Efficient Computation of Multiplicative Inverses for Cryptographic Applications

M. A. Hasan
Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Email: ahasan @ece.uwaterloo.ca

Abstract

Among the basic arithmetic operations over finite fields,
the computation of a multiplicative inverse is the most time
consuming operation. In this article, a number of meth-
ods are presented to efficiently compute the inverse using
the extended Euclidean algorithm. The proposed methods
can significantly reduce the computation time over large
fields where the field elements are represented using a multi-
precision format. A hardware structure for the inverter is
also presented. The structure is area efficient and is suit-
able for resource constrained systems. Additionally, an ap-
plication of the proposed inversion algorithm is given in the
context of elliptic curve cryptography.

1. Introduction

A finite field is a set of a finite number of elements where
one can perform the basic arithmetic operations, namely ad-
dition, subtraction, multiplication and inversion (of nonzero
elements) without leaving the set [1], [2]. The finite ficld
GF(2"), where n is a nonzero positive integer, has 2" ele-
ments and is an extension of the ground field GF(2) which
has only two elements. The important applications of the
extension fields include cryptography [3, 4] and error con-
trol coding [S]. In cryptographic applications, the number
of field clements can be as high as 2'°%2% or more. Both
1EEE and ANSTI have included the extension field in their re-
cent standard specifications for cryptographic applications.

Since there are exactly 2" binary polynomials of degree
less than n, all the 2" elements of GF(2") can be uniquely
represented in a polynomial form which is known as the
polynomial basis representation. For such representation,
the four basic arithmetic operations can be informally de-
scribed as follows: The addition/subtraction of two field
elements is simply mod 2 addition of the coefficients of
the polynomials corresponding to the elements. To multi-
ply two elements, one can first multiply their polynomial
representations to obtain an intermediate polynomial of de-

0-7695-1150-3/01 $10.00 © 2001 IEEE

66

gree up to 2n — 2. Since the product of the two elements is
also an element in the field, the polynomial of the product
should have a degree less than n. This can be achieved by
taking the intermediate polynomial modulo an irreducible
binary polynomial of degree n. Finally, in order to find the
inverse of a nonzero element, one needs to find an(other)
element such that the product of their polynomial represen-
tations modulo the irreducible polynomial is the multiplica-
tive identity which is simply 1 in the polynomial basis rep-
resentation.

Among the four basis arithmetic operations, inversion is
the most time consuming operation. In the past, several
algorithms for computing inverses over GF(2") were pro-
posed (for example, see [6, 7, 8, 9, 10, 111). The underly-
ing computations on which these algorithms rely on can be
broadly divided into the following categories:

e Repeated squaring-and-multiplications in GF(2"),
e Use of the extended Euclidean algorithm over GF(2),
o Solution of a system of linear equations over GF(2).

In this article, we consider the computation of inverses us-
ing the extended Euclidean algorithm (EEA) which is be-
lieved to be the most widely used scheme for inverses in
large fields. Although, the EEA can be applied to a num-
ber of bases that one can use to represent the field elements
[11}, in this article we restrict our discuss on the polynomial
basis only. Recent articles on the computation of inverses
using the EEA include [8] and [12}. These articles are pri-
marily for hardware realizations and require dedicated re-
sources. Here, we develop methods to reduce the compu-
tation time for inverses, especially for large fields where
multi-precision is used to deal with the large number of bits
needed to represent the field elements. Our proposed meth-
ods include updating of the EEA polynomials up to the ex-
act precision, reducing the delay in degree determination,
and two dimensional representation of the degrees of the
polynomials involved.

The outline of the remainder of this article is as follows.
In the next section we present the conventional approach to

use the EEA to compute inverses. Then in section 3, we
develop the proposed methods to efficiently compute the
inverse. An architecture of hardware realization of the in-
verter is presented in section 4. Then, in section S an appli-
cation of the proposed inverse scheme is discussed and the
expected improvement is quantified for elliptic curve based
cryptographic systems. Finally, a few concluding remarks
are given in section 6.

2. Conventional Approach

Let F(z) be an irreducible polynomial of degree n over
GF(2) and let this polynomial define the representation of
the elements of the field GF(2"). Let 4 be a non-zero ele-
ment of GF(2") and A(z) 2 Zf 01 a;z' be its polynomial
basis representation where all a;’s belong to GF(2) and deg
A(z) < n— 1. Since F(z) and A(z) are relatively prime,
their greatest common divisor

ged(F(z), A(z)) = 1.
Thus, there exists a polynomial B(x) of degree less than n,
which for some C(z) satisfies the following [2]:

A(z)B(2) + F(z)C(z) = 1,
ie., A(z)B(z)=1 mod F(z).
Thus B(z) is the polynomial basis representation of the
multiplicative inverse of A and it can be recursively com-

puted using the extended Euclidean algorithm (EEA) as fol-
lows:

Algorithm 1 (Conventional Inversion)
Input: F(z) and A(z) # 0

Output: B(z) such that A(z)B(z) = 1 mod F(z)

Step 1. R(-V(z) := F(z), RO (z) := A(z)
U (z) :=0,UO (2) :=1
i:=0 .
Step 2. do {
1 = i+1)
QW(z) := |RU=2(z)/RU-1(z)]
R (z) := R(- 2)(x)+Q(’ (x)R("l)(x)
U (z) := U= (z) + QW (2)U=1(x)
} while (RG)(z) #0)
Step 3. B(z) := Uli-(z)

In Step 2, QV(z) := |RO-D(x)/RU~Y(z)] is the
quotient polynomial resulted from dividing R(~2)(z) by
RU-1(z). Although it is not explicitly shown above, the
computation of Q¥)(z) (and hence R)(z)) requires locat-
ing the leading coefficient of each intermediate remainder
polynomial that results during the division operation. As a
result, in a straight-forward realization, the computation of
Q" (z) and R() () is an iterative process and may take a
considerable amount of the loop time in Step 2.

3. Efficient Inversion over Large Fields

In cryptographic applications, the value of n can be as
large as 1024 or more. When cryptographic functions are
implemented using a general purpose processor, each n-bit
element of GF(2") is usually presented as an s = [n/7]
word operand where r corresponds to the width of the pro-
cessor’s datapath. For such multi-precision representation,
each polynomial addition in Algorithm 1 corresponds to s
XOR instructions (assuming that the underlying processor
has a word level XOR instruction). Thus, each iteration of
the loop in the above algorithm requires two polynomial ad-
ditions which in turn requires 2s XOR instructions.

In Algorithm 1, as the degrees of the R()(z) polynomi-
als decrease, the degrees of U()(x) polynomials increase.
In the following, we discuss a systematic way to use this
property of the polynomials to reduce the number of XOR
instructions needed to compute an inverse.

3.1. Updating Polynomials up to the Exact Precision

In Algorithm 1, R (z) and Q) (z) are the remainder
and quotient polynomials, respectively, obtained by divid-
ing RU=2)(z) with RU-1(z). As a result,

deg R(z) < deg RU-1(a), €}

and

= deg RU=2(z) — deg Q)()
deg RU=)(z) — deg QU~1(x)

~deg Q1) (z)

deg RY~V(z)

degR"V (2 ZdegQ(J) (z). @

j=1

Also, since deg U= (z) > deg U~2(z),

deg U=V (2) + deg Q1) (x)
deg U= (z) + deg Q0 (z)
deg Q) (z)

)+ Y dog Q)(2).3)

i=1

deg U ()

deg U{O)(

Using (2) and one of the initial conditions deg U(%(z) = 0
of Algorithm 1, we can write (3) as follows:

degUW(z) = deg R (z) — deg RUV(x).(4)

67

Since R(-Y(x) = F(z) and deg F(z) = n, from (1) and
(4), we can write

deg U (z) + deg RU-V(z) = n, 5)

deg U (2) + deg R(z) < n. ©6)

In Algorithm 1, both U(")(z) and R")(z) are calculated
in the same iteration. As a result, in each iteration a maxi-
mum of n + 1 coefficients including the constant terms of
U (z) and R®)(z) are to be determined, and towards this
effort the maximum number of XOR instructions required
iss+1,1e.,

[deg[r()]+11+[deg[ﬂ(’:(r)]+1]

<s+1 (D

where s = [2].

In order to limit the total number of XOR instructions
to s + 1 per iteration as shown in (7), one needs to know
how these XOR instructions are split between U (=1 (z)
and RC~1(z). In this effect, note that in the ith itera-
tion, R#~1)(z) is already known; hence deg U(*)(z) can
be found in advance and one can use (5) to determine
deg U(")(z) before computing the coefficients of the poly-
nomial U () (z) itself. This enables us to determine the split
of the s+ 1 XOR instructions between U") (z) and R®) (z),
and hence a way to reduce the complexity of computing an
inverse.

3.2. Delay Reduction in Degree Determination

Since deg R6-?(z) > deg RU=Y(z), hence
deg QU)(z) > 0. Assuming that Q(*)(z) has m; nonzero
coefficients, one can write

QW) =

FICRY glismi=1)

(1,0)
z? +z

+z + .-

d(i,o) > d(ivl) > e > d(i’mi_l) Z 0

and d(i0) deg Q¥)(z) > 0. Since R (x) =
RU=2) () + Q) (z) RE=1)(z), in the process of generating
R (z) by dividing R~?)(z) with R(~1)(z) one obtains
m; + 1 intermediate reminders. Denoting these remainders
as R(=23)(z), for 0 < j < my, we have the following:

R(i_2’0)($)

RU=2(z) and

R(z’_z,j+1)(l_) R(z’—Z,j)() d(J)R(z 1)()
0 S] S m; — 1.
Notice that R(~2™:)(z) = R()(z) and

di) = deg RU~%9)(z) - deg R“ U(z)

deg RU=%1-1(z) —
—deg RU~Y ()

¥

68

where 40) = deg RO-%7-1(z) — deg RU~%9)(z).
The determination of 6() is usually a sequential pro-
cess and can constitute a significant portion of the itera-
tion time. Since, deg RU~2J)(z) < deg RU~27-V(z),
one can start searching for the (non-zero) leading coeffi-
cient of RUI=%9)(z) from the e-th coefficient where e =
deg R(i=23=1)(z) — 1. In this process, the number of bits
one tests is 6("9),

In order to speed up the process of determining 6(9), we
can use a look-up table (LUT). The inputs to the LUT are
the least significant e + 1 bits of R(*~%)(z) and the output
is (7). Since both e and §() can be up to n, the size of
the LUT is 2" log, n bits. This table is however too large to
be used in most practical systems even for a moderate value
of n.

In an effort to reduce the size of the table, note that §(*+7)
corresponds to the number of zero bits at the significant
(leading) end of the e-bit representation of R(1=29)(z). As-
suming that 0 and 1 are equally likely to occur, the proba-
bility of having one zero is greater than the probability of
having two zeros at the significant end, and in general, we
have

Pr{§0+) =1} = 2Pr {6(9) =1 4+ 1},)

As a result, we can use only a few (say, g < n) bits from
the significant end of the e bits of R¢~29)(z) to correctly
determine 6() with only one LUT read operation in most
cases. More specifically, when not all the ¢ bits are zeros,
which happens with a probability of 1 — 1/29, the value of
§0-7) is determined simply by reading the LUT. However,
when all the ¢ bits are zeros (detection of the all-zero con-
dition is simple and fast), J; ; is set to g and the next g bits
are checked. If the new g bits are all zeros, the value of J; ;
is increased by g. This process is repeated until there is at
least one nonzero bit in the g bit group, at which point the
table is accessed to obtain a value in the range [0, ¢ — 1]
which is then added to J; ;.

Assuming that the ¢ bits are directly used to address the
LUT, its :-th location has

for! > 1.

LUT[]] =g — 1 — |loggi|, 1<i<29—1.

The size of the above LUT is 29 log, g bits. For the the
sake of easy implementation, we should chose g such that
g|r. For a processor with a 32-bit wide datapath, a practical
value of g appears to be four, for which the contents of the
LUT are shown below. For hardware realization with mem-
ory constraints, the table size can be easily reduced at the
expense of increased time complexity.

Based on the above discussions, now we have an inver-
sion scheme as described in Algorithm 2 below. Note that
although the following algorithm appears to be longer than
Algorithm 1, there is no implicit task of determining the de-
gree other than what is already shown in the description of

_
N
w
N

Location | 0

>}
el

11

—
J—
— N
—

Contents | - |3]2]2

the algorithm. Also, the polynomials are updated only up to
the exact precision, which reduces the number of XOR in-
structions as well as the number of storage registers needed.

Algorithm 2 (Efficient Inversion)
Input: F(z) and A(z) #0
Output: B(z) such that A(z)B(z) = 1 mod F(z)

Step 1. RC-V(z) := F(z), RO (z) := A(z)
UEY(2) :=0,U0(z) :=1

deg R-19)(z) := deg R-V(z) = n,
find deg R(®)(z)

d10) = n — deg RO (z),i =0

Step 2. do {

ti=1+4+1
j:i=0
R(=20)(z) := R(-2)(x)
U(i—2,0)5w) = U(,»_?)(x)
while (d'%7) > 0) do {
RU=23+1) () := RU=20)(z) —
xd(i'j)H(i—l)(m)
/* update R(I=%7+1)(z) only up to
coeff of zdee RU™"7 () %/
Ui=20+0(g) .= Ui-20)(z) —
xd("i)U(i-l)(m)
/* update U=24+1) () only up to
coeff zn—degRC ™V (@) %/
Jji=j+1
Find 67 from LUT
deg RC-27)(z) := deg R(~27~Y(z) -
§(i:7)
d(+9) := deg RU~29)(x)—deg RO~ V(z)

Step 3. B(z) := Uli~Y(z)

3.3. Two Dimensional Representation of Degree

n-—1 i

In order to represent the polynomial A(z) = > 7" a;x

in a processor with a datapath width of r bits (r < n), one

needs [2] words or registers of the processor. Assume that

the least significant r coefficients of A(x) are stored in word
0 and the next r significant coefficients are in word 1 and so
on. Then the determination of deg A (x) requires the search
of the leading coefficient which may start in word ¢ and end

69

in word j where j < i. When ¢ — j > 1, the realization of
such a search is greatly simplified by a single instruction of
the processor which checks the contents of an entire word
or register against zero. To take advantage of this feature,
the degree of the polynomial needs to be converted to the
corresponding word number and bit number. Such repre-
sentation can also speed-up the task of polynomial multipli-
cations. As a result, it is convenient to represent the degree
d of a polynomial as a pair of coordinates (d;, d2) such that

d=rdy+d;

where d; is the word number in which the leading coeffi-
cient is stored and d; is the corresponding bit position in
word d;.

In most processors, the value of r is a power of 2. As a
result, one can easily determine d; and d; by simple SHIFT
and AND instructions. The reconstruction of d from d;
and d, can also be easily performed with SHIFT and OR
instructions.

3.4. Comments

e We have implemented Algorithms 1, 2 and the almost-
inverse algorithm of [13] using the C programming
language. A truly fair comparison of the computation
time of these algorithms is difficult to do since it de-
pends on the details of the implementations. Never-
theless, in our implementations we have observed that
Algorithm 2 can provide a significant speed-up com-
pared to the others. For example, while considering
the field GF(2'°!) we have found that Algorithm 2 is
twice as fast as the almost-inverse algorithm.

e For a very high speed implementation on general pur-
pose processors, one can use the well known optimiza-
tion techniques, such as loop unrolling, multiple copies
of the variables to avoid swapping, etc. More on this
can be found in [13].

Also, one can combine Algorithm 2 with the almost-
inverse algorithm. To this end, our efforts however
show that only a marginal improvement is obtained
over the sole use of Algorithm 2. This is perhaps
mainly because of the extra operation of z~* mod
F(z), k € [0,2n — 1], needed for the almost-inverse
algorithm. An efficient realization of this operation re-
quires the second leading coefficient of the field defin-
ing polynomial F'(z) to have a degree greater than or
equal to r.

e Unlike the algorithm of [14] and [15] where 7 is as-
sumed to be a composite number and the EEA is ap-
plied over a sub-field of GF(2"), Algorithm 2 of this
article can be used for any values of n including the
primes. In order to reduce the risk of possible attacks,
recently there has been a trend to use the field GF(2™)
with n being a prime. As a result, the proposed in-
verse scheme appears to be a better candidate for the
realization of cryptographic functions for practical ap-
plications.

4. Hardware Architecture

The algorithm presented in section 3 can also be used
for an efficient hardware realization of the finite field inver-
sion operation. A two-bus architecture for such realization,
where the dimension n of the field GF(2") is larger than the
datapath width r, is shown in Figure 1. Only the important
building blocks of the architecture are included in the fig-
ure and an informal description of the architecture is given
below.

There are two sets of r-bit shift registers labeled as
REG.,0, REGL 1, ..., REGL,; on the left hand side, and
REGRg,0, REGR,1, ..., REGg,; on the right hand side of
the buses. The left hand side registers are initialized with
R(=Y(z) and U(-1)(z) whereas the right hand side regis-
ters are initialized with R(®)(z) and U(%)(z). The higher
order coefficients of the polynomials are stored at the upper
end of the registers, e.g., U~V (z) and U(®) (z) corresponds
to a 1 and a 0 in the bottom cell of REGy, ; and REGg,,, re-
spectively. The significant g bits from each of REGy, ¢ and
REGRp,¢ are connected to the LUT and the zero-detect block
through a MUX which is operated by the control unit. The
latter also provides shift-, in- and out-signals to the regis-
ters so that the matching coefficients from the polynomials
stored in the two sets of registers can be added in the ALU.
The number of shifts depends on the value of 6(*) which
is determined by the control unit based on reading the LUT
and the outcome of the zero-detect block as discussed in
section 3.

The area complexity of the architecture, as it can be seen
in the figure, 1s O(n). On the other hand, since the inner
loop of Algorithm 2 is executed a maximum of 2n times,
the time complexity of the architecture is O(ns).

5. Applications in Elliptic Curve Cryptography

Inverses over GF(2"), where n is large, have usages in
cryptography. In applications, where the bandwidth for
communications or the space for storage is limited, the
choice of elliptic curve based cryptography can be advan-
tageous. For the finite field GF(2") of characteristic two,

70

the standard equation for an elliptic curve is

Y24+ XY =X3+aX?+3 (10)
where o, f € GF(2") and 8 # 0. The points on the curve
are of the form P = (X,Y), referred to as affine coordi-
nates, and X and Y are elements of GF(2"). The solutions
(X,Y) to equation (10), along with a special point O called
the point at infinity, form a commutative finite group under
the following addition operation [17], [18], [19], [20].

Let P = (X,Y) be a point on (10). The inverse of
P is defined as —P = (X, X 4+ Y). The point O is the
group identity, i.e., PW O = OW P = P, were W de-
notes the elliptic curve group operation (i.¢., addition). If
P() = (X(),YQ) :,é @ and P1 = (X1,Y1) ;é Q@ are two
points on E and Py # — Py, then the result of the addition
Py Py = Py = (X4, Y?) is given as follows.

+X0+X1+aa PO¢P13
P0:P17

(Fel)+ o
X2+ 5?~

(X%’_%’(’;) (Xo+ X2) + X2+ Yo, Po# Py,
X8+ (Xo+ %) X5 + Xa,

X2=

Y2

In the above formulas, the cases of Py # P and Py =
Py correspond to elliptic curve point addition and doubling,
respectively. They are used for computing the scalar multi-
plication k P, i.e. add k copies of P, where k is a large inte-
ger (of about n bits) and P is a point on the curve (10). The
scaler multiplication is fundamental to elliptic curve based
cryptographic functions, such as, secret key generation, key
exchange, signing and verification.

The above formulas for point addition are based on the
affine coordinates of the elliptic curve points and require in-
verses over GF(2™). Other coordinate systems have been
proposed, mainly to avoid the costly inverse in finite fields
(see for example [20]). This is however achieved at the ex-
pense of extra multiplications over GF(2™) and causes a sig-
nificant increase in the number of storage registers needed
to temporarily hold the intermediate results. As a result, in
resource constrained systems, for which the elliptic curve
cryptography has an edge over its counterparts, affine co-
ordinates appear to be a good candidate for practical im-
plementation, especially if the inverse is not too slow com-
pared to the multiplication. Moreover, to reduce processing
time the elliptic curve in (10) is often simplified by setting
B = 1 and limiting « to be either 1 or 0. Such curves,
known as Koblitz curves, can eliminate the need for ellip-
tic curve point doubling operations in computing the scalar
multiplication kP [20]. Thus, it is the point addition op-
eration that dominates the computational complexity of the
scalar multiplication on the Koblitz curve.

P() = P].

From the point addition formulas given above, we see
that the elliptic curve point addition mainly requires one
inverse and two multiplications over GF(2"). The com-
putation times for squaring and additions over GF(2™) are
small compared to those of the inverse and the multipli-
cation. Thus, the time for an elliptic curve point addition
is essentially I + 2M, where I and M correspond to the
computation times for the field inverse and multiplication,
respectively. Depending on the implementation, the fac-

tor p EN /M can vary considerably. Using the extended
Euclidean algorithm for the inverse, the authors of [21] re-
ported p to be roughly in the range of [2, 12] for the binary
fields recommended by NIST [22] and implemented on a
Pentium II 400 MHz workstation. For such values of g,
if the proposed scheme (i.c., Algorithm 2) is used, which
can speed up the inverse operation by a factor of two or
more, one is expected to see an improvement of 30 — 70%
in the computation of elliptic curve point addition, and con-
sequently in the corresponding scalar multiplication.

6 Concluding Remarks

In this article, the computation of inverses over very
large binary extension fields has been considered. The con-
ventional extended Euclidean algorithm for computing the
inverse has been systematically optimized. To this end, a
number of schemes have been proposed which significantly
increase the performance of the inverter implemented using
general purpose processors, such as Intel’s Pentium proces-
sors. The proposed scheme of polynomial updating up to
the exact precision alone can double the speed of the the in-
verse operation. The look-up table based scheme provides
additional improvement by quickly determining the degree
of the polynomials used in the inverse operation.

A hardware structure for the inverter has also been pre-
sented. This structure can be very useful for resource con-
strained systems, such as smart cards. The proposed struc-
ture requires only about one half of the total number of stor-
age registers that the conventional extended Euclidean algo-
rithm based inverter needs.

Various cryptographic functions can benefit from the
proposed inversion algorithm. In this article, we have dis-
cussed the case of elliptic curve cryptography. It is expected
that the use of the proposed inversion algorithm would re-

sultin a speed-up of 30—70% for the addition of two elliptic’

curve points using the affine coordinates.

Also, the methods presented here are not restricted to
the computations of inverses in finite fields. These methods
can be used for applications which rely on the Euclidean or
similar algorithms, for example, the algorithm for solving
discrete-time Wiener-Hopf equations [16].

71

7. Acknowledgment

Most of the work presented here was done during the
author’s sabbatical leave with the Motorola Labs., Schaum-
burg, IL, USA. The author wishes to thank Larry Puhl for
his encouragement to pursue this work. The author is grate-
ful to Ezzy Dabbish and Tom Messerges for their useful
comments on the draft of the manuscript. Thanks are also
due to Dean Vogler for his help with the various computing
resources of the labs.

References

[1] R. Lidl and H. Niederreiter, Introduction to Finite
Fields and Their Applications. Cambridge: Cam-
bridge University Press, 1986.

[2] R. J. McEliece, Finite Fields for Computer Scientists
and Engineers. Boston, MA: Kluwer Academic, 1987.

[3] D. R. Stinson, Cryptography Theory and Practice.
Roca Baton, Florida: CRC Press, 1995.

[4] A. J. Menezes, P. C. van Oorschot, and S. A. Van-
stone, Handbook of Applied Cryptography. Roca Ba-
ton, Florida: CRC Press, 1996.

[5] E. R. Berlekamp, Algebraic Coding Theory. New
York: McGraw-Hill, 1968.

[6] T. Itoh, “A fast algorithm for computing multiplica-
tive inverses in GF(2™),” Inform. and Comp., vol. 78,
pp. 171-177, 1988.

[71 M. A. Hasan and V. K. Bhargava, “Bit-Serial Sys-
tolic Divider and Multiplier for GF(2™),” IEEE Trans.

Comput., vol. 41, pp. 972-980, Aug. 1992.

[8] H. Brunner, A. Curiger, and M. Hofstetter, “On
Computing Multiplicative Inverses in GF(2™),” IEEE

Trans. Comput., vol. 42, pp. 1010-1015, Aug. 1993.

[9] C.C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch,
J. K. Omura, and 1. S. Reed, “VLSI Architecture for
Computing Multiplications and Inverses in GF(2™),”
IEEE Trans. Comput., vol. C-34, pp. 709-717, Aug.

1985.

[10] M. Morii and M. Kasahara, “Efficient construction of
gate circuit for computing multiplicative inverses over

GF(2™),” Trans. IEICE, vol. E 72, pp. 37-42, 1989.

[11]1 M. A. Hasan, “Double-Basis Inversion over GF(2™),"
IEEE Trans. Comput., vol. 47, pp. 960-970, Sept.

1998.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

K. Araki, I. Fujita, and M. Morisue, “Fast Inverter over
Finite Field Based on Euclid’s Algorithm,” Trans. IE-
ICE, vol. E 72, pp. 1230-1234, Nov. 1989.

R. Schroeppel, S. O’Malley, H. Orman, and
O. Spatscheck, “A Fast Software Implementation for
Arithmetic Operations in GF(2"),” in Advances in
Cryptology- CRYPTO ’95, Lecture Notes in Computer
Science, pp. 43-56, Springer, 1995.

G. Harper, A. Menezes, and S. Vanstone, “Public-
Key Cryptosystems with Very Small Key Lengths,” in
Advances in Cryptology- EUROCRYPT 92, Lecture
Notes in Computer Science, pp. 163—173, Springer-
Verlag, 1992,

E. Win, A. Bosselaers, S. Vandenberghe, P. D.
Gersem, and J. Vandewalle, “A Fast Software Im-
plementation for Arithmetic Operations in GF(2"),”
in Advances in Cryptology- ASIACRYPT °96, Lec-
ture Notes in Computer Science, pp. 65-76, Springer,
1996.

Y. Sugiyama, “An Algorithm for Solving Discrete-
Time Wiener-Hopf Equations Based on Euclid’s Al-
gorithm,” IEEE Trans. Inform. Theory, vol. 1T-32,
pp. 394-409, 1986.

V. S. Miller, “Use of Elliptic Curves in Cryptography,”
in Advances in Cryptology- CRYPTO 85, pp. 417—
426, Springer, 1986.

N. Koblitz, “Elliptic Curve Cryptosystems,” Math.
Comp., vol. 48, pp. 203-209, 1993.

A. J. Menezes, Elliptic Curve Public Key Cryptosys-
tems. Kluwer Academic Publishers, 1993.

1. F. Blake, G. Seroussi, and N. P. Smart, Elliptic
Curves in Cryptography. Cambridge Univ Press,
1999.

D. Hankerson, J. L. Hernandez, and A. Menezes,
“Software Implementation of Elliptic Curve Cryptog-
raphy Over Binary Fields,” in Proceedings of Work-
shop on Cryptographic Hardware and Embedded Sys-
tems, pp. 1-24, LNCS, Springer-Verlag, 2000.

U.S. Department of Commerce/NIST, “Digital Sig-
nature Standards (DSS),” http://csrc.nist.gov/cryptval:
Federal Information Processing Standards Publica-
tions, Jan. 2000.

72

To Control Unit To Control Unit

T i [log, g1

LUT

Zero-Detect

REGy o

)

i REGRr,0

I

REGy,,1

’

REGr,1

\

REGL,S REGR,S

T

|

ALU

buffer

Figure 1. An r-bit wide datapath for hardware realization
for an inverter in GF(2") where s = [Z].

