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Abstract

The CalmRISC32 FPU(Floating-Point Unit) is a RISC
coprocessor for embedded system applications. It supports
IEEE-754 standard single precision floating-point
addition,  floating-point  subtraction,  floating-point
multiplication, floating-point division, format conversion,
comparison, rounding, load, store, etc. It also supports
Jour rounding modes, and precise exception. It can
execute and complete instructions out of order, if such
constraints as data dependency, resource conflict, and
exception prediction are resolved. Standard cell-base
design techniques were used to reduce design time and
expense. The first prototype operated at approximately
70MHz with the worst-case delay in gate level simulation.

1. Introduction

Currently, embedded systems are the preferred choice
of major semiconductor companies and mobile device
manufacturers where they nced a simple, light, and low
power micro-controller, not a high-performance
microprocessor. Obviously, the current design goal is for
lower power and higher performance within certain
constraints. Both on-chip and off-chip configurations of
peripheral devices must be possible to meet various
markel requirements.

The CalmRISC32 FPU is designed for embedded
systems based on the above characteristics. It is a RISC-
type coprocessor and either an on-chip or off-chip
configuration is possible with a host processor. It supports
the IEEE-754 single precision data type, four rounding
modes, and precise exception. It has five separate
pipelines and is optimized for fast floating-point addition,
subtraction, floating-point multiplication and floating-
point comparison. Coprocessor instructions can be
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executed simultaneously in all pipelines, and can be
completed out of order.

In general, floating-point operation latencies vary with
the arithmetic instructions in the execution pipelines [1].
Therefore, it is usual to adjust all operation latencies to the
longest pipeline latency. In the CalmRISC32 FPU, out-of-
order execution and completion control schemes are
designed to achieve higher performance. Scoreboarding
and Tomasulo’s algorithm are possible methods to support
out-of-order execution completion [2]. The design cost
and complexity of these techniques are too great for
micro-controller applications. Therefore, constraints-based
dynamic scheduling was used with data dependency
checking, resource conflict checking, and exception
prediction. With this technique, the CalmRISC32 FPU can
perform instructions out of order of execution or
completion. The exception prediction technique eliminates
a special hardware unit for the reorder buffer for precise
exception. All operands of the arithmetic instructions are
checked for exception in the first stage of the pipeline, and
if exception occurs, the coprocessor executes instructions
in-order to handle the exceptional condition properly,
otherwise the coprocessor performs instructions out of
order.

The CalmRISC32 FPU was implemented with a
standard-cell library to save implementation time and
expense. [t supports floating-point addition, subtraction,
floating-point multiplication, floating-point  division,
format conversion, comparison, rounding, load, store, etc.
A hard-macro block is used for the large conventional
block—fraction multiplier, barrel shifter, adder, and
subtractor. This reduced the design time and verification
effort.

Section 2 of this paper describes the architecture of the
CalmRISC32 FPU; Section 3 describes the coprocessor
interface to the host processor; design methods and
implementation scheme are explained in Section 4; and
Section S presents the conclusions.



2. CalmRISC32 FPU architecture

The CalmRISC32 FPU is a 32-bit RISC type

coprocessor that executes floating-point operations with
the support of a CalmRISC32 microprocessor. It was
designed for micro control units that are used in embedded
systems. It can be applied to high-speed floating-point
calculation, signal processing and 3D graphics
applications with a multiple FPU. It is composed of a
hardware floating-point arithmetic and logic unit (ALU),
floating-point multiplier, and floating-point divider. It has
independent instruction decoder, load/store unit, register
file and coprocessor interface unit. Therefore, the
CalmRISC32 FPU can be included, or excluded along
with the application domain. It can execute several
instructions simultaneously within some constraints and
complete instructions out of order if arithmetic exception
is not generated by the instruction. The details of the
~ control scheme are described in the next section.
' The CalmRISC32 FPU supports 32-bit single precision
floating-point  addition, subtraction, —multiplication,
division, comparison, type conversion and rounding
operations. In addition, four IEEE-754 standard rounding
modes (round towards zero, round to nearest, and round
towards negative/positive infinity) and exception are
supported. It has a greatly reduced interrupt recovery
mechanism with a simple coprocessor interface and
exception prediction technique. It has a 16x 32-bit
register file, one status/control register, and one exception
register, Rounding modes, exception type, and comparison
results are stored into these special registers.
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Figure 1. Block diagram of the CaimRISC32 FPU.

A data transfer unit under the control of the
coprocessor interface unit performs data transfer from and
to the host processor (CalmRISC32). To reduce the design
complexity of the coprocessor, it has neither an instruction
fetch unit nor a memory address generation unit. As the
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coprocessor cannot independently access memory, the
host processor takes the responsibility for instruction
fetching, address generation and data preparation for
memory read or write operations.

An instruction is first read and pre-decoded by the host
processor. If the pre-decoded instruction is a coprocessor
instruction, the instruction code is transferred directly to
the coprocessor with several control signals, The
coprocessor decodes the received instruction and executes
it on the appropriate pipeline. For load/store operations,
memory address generation and data preparation for
transferring to the coprocessor or to memory, the host
processor  continues  instruction  execution. The
coprocessor only has responsibility for data preparation
and data transfer to the host processor through the data bus.

Generally, the most frequent floating-point operation is
floating-point addition/subtraction followed by floating-
point multiplication. Therefore, most design effort was
focused on the fast floating-point addition/subtraction unit
and floating-point multiplication unit. For fast program
execution, a dedicated floating-point comparison unit is
included in the floating-point ALU; it can complete a
floating-point comparison operation in one clock cycle.
Miscellaneous operations (register move, absolute,
negation, etc.) are executed in the separate pipeline unit
with a one clock cycle latency.

2.1 FPU execution pipeline

Figure 2 shows the pipeline diagram of the
CalmRISC32 FPU. The CalmRISC32 FPU has five
separate pipeline paths—floating-point ALU pipeline
(FALU), floating-point multiplication pipeline (FMUL),
floating-point division pipeline (FDIV), floating-point
load/store pipeline (FLDST), and miscellaneous pipeline
(Misc.). As shown in Figure 2, these pipelines have
different operation latencies, and all pipelines except the
FDIV are full pipelines. The first stage of the FDIV
pipeline has an iterative path that has 15 clock cycle
latencies. With the in-order issue and in-order completion
control scheme the FPU pipeline resources may be largely
wasted, because another instruction that uses vacant
pipelines cannot be issued until the current instruction
completes its execution. To fully utilize these pipelines,
simple dynamic instruction scheduling was used. This
dynamic scheduling can be achieved by resource conflict
checking at the write-back stage (FW), data dependency
checking in the decode stage (FD), and exception
prediction in the first stage of the each arithmetic pipelines
(FDIV, FMUL, and FALU). Therefore, the host processor
can continue issuing instructions to the coprocessor until a
data dependency or resource conflict is found. Issued
instructions are executed simultaneously in those pipelines
and complete the operation out of order if resource
conflict is resolved and the other pipelines do not generate
an exception prediction signal. If an exception prediction



signal is generated, the host processor stops issuing
instructions until the instruction that generated the
exception prediction signal completes its execution. If
exception prediction is false, the host processor continues
the program execution.
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Figure 2. Pipeline diagram of the CalmRISC32
FPU

In the FW stage, if two or more write-back data are
available, only one write-back data is selected from these
five pipelines according to the predefined priority and a
pipeline stall signal is generated to stop pipeline advance
of the other pipeline, or pipelines. On the next clock cycle,
the next priority write-back data is advanced to the FW
stage.

The coprocessor catches pipeline stall conditions in
the case of data dependency and resource conflict. If stall
conditions are found, it generates appropriate control
signals to stall the host processor and to stop issuing
instructions.

2.2 Floating-Point ALU

The floating-point ALU pipeline is composed of a
floating-point addition/subtraction unit, comparison unit
and exception prediction unit. It handles floating-point
addition, subtraction, type conversion, rounding and
comparison  operations.  Generally, floating-point
addition/subtraction takes four processing steps—
alignment, fraction addition/subtraction, normalization,
and rounding. It needs an additional fraction adder for
rounding and this increases processing time and die area.
It also has a re-normalization step caused by overflow in
rounding processing. In order to reduce that re-
normalization overhead, parallel-rounding algorithms are
implemented [3]. With this algorithm, fraction
addition/subtraction and rounding are executed
simultaneously in the second pipeline stage. It also
supports four IEEE standard rounding modes. Therefore, it
can perform floating-point addition/subtraction and the
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other ALU operations within three clock cycles, i.e.,
rounding operation and format conversion operation
(integer to floating-point or floating-point to integer). In
addition, it does not need a re-normalization step because
the rounding takes place before normalization, and the
additional adder is eliminated.

For exception prediction, the exponents of two
operands are examined in the first stage. Exponent
addition or subtraction is performed according to the ALU
operation, and invalid number checking of input operands
is executed. If one of the input operands is an invalid
format, or the exponent calculation of the two operands
may cause exception, the ALU generates an exception
prediction signal to prevent further instruction issue by the
host processor. The last ALU pipeline stage ascertains the
truth of arithmetic exception by the status/control register
setting values and the operation result to derive an
exception handling condition. Setting the status/control
register value to all zeros can ignore the exception
generated by the arithmetic pipeline.

2.3 Floating-Point multiplier

The FMUL pipeline has two stages. In the first stage,
floating-point fraction multiplication and addition of
partial products is performed. In the next stage, fraction
rounding and normalization is executed. It was designed
with conventional floating-point multiplication [4]. In
order to save design time and effort, an integer multiplier
hard macro in a target library was used. In addition, in the
first stage, the exponents of two operands are examined
for exception prediction. If one of the two operand’s
exponents or fractions has an invalid number format (Not
a Number, Infinity number or De-normalized number), or
the addition of the two exponents may cause an overflow
or underflow exception, the exception prediction signal is
generated to stop instruction issuing according to the
status/control register setting. The exact exception signal
is generated in the final stage of the FMUL pipeline to
process exception handling.

2.4 Floating-Point divider and Load/Store unit

The FDIV pipeline has an iterative first stage and non-
iterative other stages. In the first stage, a radix-4 SRT
division algorithm is used [51, [6], [7]. In the second stage,
quotient addition is performed, and rounding and
normalization arc performed in the final stage. The
exponents of the two operands are examined for exception
prediction in the first stage. If either of the two operand’s
exponents or fractions is an invalid number or zero divisor
(Division by Zero), or the subtraction of the two
exponents may cause overflow, or underflow exception,
the exception prediction signal is generated to stop issuing
instructions. In the last stage of the FDIV pipeline, an
exact exception signal is generated according to the



status/control exception
handling.

The FLDST has two stages to comply with the memory
access stage (MEM) in the host processor. In the first
stage of FLDST, there is no operation, but in the next
stage a data read or write operation is executed through the
data input bus or output bus. For multiple cycle load/store
instructions, the pipeline control signal is used to stall the
--coprocessor. The next section describes the host and
coprocessor interface mechanism.

The Misc. pipeline can execute register move, absolute
value, negation value and constant (0.0 or 1.0) load
operations.

register setting to process

3. Coprocessor interface and control scheme

To reduce the design complexity and effort for the
coprocessor exception recovery and memory access units
are excluded. A simple host-coprocessor interface unit can
support precise exception and dynamic scheduling with
some constraints. That is the instruction stream 1is
scheduled with host processor and interface signals. The
host processor issues instructions sequentially, but the
issued instruction completions can be performed out of
order in the coprocessor.

3.1 Coprocessor interface

The coprocessor and host processor need to be
synchronized in some cases, €.g., instruction issue may not
be allowed since the coprocessor has suffered a stall and
can get no further instructions from the core processor; the
host processor is stalled and cannot provide data for
coprocessor data transfer instruction; etc. Therefore, the
coprocessor and host processor are synchronized with
each other by special control signals—STXEN, STMEN,
STWEN, COPXEN, COPMEN, and COPWEN. These
signals are active in low state, where “ST” means the host
processor status; “COP” means the coprocessor status; and
“X”, “M” and “W” stand for execute stage, memory stage,
and write-back stage, respectively. The last letters “EN”
denote enable. That is, for example, if STMEN is high, it
means that the instructions in the host processor can
advance to the next memory stage; if low, the instruction
in the host processor cannot advance to the next stage. If
COPXEN is in the low state, it means that some pipeline
stall conditions (data dependency, resource conflict, and
pipeline full) have occurred and instruction issue must be
stopped until COPXEN goes high. Instruction issue
control is therefore achieved with these control signals.

3.2 Coprocessor control

The instruction that is received from the host processor
is decoded and checked for data dependency and resource
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conflict. If data dependency is found, a COPXEN signal is
generated to stop instruction issue. As soon as the data
dependency is resolved, the COPXEN signal goes high.
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Figure 3. Host and coprocessor interface signals

If resource conflict is found, the COPXEN signal is
used to stop instruction issue as in the case of data
dependency. In the coprocessor, there are two possible
resource conflicts. First, resource conflict can happen if
two or more pipelines attempt to advance simultaneously
to the coprocessor write-back stage. Because only one
write-back data can advance to write-back stage at each
clock cycle, the other instructions in the pipelines must
wait until the next clock cycle. Write-back data selection
is scheduled with first priority. Second, resource conflict
can happen if one pipeline is full of instructions due to low
priority; no more instructions that use the pipeline can be
executed, but an instruction that uses a vacant pipeline can
execute if data dependency has not occurred. Write-back
conflict is resolved by priority scheduling, and pipeline
resource conflict is controlled with the COPXEN signals
for instruction scheduling in the host processor.

The coprocessor instructions are issued sequentially by
the host processor, but the coprocessor can execute and
complete the instructions out of order because it has five
pipelines varying from one stage to three stages. That is, if
data dependency and resource conflict are found in the
coprocessor decode stage, the later issued instruction
having shorter cycle latency than that of the previous
instruction, need not wait for the completion of the
previous instruction and can complete its own execution.
To implement this out-of-order execution control, the
register lock bits, pipeline status bits and operand ready
bits are added in the control block. The register lock bits
show whether or not the register is the write-back
destination of any instruction. Pipeline status bits show
which pipeline is full of instructions and those that are
incomplete or empty. Operand ready bits show whether or
not two source operands are available for execution. That
is, if data is forwarded from the FW stage, or the lock bits



of two source registers are not set, the operand ready bit is
set for instruction execution (coprocessor instruction is
two-operand type).

As soon as the coprocessor instruction is decoded, the
lock bit of the destination register is set for data
dependency checking, and the pipeline status bits and
operand ready bits determine whether the instruction is
issued. If one of these bits is not set, then data dependency
or resource conflict is found. The coprocessor cannot issue
the instruction and the host processor cannot issue
coprocessor instructions to the coprocessor until these bits
are set—data dependency or write-back scheduling is
complete.

For the data load/store operation, the load/store
pipeline is designed to communicate with a host processor
pipeline. Because the coprocessor cannot access memory,
the host processor reads memory and writes data to a
global data bus, and the coprocessor reads that data when
a coprocessor data load operation is executed. For the
coprocessor data store operation, the host processor
generates memory addresses and the coprocessor writes
data to the global bus to be stored. In general, one clock
cycle load/store operation generates no control signals by
the host processor. In the multiple cycle load/store
operations, the coprocessor must wait for the end of
memory access and data preparation in the host processor.
In that case, one or more control signals from the host
processor goes low to stall a coprocessor load/store
pipeline (STMEN, STWEN), but the other pipelines in the
coprocessor can execute another instruction if data
dependency, resource conflict or exception prediction does
not happen.

3.3 Precise exception

An exception prediction technique is used for the
support of interrupt recovery. CalmRISC32 FPU has no
special exception recovery unit, but every instruction is
checked before execution for arithmetic exception, and no
further instruction is issued if the exception prediction
signal is active. A non-active exception prediction signal
must guarantee that arithmetic exceptions never happen on
the execution of the instruction. This technique has an
advantage in area and design cost because a special
hardware unit (reorder buffer) is not required.

Exception prediction is the checking of the floating-
point operation result for exception before execution.
Exception predictors are designed individually for each
arithmetic pipeline. Exception is predicted by the input
pattern checking and exponent calculation. First in the
input pattern checking is the examination of input data.
That is, if the input number is not a number (NaN), is
negative or positive infinity (£Inf) on floating-point
addition, invalid exception occurs. Second, the possibility
of overflow or underflow exception is checked by the
exponent calculation of the two input numbers, €.g., on the
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floating-point multiplication, if the addition result of input
number exceeds the maximum value of exponent (254),
overflow exception is possible. If the exponent addition
result is equal to the maximum value of exponent, it is not
an actual overflow case, but on the rounding step of
floating-point multiplication, depending on the fraction
result, an overflow exception is possible. Therefore, the
case of the exponent calculation result being equal to the
maximum value of the exponent is included in the
exception condition.

In the first stage of the arithmetic pipeline, every
instruction is checked for the possibility of exception. If
the instruction can make an exception, an exception
prediction signal is generated and these signals make the
host processor stall with COPMEN and COPXEN signals.
In the last stage of the arithmetic pipeline, true exception
is generated. If exception does not occur, the host
processor continues issuing instructions, or if it has
happened, the host processor jumps to the coprocessor
exception handling routine.

4. Implementation

The CalmRISC32 FPU was designed with a 0.25-um
standard-cell library because design time is very important
in the embedded system market. This library has four
metal layers. The CalmRISC32 FPU supports 32-bit single
precision floating-point arithmetic instructions—floating-
point addition, subtraction (FADD, FSUB), floating-point
multiplication (FMUL), floating-point division (FDIV),
format conversion (FTOI, ITOF), comparison (FCMP),
rounding (FRND), load, store (CLD), etc., and IEEE-754
standard rounding mode and exception signals are
supported.

Table 1. Instruction latencies.

Instruction Latency/throughput
FADD/FSUB 371

FMUL 2/1

FDIV 17/15
Load/Store 271
Conversion 3/1

FRND 3/1

FCMP 1/1

Etc. 1/1

For the fast floating-point addition/subtraction unit a
parallel rounding algorithm is implemented. It can
eliminatc the FALU pipeline stage and delivers fast
floating-point ALU operation results, To save design
complexity of the floating-point multiplier, a multiplier
hard-macro block is used and the other adder and
subtractor hard-macro blocks are used for another data-



path design. These hard-macro blocks can save design and
simulation time. In the design of the floating-point divider,
a special control block was designed for the first division
step because the first stage of the divider is iterative. With
the simple coprocessor interface and load/store unit,
hardware design cost and effort was reduced.

4.1 Testing

First, the behavioral HDL model was implemented and
verified with a simple test vector. All arithmetic data-paths
were verified by the comparison of the data-path
calculation result with a C program result. Then the
Synopsys’s design analyzer generated a gate-level model.
Next, timing verification with Samsung’s in-house tool,
CubicWare, was performed. The first prototype ran at
approximately 70MHz with worst-case delays in the gate-
level simulation. Further gate-level model optimization is
required for better results.

" Instruction SRAM

Figure 4. Die photography of the CalmRISC32
evaluation chip.

Table 1 shows supported instruction latencies in the
CalmRISC32 FPU. Floating-point addition/subtraction
and floating-point multiplication pipelines are optimized
for fast program execution. For comparison, a dedicated
comparison unit was designed and it delivered one clock
cycle latency. The latency of floating-point division takes
more clock cycles than any of the other operations.
However, this processor can execute another instructions
in the middle of instruction execution. It can provide an
improvement of program execution time, program
optimization and improve overall performance.

Figure 4 shows a photograph of the evaluation chip of
the CalmRISC32 micro-controller, CalmRISC32 FPU,
instruction cache, data cache and peripheral blocks. The
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size of this chip is 44.5mm? and the approximate size of
the CalmRISC32 FPU is 2.46mm®. The transistor count of
the chip is about 879,806 and the operational clock
frequency is up to 150MHz. Currently, the chip testing is
in process, but the CalmRISC32 FPU may operate up to
100MHz. The dynamic power dissipation was evaluated
with simple test vectors and Samsung’s in-house tool,
Cubic Power. The measured average power consumption
of the CalmRISC32 FPU was about 983uA at 2.5 volts.
The evaluation board is currently being debugged. After
all bugs are fixed and the evaluation board is delivered,
actual performance and power dissipation measurements
will be possible.

5. Conclusions

The CalmRISC32 FPU is a RISC-type coprocessor. It
is configured to operate with a CalmRISC32 micro-
controller. It supports IEEE-754 standard single precision
floating-point addition/subtraction, multiplication, division,
format conversion, comparison, rounding, load/store, etc.
It also supports four rounding modes, and exception
signals. It can execute and complete instructions out of
order if some constraints are resolved—data dependency,
resource conflict, and exception prediction. It has a simple
coprocessor interface, and has exception predictors for the
support of precise exception. A standard cell-base desigr
technique is used to curtail design time and cost.
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