and
time for calculating the coefficients on-the-fly. The
design issue here is how to minimize this extra hardware
and computational time for a given approximation poly-
nomial.

= (X1, Vi1)

K V) —— %)
e P(2)

% y) Py(x)=bx’+ax+c

Figure 1: Second-Degree Interpolation

The second-degree approximation polynomial dis-
cussed above is not optimal with respect to minimizing
the maximum approximation error [1][11]. Instead, the
optimal interpolating polynomial uses Chebyshev nodes
whose values (tj) on [-1,1] are:

N 2

The Chebyshev nodes are then transformed from [-1,1] to
[a, b] by the following formula:

;= cos(Mj,j =01.2,...,N-1

3)

The three Chebyshev nodes dividing subinterval [x;, x;, ;1,
i.e., N=3, become:

=X Xi X
xi,—l — _A:/fxwlz x:+x|+12 i
X1t X; 3X; .1 X X + X;
X0 = —HQ X1 = _{ +12 H2 “

These three Chebyshev nodes and their corresponding
function values uniquely identify a second-degree interpo-
lating polynomial on subinterval [x;, x;, ;1.

The maximum approximation error for using the sec-
ond-degree polynomial generated using Chebyshev nodes
is Echeb [11]

B
E (%)< 2_5‘.]’ (o)l
b .
h=3X,-X,=X,—X.

©®)

the subinterval width,
In comparison, the approxi-

X< c<x;

where 1s

mation error for the polynomial using evenly-spaced
points is E,,,,[11]:

©

3
Eoen0) <3 =\ (C) 5< c<x,

7

For a required accuracy of approximation results, the
lower error bound of the Chebyshev series approximation
may translate into a bigger subinterval width with result-
ant fewer subintervals for a given argument domain.
However, the actual number of subintervals used also
depends on the specific function being approximated and
the constraint on the subinterval width, i.c., a negative
power of 2 for ease of hardware implementation. Simula-
tion results show that the error margin provided by the
Chebyshev series approximation may not be sufficient to
reduce the number of subintervals by a factor of 2, and
therefore table look-up size which is generally a power of
2.

Given function values, one well-known method for
finding the coefficients of the interpolating polynomial is
the Lagrange Approximation. According to Lagrange, a
second-order approximation polynomial P(x) that passes
through (x;, ¥p), (X, Ym) and (x;,1, ;1) can be formed
by:*

138

_ (x—x) x-x;,)
= %)= e)
(x—x)(x~x; 1)
(X = X)X — X)7
(% —x)(x - x,,)
(X —x)(X 0, —-’Cm)yiH
Coefficients for each order of x can be calculated by col-
lecting like terms and it is difficult to compute them on-
the-fly. An alternative for finding coefficients is to use a
family of algorithms for interpolation with equally spaced
data points known as the divided difference, which
includes the Newton-Gregory Forward, Newton-Gregory
Backward, Gauss Forward, Gauss Backward, Bessel and
Stirling methods [1]. The Gregory Forward algorithm
computes a second-degree polynomial P(x) passing
through (x;, ¥;), (s Yr) a0d (¥;,1, ¥;41) as follows:

P(x)

2
PO = 5001 - 20m 49D+ 301 4y (D

2

S K K}
= §b+§a+c = i(a+sb)+c
where

(x—x,)

and k = Xx; |, - X, = X, —X

s = 2

EQ. (7) shows that the polynomial’s coefficients are a
weighted sum of existing function values and can be eas-
ily calculated.

4. Hybrid Method

A. Hybrid Algorithm

The simplicity of the divided difference method in
computing the polynomial’s coefficients leads to the
development of a hybrid scheme. The hybrid method
stores function values as well as one coefficient, coeffi-
cient b, for each interpolation subinterval. The coeffi-
cient b, as shown in EQ. (7), is a weighted sum of three
function values y;, y,,, and y;.;. Storing the coefficient &
eliminates the latency associated with its computation,
which lies on the critical path of the overall computation.
In addition, the cofficient & is a second difference of func-
tion values and it has the smallest dynamic range among
the three coefficients. It requires the least amount of
memory. As a result, the hybrid method has the advan-
tages of both stored function values and stored coefficients
methods.

As specified in EQ. (7), coefficients a and ¢ can be
computed from y;, and y;, . For subinterval [x;, x;, /1, y;is
the function value at x;, y;, is the function value at x;, ;, b
becomes b;, and y,, corresponds to the function value at

the subinterval’s midpoint. Our hybrid method stores
Yi+1» ¥i and b, Since neighboring subintervals share

function values, we are effectively storing only one func-
tion value and one coefficient for each subinterval.

Similar to the stored function values method, our
hybrid method saves approximately one third of the look-
up table memory over the stored coefficients method. The
advantage it has over the stored function values method is
that one of the coefficient, b, is precomputed. This takes
the calculation of b out of the critical path of the overall
computation. While the multiplication of s and b takes
place, a and ¢ can be calculated using EQ (8) and EQ (9)
below.

;i = Yiv1 7Y
_ Yis1tyi-b
¢ = —

@®)
®

B. The Architecture and Implementation

Our architecture uses three separate look-up tables: b-
ROM for b coefficients, -ROMe for even-indexed func-
tion values (e.g. fo, f.... etc.), and f~ROMo for odd-
indexed function values. This is shown in Figure 2. Con-
sider, as an example, subinterval [x;, x;, ;] as one of 256
subintervals where the »-ROM has 256 entries, f~ROMe
128 entries, and f~ROMo 128 entries. That is, 0 < i <255
and is represented with 8 bits. The 8-bit i, corresponding
to the most significant 8 bits of the 23-bit function input x,
is used to retrieve the b; coefficient. In case of an even i,

% (represented by i’s leading 7 bits) is used to address

both f~ROMe and f~ROMo to retrieve f; and f;,; respec-
tively in order to compute a; and c; as shown in EQ (8)
and EQ (9). Namely, the f~ROMe’s output is subtracted

from that of ~ROMo in obtaining a; . If i is odd, 1;21 @’s

leading 7 bits) and 52—1- (I’s leading 7 bits plus one)

address f-ROMo and f~ROMe to retrieve f; and f;, ; respec-
tively. The a; value is obtained by subtracting FROMo’s

output from f~ROMe’s, an operand swap with respect to
the even-i case. In summary, FROMo is addressed by i’s
leading 7 bits, and f~ROMe is addressed by the sum of i’s
leading 7 bits and its 8th bit, d, which is 0 for an even i
and 1 for an odd i. A register (not shown on the diagram)
is used to store the boundary function value, i.e. f3s6,
when adding i’s leading 7 bits and d generates a carry.
The d value is also used by the subtractor to select appro-
priate order of operands. Such memory organization and
addressing schemes eliminate the need for complex mem-
ory structure used by alternative implementations [9].

139

e Section A
A23
47 ——
Y N 5
y £ .
17 Adder 73
14 b-ROM
4
i Y Y
<1/k
fFROMo| [-ROMe
£L16
$ b
27427
27
s il g i vy
subtracter |<
Adder Multiplier
+_af27 |
1
b I —
- | y ? { Y 27 sb
Adder /1 n
Adder
- — “a+3F] H == —— = =
E 1/2) Y Section B
¢ Multiplier
¥27 (s/2)(a+sh)
|] 27
Adder

P(x) = (s/2)(a+sb)+¢

Y
Figure 2: Architecture of the Hybrid Method

As shown in Figure 2, our hybrid method saves 33%
of the memory at the expense of two adders and one sub-
tractor, which compute the a and ¢ coefficients on the fly.
This trade-off is worthwhile as the additional adders and
subtractor are not on the critical path, and they can be
shared among multiple functions. The critical path is dic-
tated by the 16-bit multiplier with s and b inputs. Notice
that s can be either a positive or negateive number whose
sign bit of its 2’s complement representation is the
inverted most significant 9th bit of a 23-bit x input. In
total, the memory used per function is 1.34 KBytes imple-
menting 256 table entries of 27-bit function values and
16-bit b values.

The dotted line in Figure 2 indicates the placement of
pipeline registers which divide the whole circuit into two
sections. Section A dictates the overall clock frequency,
since it has an additional ROM access. Another variation
of the architecture is to fold Section B into Section A [7]
for hardware economy at the expense of longer latency.

5. Dynamic Range Reduction (DRR) Method

A. DRR Algorithm

In order to further reduce the memory requirements
of function generators, another possibility is to reduce the
number of bits stored for each function entry, that is, to
reduce the dynamic range of the function. The range
reduction can be achieved by subtracting a linear reduc-
tion function R(x) from the target function. The reduced
function can be calculated using the Hybrid architecture
described above. In the end, R(x) is added back to the
reduced function value to obtain the final results.

The R(x) function can be generated by fitting a linear
equation through two Chebyshev nodes given by EQ (2)

and EQ (3). For instance, for J/x within the interval [1,4),
R(x) = 0.316x +0.77. Memory savings thus achieved
are at the expense of an additional multiplier and two
adders. The extra additions can be absorbed by the final
multiplier, but the multiplication can not be eliminated
unless R(x) = (—1)j2kx+l isused, where je {Q 1} , the
shift amount £ is an integer and offset / is found by mini-
mizing f(x) - R(x). Table 2 shows R(x) for all the

functions of interest and their corresponding memory sav-
ings.

Table 2: Memory Savings Using the DRR Method

Target Reduction Memory
Function Function Saving
cosx R(x) = -025x+1 7%
sinx R(x) = x 8%
x1 R(x) = -2x+281 7%
Jx R(x) = 025x+0.77 7%

2% R(x) = x+152 7%

B. DRR Architecture

The architecture for the Dynamic Range Reduction
method needs little extra hardware with respect to the
architecture for the Hybrid scheme presented in Section
IV. This is shown in Figure 3 in which each function
requires two additional memory entries specifying the
shift amount % and offset /. The shift amount controls a
barrel shifter whose output along with / and the computed
function value feeds a three-operand adder to produce the
final result. If the first order coefficient is negative, i.e.

140

J = 1, then the shifter/2’s complementer will generate
the 2’s complement for its input before shifiting it. As
mentioned earlier, this three-operand adder can be merged
into the final multiplier of the Hybrid architecture. By
reducing the dynamic range of the function value, which
requires fewer bits to store each function entry, this
scheme can save the look-up table size by approximately
7% with minimal speed penalty and additional hardware.

X
Hybrid .

Y function
Function select
Generator

Shifter
Complemente
Adder]
Sfix)

Figure 3: Architecture for Dynamic Range Reduction

6. Composite Polynomial

A, Algorithm

The two schemes discussed previously use two differ-
ent techniques for reducing look-up table sizes: The
Hybrid scheme shares stored function values between
adjacent subintervals, and the Dynamic Range Reduction
method stores fewer bits for the reduced functions. The
third technique is to devise a second-degree approxima-
tion polynomial whose lower error bound may result in
fewer subintervals for a given argument domain. The
third approach can be illustrated by considering the
expanded view of Figure 1, as shown in Figure 4.
Points (x;.1, ¥i1)» (8 ¥2)» (Kip1> Vie1) and (6,9, ¥y, are
evenly spaced on the x axix. Point (x,,, ¥,,) is the midpoint
between (x;, y;) and (x;,.1, ¥;11). Polynomial g; goes
through points (x;, ¥.1), (x; ¥, and (x;,1, ¥;,1), and
polynomial g, passes through (x; %), (5,1, ;1) and
(X;42, ¥i42). These two polynomials can be expressed by:

2
5
8= Ui 1= 2y D50, -y Dty (10)

Xi42, Yir2)

8i+1

(Xi415 Yir1)
K> V)
;¥

(i1, Y1)

Figure 4: Overlapping Polynomials

s(s

8iv1 7™

2
2 20422 149D F 50,0 +y, (D)

X—X.

—_X. <x< = X.
,xl_l_x_xH_z,h X

where s = W

+17 %
Based on g; (x) and g;, 1 (x), a family of parameterized

polynomials can be defined for X Sx<x g0
g(x) = Ag(x)+(1-4A)g, , 1(x) (12)
where 0<A<1. The second-order polynomials thus
defined all go through points (x;, y;), and (x;,1, y;,1)- In
particular, for A =1, g(x) = g(x), and for
A=0, gx)=g;,.,() . If we let

- Y~ 8i 4 1%p)

gi(xm) 84 l(xm)
passes through (x;, ¥;), (X Yy and (x;,1, ;1) That s,
the g(x) 1is the second-degree approximation polynomial
used in the Hybrid scheme discussed in Section IV. The
optimal A parameter can be found for each subinterval
by minimizing the approximation error between g(x) and
f(x). Such requires storing the optimal A parameter for
each subinterval, thus increasing the memory size. An

, then the corresponding g(x)

alternative is to choose a fixed A = % for all subintervals:

B0 = 38,0+ 87, 1) (13)

The error bound for g(x) can be derived by considering
the following lemma.

Lemma 1: Suppose on the interval [x;_;, x ;,,], f(x) is con-
tinuous, its derivatives up to its third order are continuous,
and its second derivative is monotonically increasing or
decreasing. Then on its subinterval [x;, x4,

()< f(x) =g, (%) or g, (%)< f(x)<g(x).
The equality holds only at end points x; and x;, ;.

Proof: Let Efx) and E;, ;(x) be the error term for g/(x) and
E,(x) = f(x)—g,-(x) and
. They have the following

g:i+1(®) respectively, ie.

Ei (%) = f(x)—g;i1(x)
formulations [11]:

E,'(X) = (X"x,'_1)(X*xi)(x"xi+1)f”(cl) (14)

Eip () = (x=x)(x—x;,)X =x;,) 7 (c)) (15)
where x;_ | <c, <x;,, and x;< ¢, <X;,,.-

Consider x in the interval [x;, x;, ;] for EQ. (14) and EQ.
(15). These two expressions have opposite signs given the

second derivative of f(x) is monotonically increasing or
decreasing on [x; ;, x ;,,]. Both expressions are zero only

whenx=x; orx=x;,;.
The error terms in EQ. (14) and EQ. (15) have the same
bound on their magnitudes :

3
Eo) < 170

w w
]EiH(x)]SBIf”(c)l = -1—6M Xi_ 1 <c<x;,, (16)
where h =x;,,-X% =X.,—-%,, = Xx—-x%x_,. Let
E,.n designate the right-hand side of EQ. (15). Then the
error bound for g(x) on [x;, x;, ;] can be formulated as
i (X)) S flx)<gix) from

follows, assuming

Lemma 1:
Ecomp = |§(x)—f(x)l

2800 + 8,01 (6) - ()

= 1%(8,(17) —f(x)) - %(f(x) ~8is L(x))

1
< =
_2E€V€Il
B\ o B
SHI@) =M Xiop <€<xyy (A7)

EQ. (17) shows that the error bound for the composite
polynomial is one half of that of the interpolating polyno-

mial using evenly-spaced nodes. Note that for the error
bound presented in EQ. (6), the distance between equally-
spaced nodes is A/2 whereas it is & for gi{x) or g;,; (x).
Taking into account these differences, the error bounds in
both cases (EQ. (6) and EQ. (16)) are the same. In the
case of Chebyshev series approximation, the three Cheby-
shev nodes in the region of [x; ;, x;, ;] have a distance of

J3

Th between adjacent nodes, and they produce an

approximation polynomial whose error bound on the sub-
interval [x;, x;, 7] is:

h3
EpSygM h=x,,-x (18)

Comparing EQ. (17) and EQ. (18) shows that the second-
degree composite polynomial g(x) has the lower error
bound than the polynomial using evenly-spaced nodes or
the Chebyshev series approximation on the subinterval [
X Xiyg)

E <E ., <E

comp

even (19)
Using the composite polynomial for all functions of inter-
est requires fewer, or the same number of subintervals
(entries) as the Hybrid scheme. This is shown in Table 4.
However, for each subinterval the composite polynomial
requires storing only one function value, whereas the
Hybrid scheme requires storing two values: one function
value and one coefficient . Thus the composite polyno-
mial uses less memory as shown in Table 3. The cost is a
more complex architecture and a slower circuit.

Table 3: Hybrid Scheme v.s. Composite Polynomial

Approach
Hybrid Schcm Composite
ybn ¢ Polynomial
. No. of Total No. of Total
functions Entries Memory Entries Memory
(KBytes) ° | (KBytes)
cosine/ 256 1.34 128 0.43
sine
ox 256 1.34 128 0.43
sqrt 256 1.34 128 0.43
recip. 256 1.34 256 0.86

B. Composite Polynomial Architecture
Plugging EQ. (10) and EQ. (11) into EQ. (13) results
in the following equation:

. 1.2
8 = Z[S (yi—lhyi_yi+l+yi+2) (20)
Y1 =3 1Y) 4l

Let b=y 7Y Yis1MVie2 and

a= _b_4yi +4y then EQ. (20) becomes

i+1
21

- 1 :

g = [Zs(bs +a)+ 4yl]

The CPM architecture does not need the coefficient
ROM and stores function values into four ROMs: ROM,,

ROM,, ROM,, and ROMj;. That is, the function value
associated with subinterval i gets stored in ROM; 1,04 4.
Consider a function that requires 256 function values with
an 8-bit subinterval index i. If we let the leading 6 bits of
i be & and its trailing 2 bits be d;d; , Table 4 lists the
addressing function for each ROM and its retrieved value
for each of four d;d, values.

Table 4: ROM Addressing for the CPM Architecture

ROM, | ROM; | ROM, | ROM,
Address- 48 i+ % %-
Fanction 5108 55,
8180=00 fi Jirt Jir2 Ji1
8130=01 fi1 i Jixl Ji2
8180=10 | fiy2 Ji fi Jirl
8180=11 | fi1 fia i1 fi

Figure shows the block diagram for a CPM architec-
ture. The Address Function module implements the
addressing functions with a set of incrementers as speci-
fiend in Table 4. The retrieved function values feed an
ordering circuit made of multiplexors, which sorts the
function values into proper order as described in Table 4.
The ordered function values are then forwarded to a four-
operand adder/subtracter that generates b. The result of
the first multiplier, bs, is fed into another four-operand
adder/subtracter together with the coefficient b and 4y,

and 4y, to compute bs+a.

The critical path of the CPM architecture goes
through the Address Function module, ROM, ordering
circuit, two four-operand adders, and two multipliers.
The last adder can be absorbed into the second multiplier.

ROMs
X
T.
Functior
8180
Ordering Circuit Y
@
fi-l ﬂ fi+1 ﬁ+2
Yyvyvyy
| Adder/Subtracter
oL
Y Y
@@ Multiplier
bs
| Adder/Subtracter I
bs+a
y
Multiplier
s(bs+a)
‘u«
g

Figure 5: A CPM Architecture

7. Summary and Conclusion

Our proposed three architectures for function genera-
tion represent a range of trade-offs among memory usage,
computational circuits, and speed. The Hybrid scheme

uses most memory and least computational circuitry, and
the Composite Polynomial Method uses 30% less mem-
ory and slightly more circuitry. The speed difference
between the two is four carry-save adders. The Dynamic
Range Reduction Method represents a midway solution
between the two.

The Hybrid scheme compares favorably with pub-
lished designs using second-order interpolation, which
were proposed by Schulte [13], Jain [8], and Lewis [9].
Schulte’s architecture implements the stored coefficients
method and generates exactly rounded results, using sec-
ond-order Chebyshev polynomials. Jain’s scheme uses an
interpolating polynomial that passes through the two end
points of each subinterval and has its first derivative equal
to the function’s at the smaller end point. The resulting
polynomial has an error bound better than the evenly
spaced method but worst than Chebyshev’s. By manipu-
lating the polynomial, “Jain’s scheme implements the sec-
ond-order term with a small look-up ROM instead of a
square circuit [8]. Lewis uses the stored function value
method to generate logarithmic numbers used in a loga-
rithmic number system unit [9]. In order to reduce the
number of memory accesses in retrieving three function
values from the look-up table, Lewis uses an interleaved
ROM and a rotator. This approach adds extra delay to the
critical path and results in inefficient ROM usage. The
hardwarc requirements of these three existing architec-
tures and our hybrid scheme are summarized in Table (5).
As shown in the table, our scheme uses at least one third
less memory than alternative methods while using compa-
rable computational units. Schulte’s scheme requires
much more memory due to its additional accuracy
requirement of producing exactly rounded results. His
method of producing exactly rounded results can be
extended to our hybrid scheme. The critical path of our
architecture is comparable to those of Schulte’s and Jain’s,
but better than that of Lewis’ primarily due to Lewis’ use
of complex ROM and a rotator.

Table 5: Comparison with Existing Architectures

Schulte Jain Lewis Hybrid
Function 2% Jx 2%, [x log2(x) 2%, Jx, atanx
log2(x) atanx, cosx/ sinx ’ cosx/ sinx
Table Size 17408 x 90 256 x 57 299 x 310 256 x 43
(per function) 384 x 57 (sq 1t)
Accuracy Exact 024 724 524
Rounding

143

In summary, through innovations in architectural
design and algorithm developments, we have developed a
family of three high-performance hardware for function
generation. Different from existing designs, our hardware
for Hybrid scheme uses minimal memory to store a com-
bination of coefficients and function values for function
interpolation while incurring no speed penalty. It uses
simple memory structure and addressing scheme to
quickly retrieve function values in parallel. In addition,
our development of Dynamic Range Reduction Method
and the Composite Polynomial Method further reduces
the memory requirements of hardware function generator.

8. References

[1] Jun Cao and Belle Wei, “High-Performance Hard-
ware for Function Geneartion,” The 13th Sympo-
sium on Computer Arithmetic, pp. 1984-189.

[21 William J. Cody, Jr., “Software Manual for the Ele-
mentary Functions,” Prentice-Hall, Inc., Engle-

wood Cliffs, New Jersey, 1980.

Curtis F. Gerald and Patrick O. Wheatley, Applied
Numerical Analysis, Fourth Edition, Addison-Wes-
ley Publishing Company, June 1989, pp. 189-203.

(3]

Shmuel Gal and Boris Bachelus, “An Accurate Ele-
mentary Mathematical Library for the IEEE Float-
ing Point Standard,” ACM Transactions on
Mathematical Software, 1991, pp. 26-45.

[4]

[5}] Shmuel Gal, “Computing Elementary Functions: A
New Approach for Achieving High Accuracy and

Good Performance,” Accurate Scientific Computa-
tions, Lecture Notes in Computer Science, Springer

New York, 1985,pp. 1-16.

John F. Hart, et al, “Computer Approximations,”
John Wiley & Sons, Inc., New York, 1968.

[6]

[71 Xiaoping Huang, Belle W. Y. Wei, Honglu Chen,
and Yuhai H. Mao, “High-Performance VLSI Mul-

tiplier with a New Redundant Binary Coding,”

144

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Journal of VLSI Signal Processing, Vol. 3, pp. 283
-291, 1991,

Vijay K. Jain, Subrid A. Wadekar, and Lei Lin, “A
Universal Nonlinear Component and Its Applica-
tion to WSI,”IEEE Transactions on Components,
Hybrids and Manufacturing Technology, Volume
16, Number 7, November 1993, pp. 656-664.

David M. Lewis, “Interleaved Memory Function
Interpolators with Application to an Accurate LNS
Arithmetic Unit,”IEEE Transactions on Comput-
ers, Volume 43, Number 8, August 1994, pp. 974-
982.

LSI Logic, 1.0 Micron Cell-Based Products
Databook, LS1 Logic Corporation, Milpitas, Cali-
fornia, 1991.

John H. Mathews, Numerical Methods for Com-
puter Science, Engineering and Mathematics,
Prentice Hall, Inc., Englewood Cliffs, New Jersey,
1987, pp. 166-209.

James A. McIntosh and Earl E. Swartzlander, Jr.,
“High-Speed Cosine Generator,” IEEE Proceeding,
1995, Pages 273-277.

Michael J. Schulte and Earl E. Swartzlander, Jr.,
“Hardware Designs for Exactly Rounded Elemen-
tary Functions,” IEEE Transactions on Computers,
Volume 43, Number 8, August 1994, Pages 964-
972.

Ping Tak Peter Tang, “Table-Lookup Algorithms
for Elementary Functions and Their Error Analy-
sis,” Proc. 10th Symposium on Computer Arith-
metic, 1991, pp. 232-236.

Ping Tak Peter Tang, “Table-Driven Implementa-
tion of the Logarithm Function,” ACM Transac-
tions on Mathematical Software, Volume 16,
Number 4, December 1990, pp. 380-400.

