The Use of the Multi-Dimensional Logarithmic Number System in DSP
Applications

V. S. Dimitrov, J. Eskritt, L. Imbert, G. A. Jullien and W.C. Miller
VLSI Research Group, University of Windsor, Windsor, ON, Canada N9B 3P4
(519) 253-3000 Ext. 2581. e-mail: vassil@vlsi.uwindsor.ca

Abstract

A recently introduced double-base number representa-
tion has proved to be successful in improving the perfor-
mance of several algorithms in cryptography and digital
signal processing. The index-calculus version of this num-
ber system can be regarded as a two-dimensional extension
of the classical logarithmic number system. This paper
builds on previous special results by generalizing the num-
ber system both in multiple dimensions (multiple bases) and
by the use of multiple digits. Adopting both generalizations
we show that large reductions in hardware complexity are
achievable compared to an equivalent precision logarith-
mic number system.

1. Introduction

The logarithmic number system (LNS) [1][2][3] is an
alternative to the binary representation and it has been a
subject of some investigation [4][5], particularly in the field
of digital signal processing (DSP) [6][7], where the compu-
tation of inner (dot) products is a major computational step.
In the LNS, multiplication and division are easy operations,
whereas addition and subtraction are difficult operations,
traditionally implemented by making use of large ROM
arrays [8][9].

Inner products computed in DSP algorithms are often
between a predetermined set of coefficients (e.g., FIR filters
or discrete transform basis functions) and integer data. For
fixed-point binary implementations, the uniform quantiza-

tion propertiesI are perfectly matched to the mapping of
most input data (the mapping of input data for non-linear
hearing instrument processing is a counter-example), but
often the predetermined coefficients are better suited to a
non-uniform quantization mapping. A study of a large num-
ber of filter designs reveals a histogram that benefits from
the quantization associated with logarithmic mapping [10].

A logarithmic-like representation, referred to as the
index calculus double-base number system (IDBNS), was

! A constant error bound over all mapped input values

0-7695-1150-3/01 $10.00 © 2001 IEEE

247

recently introduced [11] that promises implementation
improvements over the LNS while maintaining a logarith-
mic quantization distribution, and there have been several
papers published on special results from this number repre-
sentation [12]-[17]. In this paper we will generalize the
number system and present several new results that demon-
strate the efficiencies in using this representation over the
classical LNS for typical DSP computations.

The IDBNS is based on a single-digit representation of

b
the form, y = s2 3, where s € {-1,0,1} and b,¢ are
signed integers. In this case we have Theorem 1 [12]

Theorem 1: For every € >0 and every non-negative real
number x, there exist a pair of integers @ and b, such that the

inequality, |x - 2a3bl < g, holds.
Q

We may therefore approximate, to arbitrary precision, every
real number with the triple {s, b, ¢} . We may look at this
representation as a two-dimensional generalization of the
binary logarithmic number representation. The important
advantage of this generalization is that the binary and ter-
nary indices are operated on independently from each other,
with a potential reduction in complexity of the implementa-
tion hardware. As an example, a VLSI architecture for inner
product computation with the IDBNS, proposed in
[12][13], has an area complexity dependent entirely on the
dynamic range of the ternary exponents. We can capitalize
on this complexity dependency by placing design con-
straints on the ternary exponent size. For example, if we
want to represent digital filter coefficients in the IDBNS,
then we can design the coefficients in such a way that the
ternary exponent is minimized - an integer programming
task [14]. Although this approach is sound, and can produce
modest improvements, generalizing the representation to '
multi-dimensions and/or multiple digits has the potential to
bring about very large reductions in hardware complexity of
DSP implementations.

In this paper we provide new results for both the quan-
tization of input data as well as implementation efficiencies
using multiple dimensions and digits in this index calculus.

2. Mathematical Preliminaries

There are some well-established results on s-integers
that we can build upon. We start with two basic definitions
[18].

Definition 1: An s-integer is a number which largest

prime factor does not exceed the s-th prime number.
For example, non-negative powers of two are 1-inte-

ab Lo
gers, numbers of the form 273" | 4, b - non-negative inte-
gers, are 2-integers and so on.

Definition 2: Modified 2-integers are numbers of the

form Zapb , p - odd integer.

Note that we do not impose restriction on the sign of a
and b in Definition 2.

The next definition offers the most general representa-
tion scheme we will consider in this paper.

Definition 3:
the form:

A representation of the real number x in

M

where s, €{~1,0,1} and p, ej(.i)
multidimensional n-digit logarithmic (MDLNS) represen-
tation of x. b is the number of bases used (at least two, the
first one, py, will always be assumed to be 2 in this paper).

The next two definitions are special cases of Defini-
tion 3; the representation schemes defined by them will be
used extensively in the paper.

are integers, is called a

Definition 4: An approximation of a real number x as a

. . . b . .
signed modified 2-integer s2ap , is called a two-dimen-
sional logarithmic representation of x.

An approximation of a real number x as a
n a. b,
sum of signed modified 2-integers z 5,2'p " is called
i=1
an n-digit two-dimensional logarithmic representation of
x. n = 2 will be a special case.

It is important to note that an extension of the classi-
cal LNS to a multi-digit (or multi-component) representa-
tion does not provide any inherent advantages in terms of
complexity reduction. We can show this for the special 2-
digit 2-dimensional case with the following two theorems.

Definition 5:

Theorem 2: Let x be an integer with the following 2-digit
2-base logarithmic approximation:

a, b, a, b,
x=52 'p +5,2°p".

248

) a, b, a, b, .
Then for |x—~(s,2 p "+s5,2 p) <05, the dynamic

range of max(b,, by) is 0.5 - log(x) + o(log(x)) .
Q
Arnold at al. were the first to consider a similar repre-
sentation scheme [4] in the case of classical LNS (we shall
call it a 2-component LNS). Although it leads to some
reduction of the exponents dynamic range (correspond-
ingly, reduction of the ROM sizes), the number of bits
required by the larger exponent to store the integer number
x is approximately log(x) . The storage reduction in the 2-
component LNS (as opposed to the 1-component LNS)
comes from the observation that in the 1-component LNS
one needs approximately /Jog(x) +loglog(x) bits to
encode x.

Theorem 3: Let x be an integer with a 2-component LNS

. l l
representation x =~ 5,2 Yy 552 ’

I} l
Then for [x —(s,2 '+ 5,52)| <0.5 the dynamic range of

max(ly,1,) is log(x) + O(1).

Q
(we have omitted the proofs of the above two theorems for
brevity). We can see from Theorems 2 and 3, that the
dynamic range of the exponents is reduced by a factor of 2
for the 2DLNS, but for the 2-component LNS system there
is no reduction at all. Since we will demonstrate that hard-
ware complexity for the MDLNS is exponentially depen-
dent on the size of the nonbinary-base(s) exponent, we
clearly have a potential for quite considerable hardware
reduction providing that the following inequality is met:

max(|b1], ’bzl) « max('lll,]lzl) .

3. Input data Mapping’

3.1 Error-Free Representations

As stated in the introduction, most often in DSP appli-
cations the input data has to be converted from analog to a
fixed-point binary value with a uniform quantization error
bound. Mapping to integers has a quantization error
bounded by +0.5 for all converted values. For a classical
LNS representation (and also a 1-digit MDLNS represen-
tation) we do not have this uniform quantization accuracy
so we have to choose a sufficient number of bits so that we
will be able to maintain this conversion accuracy for the
larger data values. In the multi-digit MDLNS we can miti-
gate this quantization problem; in fact, we can find certain
MDLNS representations that are completely error free!

Consider the case of the two odd prime bases, (3, 5).
A representation of a real number into forms given in defi-
nitions 3 to 5 is called error-free if there is zero approxi-

mation error. The next three theorems and one conjecture
provide new results about the error-free two-dimensional
logarithmic representation of numbers.

Theorem 4: Every real number x may have at most 91
different error-free 2-digit two-dimensional logarithmic
representations.

Proof : Let us assume that x is represented in the form of
Definition 5:

@
Clearly, x must be a rational number. Now we multiply the
two sides of (1) by z = g minta, C’O)p_mm(b’ 49 The
left and right sides of the new equation will be integers.
Dividle by the greatest common divisor of
2
Let us denote the left side of the equation obtained as M.
We may obtain only two types of equations:

M= £12% 3)

X = :Zapb:Zde

M= 2%)
eqn. (3) may have at most one solution, due to the funda-

mental theorem of arithmetic. eqn. (4) can be treated like
this. We represent the exponents e and f with respect to

and f=3f{+/,,

ey, f, €{0, 1,2} . For the nine possible combinations of

modulo 3: e = 3e + e,

residues (e,,f,) we have nine Diophantine equations of

the form:

1, 3N

3e
M = 42 *Bp (5)

where 4E€{1,2,4} and BE { l,p,pz} . We substitute
X=2"and ¥ = pfl . The final equation we have is:

M= X e,V)

where ¢; and ¢, are constants. Tue’s theorem [19] about

the cubic Diophantine equations states that the equation
3 2 23 b 6
C|1X +CyX y+cgxy +c¢4x = cg may have at most five

different solutions in integers. If M is positive, then the
only possible combinations of signs in eqn. (4) are: (+,+),
(+,); if M is negative, the choices are (-,-), (+,-). There-
fore, we have 18 equations of type (4), that is, we may
have at most 90 possible solutions of eqn. (4). Therefore,
the total number of possible error-free 2-digit two-dimen-
sional logarithmic representation of a given real number is
bounded from above by 91 (at most one for eqn. (3) and at
most 90 for eqn. (4)).

]

a-min(a,c,0) b-min(b,d,0) c—min(a,¢,0) d-min(b,d,0)
p .2 P)

249

The upper bound proved in Theorem 4 can certainly
be improved. We have not found any real number with
more than five error-free 2-digit LNS representations; here
we report one case having exactly five error-free represen-
tations.

Let x=3.25; then x can be represented with no error in
a 2-digit 2-D LNS with odd base 3 as follows:

325 =(1,-2,2,1,0,0)

325 =(1,0,1,1,-2,0)

325 =(1,2,0,-1,-2,1)

325 =(1,1,1,-1,-2,2)

325 =(1,6,0,-1,-2,5)

The point of the theorem is to establish an effectively com-
putable upper bound that could be a starting point for
improvements. The example given shows that the lower
bound for the maximal number of error-free representation
is five.

Theorem 5: The smallest positive integer with no error-
free 2-digit two-dimensional LNS representation in the
case of odd base three is 103.

Theorem 6: The smaller positive integer with no error-
free 2-digit two-dimensional logarithmic representation in
the case of odd base five is 43.

(we have omitted the proofs for brevity). The following
conjecture is based on extensive numerical calculations.

Conjecture 1: The smallest positive integer with no
error-free 3-digit two-dimensional logarithmic representa-
tion in the case of odd base three is 4985. Or, in the lan-
guage of the exponential Diophantine equations, it can be
posed as follows.

The equations =2°3°+2°3922°3 = 4985 do not have
solutions in integers.

It is important to note that such results will be avail-
able (and different) for every particular set of bases that we
choose. In this case (that is, a 3-digit two-dimensional log-
arithmic representation with odd base three) we sce that a
12-bit error-free mapping is available; a useful dynamic
range for many DSP applications. It should also be noted
that the size of the exponents used (a, b, ¢, d, e, f) is only
3-bit unsigned integers.

3.2 Non Error-Free Representations

Clearly, error-free representations are special cases of
the MDLNS, but the extra degree of freedom provided by
the use of multiple digits can mitigate the non-uniform
quantization propertics of the classical LNS.

To illustrate this, we present numerical results for
mapping 10-bit signed binary input data to the 2-digit 2-D
LLNS where we treat the odd base as a parameter. In order

to demonstrate the ability to closely match input data with
very small exponents, we have restricted the odd base
exponent to 3-bits. We are allowing the binary exponent to
be somewhat larger, namely 6-bits, but, as we will see in
the next section, this has very little bearing on the overall
complexity of the inner product implementation (i.e., the
hardware complexity is mainly driven by the dynamic
range of the ternary exponents). As stated above, we
require quantization errors to be <0.5 in order to match a
binary representation. Figure 1 shows the results for
parameters in the set {3,5,7,11,13,15,17 47}. The scale for
each graph is between 0.5 and 1 for the absolute error.
There are two observations: 1) there are very few values in
any of the results where the error exceeds 0.5; 2) there
appears to be no correlation between the density of errors
>0.5 and the value of the odd base.

(2,47)

(2,17)

(2,15)

(2,13)

il

hi |

(2,11)

(2.7)

| T

i LUL

i |
400 500

(2,5)
Y -

i

(2.3)

0 100 200 300
Figure 1. Absolute error (>0.5) for different odd
bases

For an odd-base of 47 we find no errors that exceed
0.5, whereas for integer bases below this value we find
some errors. To compare these results with an implementa-
tion using a classical LNS representation, we need to
determine the number of bits of the logarithm to produce
an absolute error of <0.5. A previous study has found that

we require n + [logyn'| bits for the logarithm in order to

achieve this accuracy for an n-bit positive number [20]. If
we assume that the hardware complexity of the classical
LNS representation is driven by the number of bits in the
logarithm, then we can see a potential for reduction in the
implementation complexity of the 2-digit 2-D LNS versus
the classical LNS.

250

3.3 Data Conversion and Unity Approximations

A fundamental difference between the classical LNS
and multi-dimensional LNS is the possibility to find non-
trivial approximations of unity in the MDLNS. These can
be used to constrain the dynamic range of exponents dur-
ing general computations. Unity approximants also play a
major role in the conversion process, as discussed below.

The conversion process from a binary to MDLNS rep-
resentation, in its simplest form, is a look-up table. This is
certainly an efficient hardware solution for fixed point
mapping up to about 13 bits. For larger dynamic ranges we
have to find alternate solutions. Two recent papers on the
conversion process [16][17] have identified a form of suc-
cessive approximations technique that has been demon-
strated to be efficient for large numbers of bits (>20). A
fundamental concept in this process is the identification of
close approximations to unity. From Theorem 1, we know
that one can be approximated with arbitrary precision as a
2-integer. In fact, both bases can be changed and the theo-
rem will still remain valid. Here we expand the discussion
of these approximants within the MDLNS, and introduce
new results.

As an example with 8-bit exponents, consider the gen-
eration of a sequence of successive values of possible 1-
digit MDLNS (2-integer) values. Table 1 shows a small
subset of values (around unity) obtained from such a
sequence.

The fourth and fifth columns show the difference
between successive binary and ternary exponents within
the sequence. In this small subset of the complete
sequence we observe that the differences are limited to
only 3 sets of 2-integers with indices (233,--147),

(149, -94) and (-84, 53). Each of the 2-integers repre-
sents a close approximation to one, multiplication by
which generates the next value in the sequence. In Table 2
we have rearranged the sequence from 2-integer values of
1/3 to 1 sorted by increasing values of the binary index.
We observe that there is a complete set of binary expo-
nents in the range [-128,128) and the ternary exponents
form a complete sub-range [-81,81). The ternary exponent

sub-range arises from the fact that 81 = 128/(log,3) . If
we consider the sub-range from 1/6 to 1/3 we will also
have a complete binary exponent sequence and a continu-

ous descending sequence of ternary exponents, except that
the ternary exponents will be decremented by one. In fact

there will be 256 — 160 = 94 such sequences covering a

range 3% 52" which is useful dynamic range for many
DSP applications.

Table 1: Near Unity Approximants

b t 2b3t by=b, 1| th=t,_y
122 -77(0971231719 233 -147
38 -24| 0.973261899 -84 53
-46 29| 0.975296322 -84 53
103 -65| 0.984482491 149 -94
19 -12] 0.986540369 -84 53
-65 41| 0.988602548 -84 53
84 =531 0.997914046 149 -94
0 0 1 -84 53
-84 53| 1.002090314 -84 53
65 -41| 1.011528852 149 -94
-19 12| 1.013643265 -84 53
-103 651 1.015762098 -84 53
46 -291 1.025329408 149 -94
-38 24| 1.027472668 -84 53
-122 77| 1.029620409 -84 53
Table 2: Partial sequence sorted by binary
exponent
b t 2831
-128 80 0.43437111
-127 80 0.86874222
-126 79 0.57916148
-125 78 0.386107653
-124 78 0.772215307
-123 77 0.514810204
-122 76 0.343206803
-3 1 0.375
-2 1 0.75
-1 0 0.5
0 -1 0.333333333
0 0 1
1 -1 0.666666667
2) 0.444444444
3 -2 0.888888889
4 -3 0.592592593
122 =77 0.971231719
123 -78 0.647487813
124 -79 0.431658542
125 -79 0.863317084
126 -80 0.575544723
127 -81 0.383696482

251

An interesting result from an exhaustive search of
such sub-sequences with exponent sizes between 5 and 16
bits, is that there are only 3 different approximants of unity
used to generate each sequence. We are working on the
theoretical explanation of this observed result.

The usefulness of the existence of good approxima-
tions of one, for general computations within dynamic
constraints on the exponents, can be seen from the follow-
ing example:

Example 1: Calculate X by using 9-bit fixed-point
arithmetic, where x=(180,-115) in 2-D LNS with odd base
3. The actual value of x is 0.207231.... Clearly,

x2 = (360, -230), which would cause overflow in 9-bit
arithmetic. But if we multiply in advance by a (properly
selected) good approximation of one, then the result
obtained will have much smaller binary and ternary expo-
nents; consequently, there will not be any risk of overflow.
In our case, by multiplying x times (-84, 53) we obtain
(96, -62) and now the squaring can be achieved in 9-bit
arithmetic without overflow.

More to the point, if at any stage of the computational
process one obtains a pair of large exponents, they can be
reduced to within the required exponent dynamic range by
multiplying the number obtained by a good approximation
of one.

Such a feature does not exist in either the binary or
logarithmic number system and may be used in fault-toler-
ant computing systems. One may try to find much better
approximations by changing the number of bases. We
report a curious numerical result with 8-dimensional LNS
having an extremely good approximation of one with very
small exponents:

Example 2: Consider an 8-D LNS with the set of bases
(2,3,5,7,11,13,23,41).
The vector (13,-3,-3,-74,1-1,1) provides an

extremely good approximation of one. To wit:
1<2P37572 77 %3237 <14 107"

Such an example demonstrates that there are some
multidimensional LNS that can be used to handle very
complex fault-tolerant computational problems. The inves-
tigation of these possibilities is somewhat outside the
scope of this paper.

4. Hardware Complexity

In order to provide complexity results for the MDLNS
inner product computation unit, we expand on the inner
product processor architecture initially developed for the
1-Digit 2-D LNS [12]. The processor can be used in a sys-
tolic array for 1-D convolution.

4.1 Single Digit Computational Unit

Figure 2 shows the structure of the proposed single-
digit computation unit (CU). Since we do not require to
retain the MDLNS representation of the accumulated out-
put, and also since the CU is feedforward, we can use the
MDLNS domain for the coefficient multiplication and a
binary representation for the accumulated output.

e.n(" ed(i) edz(l') ecz(i) edb(i) ecb(i)

+

y(n+1)

Figure 2. 1-digit MDLNS IP computation unit

The multiplication is performed by parallel small
adders for each of the data and coefficient base exponents.
The addition output for each of the b — 1 odd bases is con-
catenated into an address for a lookup table (ROM). This
table produces an equivalent floating-point value for the
product of the odd bases raised to the exponent sum, as
shown below:

b (ef,;-) +e

[17
j=2
We note that since the size of the exponents of each
odd base in an MDLNS representation (where there are at
least 2-digits and 2 bases) can be very small (<4 bits), then
the maximum address input to the ROM is given
by.4 - (b— 1) bits. This is an 8-bit address table for a 3-D
LNS. The shifter in the floating point to binary (2’s com-
plement) conversion part of the unit also handles the sign
of the product (not shown in Figure 2 for brevity).
For large dimensional LNS, we can also consider the
use of unity approximants to reduce the output of each
odd-base adder to the number of bits of the input expo-

(i)
o) Lg% g)

M

252

nents (or even less if we are willing to accept the increased
mapping error). This reduction process stores a small
number of unity approximants that can be added in paral-
lel to the output of the odd-base adders. The reduced input
to the ROM s selected from these parallel results. The
ROM input address size is now reduced by (b—1) bits.
This is a subject of current research work and will not be
explored further here. For the complexity analysis in Sec-
tion 4.3, we will assume the structure of Figure 2.

4.2 n-digit Computational Unit

The n-digit computational unit is a simple parallel
extension of the 1-digit unit. Each of the units computes
the binary output for one of the digit combinations. As an
example, consider multiplying an accumulating sequence,
y, with a coefficient, x, z = x -y, where:

2 Ol 2 eLv](i) 2 [x] 2 e[x](i)
_ / VL = x i
y=3si [1e sx= Fsi e
j=1 i=1 j=1
We can perform this with 4 parallel 1-digit units,
where the (u,v) unit computes:

2
1, [x] (
Zyv T Sy Sy pr
Jj=1

i=1

eij](u) + ej[»X](v))

(®)

Clearly there are n* such units in an n-di git MDLNS.
The parallel outputs are summed at the end of the sys-
tolic arrays using an adder tree.

43 MDLNS Complexity Comparison

In terms of complexity comparison with the classical
LNS, we need to compare each system based on the same
quantization properties.

This will require a knowledge of the change in the
size of the odd-base exponents as a function of dimension-
ality and number of digits. At the moment this appears to
be a rather intractable task and so we have to resort to
exhaustive search analysis. Here we report the results from
10 and 12-bit unsigned binary dynamic range (these are
taken from typical video filter requirements). From Sec-
tion 3.2, we obtain the number of bits for the classical

LNS as n + |’log2n" . These results are shown in Table 3.

Here we have assumed that the LNS hardware uses the
same ROM/shifter architecture as the 1-Digit 2D LNS
[20]. Our assumption in Table 3 is that the ROM size dom-
inates the hardware complexity. For the classical ILNS and
1-digit 2D LNS, this is a valid assumption. For the 2-digit
LNS the ROM size is very small and the other components
in the architecture will undoubtedly be important in the
overall complexity.

Tabie 3: Classical LNS and 2D LNS Comparison

Binary . . o
. 1-digit 2D 2-digit 2D
Dynamic LNS LNS LNS
Range

10-bits 1K | 1K (10-bit odd-| 64 words (4-
base exponent) bit ternary
exponent)
12-bits 4K | 4K (12-bit odd-| 128 words (5-
base exponent) bit ternary
exponent)

Even so, it is clear that there is a very substantial
reduction in the hardware complexity for the 2-digit case.
We are currently performing a comparison analysis for a
much larger set of digits and dimensions. Our initial find-
ings point to the number of digits as being the primary
contributor to the hardware savings.

5. Filter design

As an example of the applicability of the MDLNS
representation to DSP applications, we have designed a
variety of digital filters using the architecture proposed in
Section 4.1. Our designs have used both 1 and 2-digit 2D
LNS representations with different odd bases.

The design technique is remarkably simple, even
though on the surface it appears a very complex integer
programming problem. Figure 3 shows the envelope of the
filter coefficient distribution from a study of 200 different
designs using 9-bit quantization on the coefficients [21].

Such a coefficient distribution is better represented by
a logarithmic-like number system, such as the MDLNS,
rather than a classical positional number representation.

Taking advantage of this distribution match we have
developed a design procedure for a 2-digit MDLNS using
a standard greedy algorithm [10][12]. Results for a 53-tap
low-pass filter design are shown in Figure 4. We have
included 3 plots: the original double-precision Remez
exchange design; the best case quantized result (2-digit
with odd-base 3); the worst-case result (2-digit with odd-
base 47). Table 4 shows the stop-band attenuation results.

A 2-digit 2D LNS architecture for a 15-tap filter has
been fabricated and successfully tested. The filter data uses
the full 2-digit representation, but the filter coefficients
were designed using a 1-digit MDLNS (a hybrid represen-
tation). This requires 2 inner product computational units
per coefficient. The layout is shown on the left of Figure 5
and the two parallel arrays are clearly visible. A full 2-
digit MDLNS design of a 53-tap filter (not yet fabricated)
is shown on the right hand side. There is a factor of 8 in the
complexity reduction, which clearly shows the benefit of
using a full multiple digit MDLNS.

253

5000
4500
4000
3500
3000
2500
2000
1500

1000

500

0
-600

-400 -200 0 200 400 600

Figure 3. Filter Coefficient Distribution

— Ideal
0 -+ odd base 3
— - odd base 47

Magnitude (dB)
o & A
S & ©

:¢
=1
S

-120}
140}
-160}
-180

1.5 2 25 3
Normalized Frequency

0 0.5 1 3.5

Figure 4. Filter design results for a 2-digit MDLNS

Table 4: Stop-band attenuation results

odd-base | Ideal| 3 5 7 11
stop-band (dB)| 85.5{ 78 | 70 [64.5|71.3

47
63.3

6. Conclusions

In this paper we have demonstrated that a multi-digit
multi-dimensional logarithmic number system has consid-
erable implementation advantages over the classical LNS
for many DSP applications. This paper has generalized
previous studies of a double-base number system, and we
have illustrated some of the advantages of the extra
degrees of freedom in both numbers of digits and the
dimensionality of the representation. We have demon-
strated, using FIR filter VLSI layouts, the complexity
reduction obtainable by using a multiple digit MDLNS
representation. A more formal comparison between the
MDLNS and the classical LNS is currently under investi-
gation in our laboratory.

AREEHEIEE THEE |

| JHERHHBHH: HHHEHHHEH B HHHE

;"I"TI'I'TT? 'r?'r:';{'r"rrr PvT"'V"!'T"l"'l'inT

Figure 5. Hybrid and 2-D filter layout comparison

7. References

[1] [.Koren, Computer Arithmetic algorithms, Englewood
Cliffs, NJ: Prentice Hall, 1993

[2] E.E.Swartzlander and A.G. Alexopoulos, The Sign/Loga-
rithm Number System, IEEE Trans. Computers,Vol. 42, pp
1238-1242, 1975.

[3] FJ.Taylor, R. Gill,J. Joseph and J. Radke, A 20 Bit Loga-
rithmic Number System Processor, IEEE Trans. Computers, vol.
37, pp 190-200, 1988

4] M.G.Armold, T.A. Bailey, J.R. Cowles and J J. Cupal,
Redundant Logarithmic Arithmetic, IEEE Trans Computers, vol.
39, No 8, pp 1077-1086, 1990

[5] J.-M.Muller, A. Scherbyna and A. Tisserand, Semi-Loga-
rithmic Number Systems, IEEE Trans. Computers,vol.47,No 2,
pp 145-151, 1998

[6] N.G.Kingsbury and P.J.W Rayner, Digital Filtering Using
Logarithmic Arithmetic, Electronics Letters,7, pp 56-58, 1971

{71 D.M. Lewis, 114 MFLOPS Logarithmic Number System
Arithmetic Unit for DSP Applications, IEEE J. Solid-State Cir-
cuits, vol. 30, pp 1547-1553, 1995

[8] D.M.Lewis, Interleaved memory function interpolators with
application to an accurate LNS arithmetic unit, IEEE Trans.
Computers,Vol. 43, No. 8, pp.974-982, 1994.

[9] J.N.Coleman, E.I. Chester, C.I. Softley and J. Kaldec,
Arithmetic on the European Logarithmic Microprocessor, I[EEE
Trans. Computers, vol 49, No 7, pp 702-715, 2000

254

{10} J. Eskritt, R. Muscedere, G.A Jullien, V.S .Dimitrov and
W.C Miller, A 2-digit DBNS filter architecture, IEEE Workshop
on Signal Processing, Louisiana, Oct. 2000

[11] V.S Dimitrov, S.Sadeghi-Emamchaie, G.A Jullien and
W.C Miller, A near canonic double-base number system with
applications in DSP, SPIE Conference on Signal Processing
Algorithms, vol. 2846, pp.14-25. 1996

[12] V.S.Dimitrov, G.A Jullien and W.C Miller, Theory and
applications of the double-base number system, IEEE Trans. on
Computers, vol. 48, No. 10, pp. 1098-1106, Oct. 1999

[13] S.Sadeghi-Emamchaie, G.A Jullien, V.S .Dimitrov and
W.C Miller, Digital arithmetic using cellular neural networks,
Journal of Circuits, Systems and Computers,No. 8, vol. 6, pp.
515-535, Dec. 1998

[14] G.A.Jullien, V. S. Dimitrov, B. Li, W. C. Miller, A. Lee,
and M. Ahmadi, 1999, A Hybrid DBNS Processor for DSP Com-
putation, Proc. Int. IEEE Symp. Circuits and Systems, Orlando.

[15] V.S .Dimitrov, G.A Jullien and W.C.Miller, An algorithm for
modular exponentiation, Information Processing Letters,vol. 36,
No. 5, pp. 155-159, May 1998

[16] R. Muscedere, G.A. Jullien, V. Dimitrov, W.C. Miller, 2000,
“Non-linear signal processing using index calculus DBNS arith-
metic”, Proc. of the 2000 SPIE conf. on Advanced Algorithms

and Architectures in Signal Processing, San Diego, August 2000

[17] R.Muscedere, G.A Jullien, V.S .Dimitrov and W.C Miller,
On efficient techniques for difficult operations in one and two-
digit DBNS index calculus, Asilomar Conf. on Sig., Syst. and
Comp., Oct. 2000

[18] B.M.M deWeger, Algorithms for Diophantine equations,
CWI Tracts, Amsterdam, vol. 65, 1989

[19] Computational methods in number theory, eds. H.W.Lenstra
and R.Tijdeman, Mathematical Centre Tracts, vol. 155, 1987

[20} D. Lewis, An Architecture for Addition and Subtraction of
Long Word Length Numbers in the Logarithmic Number System,
IEEE Trans. Computers,Vol. 39, No. 11, pp. 1325-1336, 1990

[21] M. Shahkarami, Exploiting Redundancy in Modulus Repli-
cation Inner Product Processors, Ph.D. Thesis, University of
Windsor, 1999.

