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Abstract:

In this paper, an effective algorithm for
computing multiplication over a class of GF(2")
based on irreducible all one polynomials (AOP) and
equally spaced polynomials (ESP) is presented. The
structures are the use of two special operations, called
the cyclic shifting and the inner product, to construct
the low-latency bit-parallel systolic multipliers. The
circuits are simple and modular which is important
for hardware implementation. The AOP-based
multiplier is composed of (m+1 ) identical cells, each
of which consisting of one 2-bit AND gate, one 2-bit
XOR gate and three 1-bit latches. This multiplier has
very low latency and propagation delay, which makes
them very fast. Moreover, the AOP-based multiplier
of small size can also be applied to construct
ESP-based multiplier of large size, in which the
elements are represented with the root of an
irreducible equally spaced polynomial of degree nr. It
is shown that if, for a certain degree, an irreducible
ESP of a large degree can be obtained from a
corresponding irreducible AOP of a very small
degree. Then from the complexity point view, the
structure of ESP-based multiplier is beneficial to
construct modular architecture.

1. Introduction

Finite field arithmetic has widely received
significant attention in many areas of computer
science and communications, such as error control
coding [1] and cryptography, [21,[31.[4], etc. The
important operations in finite fields are addition,
multiplication, exponentiation, division and inversion
operations. The addition is very simple and can be
implemented with a very simple circuit if field
elements are represented in canonical form, while the
other operations are much more complex. Since
exponentiation, division and inversion can be
performed by an iterative multiplications, this study
focuses on the hardware implementation of fast and
low-complexity multipliers over GF(2").

In 1984, Yeh, Reed and Truong [5]
developed a parallel-in  parallel-out  systolic
architecture for performing the operation AB+C in a
general GF(2™). Since then, many bit-parallel systolic
multipliers have been proposed, (see, €.g., [6], [7].
and [8]). However, these multipliers are not efficient
for cryptography applications due to the system
complexity. Besides, the great computation delay in
these systems may cause these multipliers to be
unsuitable for some applications. To reduce the
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system complexity, Itoh and Tsujii [9] designed two
low-complexity multipliers for the class of GF(2™),
based on the irreducible all one polynomial (AOP) of
degree m and the irreducible equally spaced
polynomial (ESP) of degree nr. Notice that if, for a
certain degree, an irreducible ESP of a large degree is
corresponding to an irreducible AOP of a small
degree. Later, Hasan, Wang and Bhargava [10]
developed an ESP-based multiplier using small-scale
AOP-based multipliers as the processing units.
Recently, Koc and Sunor [11][16] presented a
low-complexity bit-parallel canonical basis multiplier
based on an AOP and trinomials. This multiplier was
extended to obtain a bit-parallel normal basis
multiplier. Later, A. Halbutogullari and C.K. Koc [17]
also proposed the Mastrovito multiplier for general
irreducible polynomials. Wu et al. [12] ,[13] also
adopted a weakly dual basis in their work. Drolet [14]
proposed a representation based on an isomorphism
from GF(2™) into the residue polynomial ring modulo
X"+1. With this representation, he drove a serial
multiplier for GF(2™) and claimed that it comprises
the least number of gates of all serial multipliers.
Although, the above low-complexity multipliers are
suitable for secure cryptosystem applications, none of
them is designed with a systolic technique which
permits the computation delay for multiplications
over GF(2™) to be very long if the m is large.

In this paper, two special operations, called
the cyclic shifting and the inner product, are defined
based on the properties of irreducible AOP and ESP.
With the two operations, an effective algorithm for
computing multiplications over a class of GF(2") is
developed. The low-complexity bit-parallel systolic
multipliers are presented based on AOP’s. The
systolic multiplier is composed of (m+1I) identical
cells, each of which consists of one 2-bit AND gate,
one 2-bit XOR gate and three 1-bit latches. Since the
latency of each multiplier is only m+1 clock cycles
and the propagation delay in each cell is very short,
they are very fast. This circuit can also be applied to
construct the modular systolic architecture over the
class of GF(2"), in which the elements are
represented with the root of an irreducible ESP. This
kind of new multiplier is based on an irreducible
AOP and an irreducible ESF, called the AOP-based
and the ESP-based multipliers in this paper.

2. Preliminaries

A polynomial of the form P(x)=p, +px
+ ..+p.X" over GF(2) is called an all one



polynomial (AOP) of degree m if p=1 for
i=0,1,2,...,m [9]. It has been shown that an AOP is
irreducible if and only if m+1 is a prime and 2 is a
primitive modulo m+1 [10]. For m < 100, the possible
m for an AOP of degree m to be irreducible are 2, 4,
10, 12, 18, 28, 36, 52, 58, 60, 66, 82 and 100.

Suppose that a is a root of an irreducible AOP
of degree m. Then any element A in the Galois field
GF(2™) can be represented as A=ay+a,a+ aof+...+
Q-1 ™!, where the coordinates a;eGF(2) for
Os<isim-1 and {1, @ ¢F,..., &™)} is called a canonical
basis of GF(2™) [10]. The element A can also be
represented as A=Ag+A, o+ A0 +...+A,0" with
A;+A,=q; for 0<isin-1, where A,, and all A; are in
GF(2). And the basis {I, &,d’..., a") is called an
extended basis of the canonical basis {1, & & ..,
™'}, Thus, an element AeGF(2™) has two different
representations. For example, A = 1+ o+ &’ eGF(2°),
the element can be represented as A = 1 + @ + @ by
using the canonical representation or A = o + & by
using the extended representation.

To present our multipliers, several notations
and theorems are necessary.
Definition 1{15]: Let A=Ag+A,;a+A,00+...+A, " be
an element in GF(2"), which is represented with the
extended basis {1, @ ..., &"). Then A= A+
Ao+ A1l +..o4 Ay and AV (= A+ Ao A&
+...+ Apd™) denote the elements obtained by shifting
A cyclically one position to the right and one position
to the left, respectively. Analogously, A”) and A“,
where i=0, 1, ---, m, denote the elements obtained by
shifting A cyclically i positions to the right and i
positions to the left, respectively.

Let P(x)=I+x+X+..+x" be an irreducible
AOP of degree m; and let a be a root of P(x), i.e.,
P(a)=1 +a+ &+... +d" =0. Then, we have

a" =l+a+d+...+d, (1a)
o =y, (1b)
and & V=g, (1c)

Multiplying A=Ag+A,a+A:00+...+A, 0" by o, we
have OA=A+A ;X +A0+...+An0"!. According
to (1b), the equation becomes
OA=An+Ag0+A 0 +...AAm O 04}
From (2), we have Theorem 1.
Theorem 1: Let A (=A,+A;04A,00+...+A,d",
where ais a root of the irreducible AOP of degree m)
be an element in GF(2™). Then, the operation of
multiplying A by o can be performed by shifting A
cyclically once to the right. That is
oA=A". (3)
Since o/*'=1, the multiplicative inverse of o
(denoted by &) is &' = . Multiplying A by &’ can
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be carried out by @’'A =@'(Ap+ A + A +...+
An0™= A+ A + A0 +...+ Ayd™. Thus, we have
Theorem 2.

Theorem 2: Let A be the element given in Theorem 1.
Shifting A cyclically once to the left can then be
perform the operation of multiplying A by o,
denoted A””. That is

a'A=A". @)
Moreover, Theorem 1 and Theorem 2 can be
generalized, respectively, as

aA(i-I)=A(f) 5)
and @Az (6)

Where A" and A" are respectively as the following
forms:

AP=A _ +A

m—it+l

a+--+A_a",

— zm: i . N
- A<j-—i>a], forl =0L....,m
i=0

and
AT = A+ A a+-+ A Q"

=ZA<}+,>aj.fori=0,1,...,m. ®)
j=0

where <@>, the subscript of A.4., denotes the least
nonnegative residues of @ modulo m+1. Note that A
= A= A. On the other hand, from the equation of
(1), 2*"%'=2" if i is an odd number, then m+1+i
equals to an even number. So that any element A
might be re-expressed as

A=Ag+A,04 A0 +...+ A
=Ap+ A+ 4,0 +...+ 4,0 9)

, where <x> denotes x modulo m+1 and 4=A_;,. By
applying two types of element representation, an
important operation, called inner product, is defined
as

Definition 2: Let A=Ap+A,a+A,0+...+A,,d" and
B=Bo+Ba+B;0’ +...+B,d"= B, +Ba*+-+B,a’"
be two elements of GF(2"), where o is a root of the

irreducible AOP of degree m and B, =B_,. . Then
the inner product of A and B is defined as
AeB=(4 a™)B,)+ (A, a ) Ba)+
o+ (A)(B,a™)
nA T s = a (10)
=a" (A, B, + A, Ba+--+AB.a™)

=a" i Am—.’Eiai
i=0

By Definition 2, the inner product of A? and B is



then as

AN eB= a'"z A Ba'

<m—i-j>"i

(1n

For j = 0, the inner product A”” and B is the same as
the inner product of A and B, that is, A”#B= AeB.

With the above preliminaries, the principle of
the algorithm for computing multiplication over
GF(2"™), based on an irreducible AOP, is introduced
in Section 3.

3. Algorithm

Let o be a root of the irreducible AOP of
degree m over GF(2). Suppose that A =As+ A
+A2 +..+ A,d" and B=B,+Ba’+-+B,a™"
are two elements in the field GF(2™), where both A
and B are represented with the extended basis {1,
ad,..., d'yand {1, &, &,..., &™), respectively.

Theorem 3: Assume that A=Ay+A, 0+ A0l +..+
A.d" and B=B,+Ba’+--+B,a*" are two
elements in GF(2™), where o is a root of the
irreducible AOP of degree m. Then the operation of
computing the multiplication of A and B over GF(2")
can be carried out using

AB:(A(M),B)(-M)+ (A(m-l).B)(-m+l)+
e t(AP op)0
=(...(A™ oB) 1 (A" Do)y
) (A eB) 12)
Proof: Assume that A=Ag+A;a+A:0+...+Ad" and
B=By+B,c+B:0 +...+B,d" are two elements. Thus,

m-1
let us consider the case of B= ZBaz' where
i=0

B, = B.,,, (0<i<in). Generally, AB can be obtained by
AB=)"% AB "™ (13)
=0 j=0
Since the arithmetic reduction operation, o*¥

mod(a™*'+1),0<i,j<m, it is easily to show that I
<d*¥ mod(d™'+1)<c!". Thus, let us define j’=j and
i’=<i+2j>, where 0<'i’,j’<im, ones obtain i=<i’-2j’>.

Substituting i,j into (13), we obtains

=ZM:Z Ay Byt (14)

=0 =0

By taking p = <i’-j’> and j’=j into (14), then
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AB=3% A, B o

p=0j=0

=Yar¥a, Ba

p=0 j=0

ZA Ba’

<=p>7

+0{Z:A< a’

11>1

_a’j

<mn-1-j>" §

+- +a"‘ZA

According to (11), we obtains

AB=0"(A"™ #B)+ 0" /(A" eB) +...+(A” 8B)
=(A™eB) ™+ (A" ep) s +(A 0B) O

=(...((A™ aB) "+ (A" D oB) s )V (A eB) m

Example 1: By employing the properties of
=g mod(d™t'+1) for m=4, we obtains
(=1),d(=), (=), &f (=c). Assume that the
two integer numbers, A and B, is given by A = A+
Aja+ A0 + A;& + A,0f and B = By+ Bo+ B,of+
Bjai + B4Cr4= Bo+ Bza'?‘i' B4a’+ B[Qﬁ‘f' Bj&.
According to (12), the following is shown that the
product of AB.

A“eB= AB, AB, AB, AB AB
AYeB= AB, AB, AB, AB AB———— ¢
AVeB= AB, AB, AB, AB AJB]—g %’
AVeB= AB, AB, AB, AB AB ? :é
A®eB= AB, AB, AB, AB AoBJT 2 ?i ::
H HEIE
alalEli)”
R
ot 1 a o o B *
AB, A B, AB, AB, AB, ]
AB, AB, AB, AB, AB,
AcB, AB, AB; A,B, AB,«
AZBI A1B4 AOBI A4B3 ASBG‘
@ AB, AB, AB, AB, AB;+
C, G ¢ ¢ G
where @ denotes the operations of a
multiplication and an addition over GF(2). In

Example 1, the proposed AOP-based multiplication,
AB, is clearly to see that the structure requires the
inner product operations of m+1 times. Before two
elements A and B enter the first inner product
operation scheme, in which two elements, B and A,

are permuted by the form of (9) and A™, respectively.

After each of the inner product operation, the
coefficients of A must be cyclically shifted to the
right to propagate the next inner product operation.
Moreover, the accumulated sum is cyclically shifted
to the left to propagate next inner product. As above
inner product proceeding, the result of multiplication
for the m+1™ inner product operation is shown in the
form of Example 1. From the equation (12) can be




recursively computed as follows:

C,=0 (15a)
C,=C{P+A""eB (15b)
AB=C, (15¢)

4. AOP-Based Multipliers

In this section, the parallel-in parallel-out
systolic architecture for computing multiplication
over the field GF(2™) in which the elements is
presented with the root of an irreducible AOP are
presented, as shown in Fig. 1. The multiplier is
divided into two modular units; the inner product
multiplication (IPM) unit and the reduced final
modulo (RFM) unit. The IPM is based on Theorem 3
to approach the new bit-parallel systolic architecture.
The RFM is to perform the reduced final modulo P(x)
operations as shown in Fig. 1, i.e., let C=Cy+ C,a+
C:of+ .. +Cd" and C=cy+c,04C200+... 4 Cpm O
be the final result of he multiplication A and B and
the final output of the /PM unit, respectively. Then
their relationships are ¢,=C;+C,, for 0<i<in-1.

Two types of extended basis (I, @ o, ...,
o")and (1, ¢, &,.., &™) are corresponding to the
two elements A and B to enter the array, respectively.
According to the iterative procedure of (15), the
coefficients of A, B, and C at first cycle enter the IPM
systolic array as shown in Fig. 2. Each cell (denoted
by U-cell) employs one 2-input AND gate and one
2-input XOR gate to realize the equation
CP =YV + AYTVBYY | ag shown in Fig.3. The
three 1-bit latches in each cell are used to delay each
output of the cell one clock cycle. From (10), it is
clear to see that each inner product operation is only
accomplished by one cycle, because of all
coefficients are located in different order degree. For
each of inner product operation, all coefficients are
also located in different order degree. So that the
latency of the IPM, based on (12), only requires m+1
clock cycles to complete the product of A and B.
Therefore, the structure of the IPM for performing
the above computing procedure is shown in Fig.1.
The multiplier is composed of (m+1)° U-cells and m
2-input XOR gates.

There are several points to be addressed. The
latency of the systolic architecture for multiplication
over GF(2") is only m+1I clock cycles while most
other bit-parallel systolic multipliers, such as these in
[5] and [6], require 3m. The propagation delay of
each cell is short being the total delay of one 2-input
AND gate, one 2-input XOR gate and one 1-bit latch,
and the multiplier generates a product in each clock
cycle. The throughput is therefore very high. Finally,
this architecture is highly regular, simple and with
very few global connections.
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5. ESP-Based Multipliers

The new multiplication algorithm based on an
irreducible AOP is discussed in the section 3-4. Due
to irreducible ESP of large degree nr can be readily
obtained from a corresponding irreducible AOP of a
small degree n. For irreducible ESP’, many of
algorithms and hardware implementations have
founded in the literatures. Moreover, Hasan et al. in
1992 is proposed that the AOP-based multipliers of a
small degree can be to construct the ESP-based
multipliers of high degree with the modular
architectures. Therefore, it is important that
irreducible ESP’s are of practical implementations. In
this section, we present the ESP-based systolic
multiplier that is the use of AOP-based systolic
multiplier to construct the modular systolic
architecture as well as low circuit complexity.

A polynomial of the form g(x)=I+x +x*
+...+x" is called a r-equally spaced polynomial
(r-ESP) of degree nr. Let g(x) = p(x’). Then p(x) is an
AOP of degree n. It has been shown that if p(x) is an
irreducible AOP, the r-ESP g(x) needs to be
irreducible if and only if r =(n+1 VEZ mod(n+1)°, for
Jj=1 [9]. For nr<100, the possible pairs (nr, r) for an
r-ESP of degree nr to be irreducible are (6,3), (18,9),
(20,5), (54,27) and (100,25). Now suppose that a’is a
root of the irreducible r-ESP of degree nr. Then an
element A in the Galois field GF(2") can be
represented as A= dp+ 4,0+ &0 +...+ du " by
using the canonical basis (I,gd,..., '}, where
4eGF(2) for O<i<nr-1. The element A can also be
represented by using the extended basis of /1,
ad,.., d™), as

A=a,+aQ+--+a, @
(n+h)r-1
Za,.a'"

i=0

(16)

Where 8jr.j*8nrej=dirsj> for 055 <r-1 and 0<isn-1 [9] -

Example 2: Assume thatais a root of the r-ESP
g(x)=I+ ¥+ x° (i.e., g(x) is an irreducible ESP of
nr=6 and r=3). Then {1, @, &° &° &' &°)is
a canonical basis of the Galois field GF(2°) and {1
a, @) & & &’ 2% &7, 2%) can be used
as an extended basis of the canonical basis. Thus, an
element in GF| (26) can be represented as A = gy + a;
a+wt v+ +a 2t vasa’ v asa’ v a2’
+aga® by using the extended basis.
Since a is a root of the irreducible r-ESP
8(x)=1+x+x"+...+x", we have I+ @'+ a¥+..+ @
"=(). Thus,

=140 +...+d™V (172)
d"”)r:'] ‘ (l7b)
A" =g, fori=1,2,...,(n+1)r-2 (17¢)



Since n+1 is a prime and 2 is a primitive modulo 2,

@"™=], let any element AeGF(2™) might be
defined as
r—1
A=) Ad (18a)
where
A=) 4.0 (18b)
i=0

If we split the right side of the equation (18b) into
two terms with i = even and i = odd, respectively; we
have

(19)

n

ir ir

A = E ,amkd + E a,.,&
i=0 ¥

n
=1
even odd

Note that the possible n must be even for an
irreducible ESP of degree nr. Substituting d=a"*'*
into the second term on the right side of (19), the
equation becomes

2 n
A = b+ 2ir
*k a]z.'ml a]zim|‘:z
i=0 i
2

A

_ - 2ir

= Z [
=0

where lixll denotes x modulo (n+/)r and
[ =,y - Moreover, according to Theorem 1 and

(20)

Theorem 2 can be generalized, respectively, as

a” A = A 21
and
a AT = AP (22)
where A{” and A{? are respectively as the
following forms:
- .
AP = Yn—jityrtk T Un—je2yrx® +
r
et a(n—j)r«i-ka'l (23)
n .
_ ir
= Zaﬂ(i— j)r+k[|a
i=0
and
— ‘) - r
AT = T AGayran® +
nr
...+a(j_l),+k(2' s 24)

- i
= Z a|(j+i)r+k]]a
i=0

According to (18b) and (20), two sub-elements
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are given by A :Zamkai’ and B, =Z-b_mham
i=0 i=0

(05 k,h <r-1), respectively. Thus, the inner product of
Al and B, denoted as A}f!”oB,,, is based on

Definition 2 to obtain the following results
n -—
(§)] — ir
A e Bh = ;’a"("_i_j)”kubi”ha
i=

Similarly, the product of A, and B,, according
to Theorem 3, can be obtained the following results
Ath =(A,£") .Bh)(—u) + (A’Eu) . Bh)(-n+l)

+...+(AI£°) .Bh)(m

= (A" 0BV + AV 0 B) D

+-9) P+ a0 e B,

(25)

Theorem 4: Given two sub-elemeni A, and B, (0<
kh <r-1), then A;B, multiplied by & is equivalent to
{AB)".

Proof: Since Theorem 2, the results of A.B, obtain

AB, = a"'Zc..a"
i=0

where

n
G = 2 ,al(i—j)nqb[(.'ﬁ)nﬂ
70

Therefore, A;B;, multiplied by ¢/ obtains

& ABy =" (ol + 10 + ... + c, ")
=a"(Cp + Col + &+ oo + Cni @)
= {AB)" ol
As stated above, the multiplication algorithm for two
sub-elements is verified. Now, we will be combined
with the multiplication algorithm of two
sub-elements to construct modular  systolic
architecture. Assume that two elements A = Ag + A,
+Aa + ...+ A and B = By + By + B + ...
+ B,.,d ' €GF(2™), then the multiplication of A and
B, based on (26), can be re-expressed as

7=l r-1

AB= A, B e
Zo:g »B) @7
=C,+aC, ++a"'C,,
where
=l
_ (w;)
G= Z ( (A((,-_j))B,- J (28)

j=0
=c¢,+c, & +-+c,,a”
Note that <<x>> denotes x modulo r; w;=1 if
<<ij>>+j2r, else w=0. From r =(n+1) #I mod
(n+1), for j=1, it turns out that » exists on an odd
number. For 22 = (r+1)/2 (mod r) [15), if #i) = i2"™



=i(r+1)/2 (mod r), then we obtain

27i)=i (2%a)
mi)tAi)= mitj) (29b)
Ar)=0 (29¢)

Therefore, by taking i = 2x(i) and j = 2{i)+ 7(j), the
equation (27) can be to become as follows

r=l r-i

i

AB
=0 j=0
r=l -l

i) pi
Z (A B} ™ @

=0 j=0

In order to deal with the final reduced operations, let
r-1

AB:ZEa" be the final result of the multiplication,
=0

n-l
AB, where E:ZE ar

i+rj
j=0

then the coefficients

between C; and E, have the following relations

C, +¢,

=¢ ww (0Sjsh-1, 0is-1) - (30)

i+ jr i+ jr
As previously stated, the proposed ESP-based
systolic multiplier comprises ¥ IPM and r FRM units,
in which the IPM array is for computing (25); the
FRM unit is for (30). As a simple illustration, the
bit-parallel systolic multiplier based on 3-ESP
X+xX+1 corresponding to the irreducible AOP
**+x+1 is shown in Fig. 4. Fig. 2 and 1 demonstrate
the details of IPM and FRM circuits. In Fig. 4, the
IPM 1), any denotes the proposed that two elements
Aqx and B, enter the IPM unit. According to (26)
the input elements are shuffled before enter the /PM
unit. The computed result Cyany OF IPM gp) zny 15 1O
propagate to the IPM 1) zx+1) Unit. The coefficients
of Cpi+ny which is the output of IPM ), x4 unit must
performs a periodic shift-rght-by-1-bit operation if
mk)+h)2r, subjected to the relations of Theorem 4.
Generally, the proposed ESP-based
multiplier over GF(2") which has modular systolic
architecture requires (nr+r)° AND gates, (nr+ri+nr
XOR gates, nr+r clock cycles. The proposed
ESP-based systolic multiplier of a large fields can be
constructed by the corresponding is based on
AOP-based systolic multiplier of a small fields.

6. Comparisons and Discussions

The parallel systolic AOP-based and
ESP-based multipliers for GF(2") have been
presented in this paper. The proposed ESP-based
systolic multiplier of a large degree can be
constructed by the corresponding is based on
AOP-based systolic multiplier of a small degree. This
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kind of multiplier has high throughput due to the low
propagation delay in each cell. Moreover, the latency
of AOP-based multiplier in the former kind is only
m+1 clock cycles for computing a multiplication in
GF(2™). The latency in the ESP-based multiplier
requires (n+1)r clock cycles for computing a
multiplication in GF(2").

We therefore compare our multipliers with the
parallel systolic multipliers of a general GF(2™) from
[51.[6]. Table 1 reveals that our AOP-based multiplier
requires less logic circuit than the two bit-parallel
systolic multipliers but they are much simple than
Wei’s and Yeh’s multipliers. The latency of each of
ours multipliers is less than any parallel-in
parallel-out systolic multiplier of GF(2"). For
consecutive computation, the proposed multipliers
has shorter latency than the other designs. In this
contribution, it is efficiently desgins that the
ESP-based systolic multiplier is beneficial to
construct modular systolic architecture by using the
AOQP-based systolic multiplier.
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Table 1: Comparison of the related parallel
multipliers over GF(2™)

Multiplie] Yeh [5] Wei[6] Proposed Proposed
AOP-based| ESP-based
literms multiplier multiplier
# of total
%ates , s , .
-input AND 2m 3 (1) ()
b-input XOR 2:. Zr:; m +%m+l (mer) G}(m#-r)
-1 m’
ﬁ_ﬁf‘ﬁfﬁf ot 10m? Kl Kmal)?
[Maxmum
possible T2l | TatTxb2Te | TarTxtTe Ta#TxtTe
lclock period
IMinimum
S5m 3m m+l m+
llatency

Note: Ta= the propagation delay of one 2-input AND gate
Tx= the propagation delay of one 2-input XOR gate
Tsx= the propagation delay of one 3-input XOR gate
To= the propagation delay of one latch
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Fig. 1. The bit-parallel systolic architecture for
multiplication over GF(2™) based on AOP
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2. The bit-parallel systolic architecture for the IPM unit
over GF(2%)
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Fig. 4. The configuration of ESP-based systolic multiplier
over GF(25)
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