Bounds on Runs of Zeros and Ones for Algebraic Functions

Tomas Lang
Dept. Electrical and Computer Eng.
University of California at Irvine
Irvine, CA 92697 USA
tlang@uci.edu

Abstract

This paper presents upper bounds on the number of ze-
ros and of ones after the rounding bit for algebraic func-
tions. These functions include reciprocal, division, square
root, and reciprocal square root, which have been consid-
ered in previous work. We here propose simpler proofs for
the previously given bounds and generalize to all algebraic
functions. We also determine cases for which the bound is
achieved for square root.

As is mentioned in the previous work, these bounds are
useful for determining the precision required in the compu-
tation of approximations in order to be able to perform cor-
rect rounding. We consider here rounding to nearest, but
the results can be easily extended to other rounding modes.

1. Introduction

This paper presents upper bounds on the number of ze-
ros and ones after the rounding bit for algebraic functions.
These functions include reciprocal, division, square root,
and reciprocal square root, which have been considered in
previous work [1] [2] [5] [4]. We here propose simpler
proofs for the bounds given in [1] and generalize to all al-
gebraic functions. We also determine cases for which the
bound is achieved for square root. As already discussed
for reciprocal square root in [1], except for reciprocal, di-
vision, square root, and norms, the bounds obtained are not
achieved for precisions up to double precision and it is not
known if there is a precision for which they are achieved.

As is mentioned in the previous work, these bounds are
useful for determining the precision required in the com-
putation of approximations in order to be able to perform
correct rounding. We consider here rounding to nearest, but
the results can be easily extended to other rounding modes.

0-7695-1150-3/01 $10.00 © 2001 IEEE

13

Jean-Michel Muller
CNRS-Laboratoire LIP
Ecole Normale Superieure de Lyon

46 Allee d’Italie, 69364 Lyon Cedex 07, France

Jean-Michel.Muller @ens-lyon.fr

1.1 Basic idea and example

Our approach for the bound on the maximum number of
zeros is based on the following:

1. Develop a radix-2 digit-recurrence algorithm for the
function’. Since we are going to use the algorithm to
determine the bounds, to simplify this analysis we con-
centrate on algorithms of the restoring type.

2. Determine a bound on the minimum value of the (non
zero) residual after a one in the rounding bit position is
computed.

3. Determine the number of consecutive zeros that are
produced by this minimum residual.

This approach can be used for any function for which a
digit recurrence algorithm can be developed. We show that
this is possible for the class of algebraic functions.

We now develop an example of the use of this proce-
dure and then generalize to the class of algebraic functions.
Consider the computation of the cubic root. That is, com-
pute y = z'/3 with 1/2 < z < 1 and operand and result of
n bits.

We define a radix-2 digit-recurrence algorithm that pro-
duces one bit of the result each iteration. That is, after iter-
ation j the partial result is

7
ylj) = w2~ withy; € {0,1}

=1

The residual after iteration j is

wlj] = 2/ (z — y[41°)

'Note that the implementation of the digit-recurrence algorithm results
in a simple method for correct rounding; this is true even in the case in
which the result is obtained in signed-digit representation, where the com-
putation of the rounding includes the sign of the final residual. Conse-
quently, with this implementation the bounds presented in this paper are
not necessary; however, this implementation might be too complicated or
slow, so that other algorithms based on approximations are preferable.

resulting in the recurrence

1.2 Algebraic functions

wlj+1] = 2w[j]-3y[i]*y;+1 —3y[j]yf-+1 2—(j+1)‘1‘/13'+121_)2(j+1) We generalize the idea described above to any algebraic
(

with w[0] = z. The selection function has to produce the
minimum nonnegative w(j + 1]. Consequently,

Yj4+1 = {

Since y < 1, and by construction y[j] < y, we obtain
y[4] < 1. Therefore, for j > 1

0 if 2w[j] < 3y[j]* + 3y[j]2~0+Y) + 2726+
1 otherwise

3y[j]? + 3y[j]2-U+Y 4+ 2720+ < 61/16 < 4
Consequently, we get

yj+1 = 1if (2uw[j] > 4) 2)

We now determine a nonzero lower bound on w(n + 1],
when y,4, = 1. For this, we determine the (maximum)
number of fractional bits of w[n + 1] (width of w(n + 1]).
The width of w[j + 1] is the maximum width of the terms
in the recurrence. Each of the terms has the following max-
imum width:

1. The initial condition is w[0] = z, which has n frac-
tional bits. Moreover, the effect of this initial value is
”shifted” one position left each iteration, resulting in a
term of n — j — 1 fractional bits.

2. The term 3y[j]? has 2; fractional bits.
3. The term 3y[4]2~U+1) has 2 + 1 fractional bits.
4. The term 2-2(7+1) has 24 4 2 fractional bits.

Consequently, the width of w[j + 1] is
widthw(j + 1] < max[(n — j — 1), (27 + 2)]

For j = n this is 2n + 2. Consequently, a nonzero lower
bound on w(n + 1] is 2~ (27+2)

So, how many consecutive Os in y can occur after this
minimum w{n + 1]? Each 0 multiplies the residual by 2.
From equation (2) we conclude that a 1 will certainly occur
when the value of the residual becomes 2. Consequently?,

maxrun < 2n+ 3

We generalize the idea described above to any algebraic
function, as defined below. From this generalization, we
obtain upper bounds on the maximum runs of zeros and of
ones, after the rounding position. The class of algebraic
functions includes the functions considered previously. In
Section 4, we compare with the previously reported results.

2In Section 3 we analyze whether this bound is achieved

14

function. An Algebraic Function f is a function for which
there exists a 2-variable polynomial P with integer coeffi-
cients such that

y=f(z) & Plz,y) =0 ©)
Examples are:

Division, reciprocation y = a/z, with P(z,y) = a — zy;
Square roots y = 1/, with P(z,y) = = — ¢%;

Roots y = z'/9, with P(z,y) = = — y? (g integer);

Square root reciprocal y = 1 //z, with P(z,y) = 1 —
zy;

Norms y = v/z2 + 02, with P(z,y) = 22 + v* — y?;

Normalization y = z//z% + v2, with P(z,y) = z° —
Y3 (z? +v?);

We assume that we perform calculations in an n-bit binary

number system and that 1/2 < z < 1and 1/2 <y < 1.3

We also assume that, in the considered domain of computa-
tion the function y — P(z,y) is decreasing®, and that

oP
8—(1721) #0 ()
Y

To illustrate the development we use as running example
the function y = £3/5 with 1/2 < = < 1. The correspond-
ing polynomial is

P(z,y) =2 -y

1.3 Radix-2 restoring digit-recurrence algorithm
for algebraic function

As indicated before, at step j of a digit-recurrence algo-
rithm we have already computed

J
Yyl =0any2...y; = Zyﬂ—z
=1

We define a residual w[j] as
wlj] = 2 P(z,ylj]) ®)

Since the representation of y is non-redundant (restoring al-
gorithm), the sequence y[;] goes to y if and only if :

if

1 yli] +270 <y
Yit1 =1 0 otherwise

©)

3The generalization to other ranges is discussed later.
4Otherwise, it suffices to exchange P and —P.

Since the function y — P(z,y) is decreasing, (6) is equiv-
alent to

i
Yi+1 =1 0 otherwise

Pz, ylj] +270) >0
@)

In order to use (7), let us evaluate 27+1 P(x, y[j]+2~4+1).
We have

21 P(x, y[j] + 270 +Y)

I

27+1 [P(-’E: yli) + Zi21 24:“] %;;;(z, U[J])]

2(—i+1G+1) gip

= 2uwlj]+ %5‘(93: YUl + Xize = 557 (@ wliD)

2wlj] - Clj]

Note that this is the definition of C'[j].
Consequently, the selection function and the next resid-
ual are computed as follows:
o If2w[j] > C[j] theny,y; = land wlj+1] = 2w[j]—
clil
o If 2w[j] < Clj] theny; 41 = 0and w[j + 1] = 2wlj]

For our example

Clj] = 5ylj]t + 10y[j]*2- U+ + ...

2 Longest run of zeros and of ones for alge-
braic functions

2.1 Longest run of zeros

As indicated before, we proceed as follows:

1. Determine a lower bound on the (non-zero) value of
w[n + 1] when g4 = 1.

2. Use the selection function to determine an upper bound
on the number of consecutive zeros.

Let us now determine the smallest possible nonzero
value of wj]. As said in the introduction, P is a 2-variable
polynomial with integer coefficients. Define A, 4 as the co-
efficient of Py? in P, so that

P(z,y) = Z Ap,qzTy?

and ay, 4 as the largest integer such that | A, 4| > 297:¢ (with
0ip,q NOt defined for A, , = 0).

Since z is an n-bit normalized fraction and y[7] is a j-bit
normalized fraction, the term A, ,zPy[j]? is a multiple of
2%7.a~"P~J4, Hence, if we define v; as

v; = Igiqn (apq —mp —49) (8)

then wlj] = 27 P(z, y[4]), if not equal to zero, is larger or
equal to 271¥s . In particular,

wln + 1] > 2mHitven

For our example (P(z,y) = 23 —y°) we get Azp = |Aos| =
1 so that azg = ags = 0 and

Vntl = —5(TL + 1)

Now we use the selection function to determine the maxi-
mum number of zeros. This is based on the following two
properties:

1. If ;41 = O then w[j + 1] = 2w[j]
2. When 2w([j] > C[j] thenyj+1 = 1.

Consider that k zeros occur after y,41 = 1. Then, from the
lower bound of w[n + 1] we obtain

wln + k] = 28 Lwln + 1] > 2ktrtemn
Since the value y, 1.4 is still zero, we must have
2wln + k] < Cln + k]
which implies
2Ftntennitl « Cln + k] ©)
Hence,
k<log,Cln+kl—n—1-—vnp4
resulting in
k<log,Cln+k]] —n—2—vnn1 (10)

where
Vnt1 = min(ap,, —np — (n + 1)q)
Py

This expression for & is not useful because of the k in the
right-hand side. To avoid this we replace C[n + k + 1] by
its maximum value for k > 0. As we will see in the appli-
cations, in the practical cases (where n is large) this can be
replaced by the maximum of the first partial derivative.

For our example

Clj] = sy[j]* + 10y[j]2~ 0+ + .

so that
max(C[j]) = 5

Hence the bound is

k<3-n-245n+1)=3+4n+3<4n+6

2.2 General ranges

Up to now we have assumed that 1/2 < z < 1 and
1/2 < y < 1. For the general case, we split the domain into
subdomains such that 2¢ < z < 271 and 27 < y < 27+1,
Then for each subdomain we apply the method with X =
2-i-lgand Y = 27971y, If P(z,y) = 0, we then have
P(2i+1 X, 27t1Y) = 0. This P(21t1X,2/+1Y), ONCE
DIVIDED by the right power of 2 so that it has integer co-
efficients that are as small as possible is a new polynomial
Q(X,Y) that is used for the method.

For instance, consider the reciprocal function for 1/2 <
z < 1. Wehavei = -1 (so X = z)and j = 0 (so
Y = 271y). Since P(z,y) = 1 — yx, we get

P(X2Y)=1-2YX
All = "2, a1 = 1’
pp=1-n=(n+1)=-2n (un+1]>27")
Clj] =2X max(C[j]) =2
kS]Og(z)—n—2+2n=n_1

Aoo -‘—1, ago =0

2.3 Non-integer coefficients

The bounds on k given in the previous sections were de-
rived assuming P has integer coefficients. In practice, they
also hold when the coefficients of P are all multiple of a
negative integer power of 2, say 27#, with y integer. To
prove this, consider the polynomial ¢ = 2*#P, which has
integer coefficients. Directly applying the formulas to Q in-
stead of P will subtract x4 from v,4; and subtract ;1 from
log,(C[n + kJ]), so that the obtained value of k is exactly
the same. As a consequence, the method can be applied
whenever the coefficients of P have a finite binary repre-
sentation.

2.4 Application to some usual functions

2.4.1 Reciprocal

This is illustrated in Section 2.2, resulting in

k<n-1 an

2.4.2 Division

For division y = a/z and 1/2 < a,z < 1, we have to
consider two cases:

e a<z. Inthiscase1/2 <y < 1so0
P(z,y) =a-yz

Ann=-1, a1 =0; Ago=a, agp =-1

16

Upt1=0—-n—(n+1)=-2n-1
Clj] =2z max(C[j]) =1

k<0-n-2+2n+1=n-1 (12)

e a>z Inthiscase 1 <y < 2. So0,Y = 271y and we
have the same bound as for the reciprocal.

2.43 Square root
P(z,y) =z —y*

Az =-1, a2 =0; Ao=1, a10=0
Upy1 = —2(n+1)

Clil = 2y[j] + 279 max(Cl[j]) =2

k<l-n-2+2n+1)=n+1 (13)
2.44 groot(q > 2, integer)
P(z,y) =z —y*
Agg=-1, agg=0; Ap=1 a;p=0
vnt1 = —(n +1)g
Cll = gylj] +... max(C[j]) =¢
k < [log, gl —=n—2+(n+1)q = [log, q]+(n+1)(¢—1)-1
14)

2.4.5 Reciprocal square roots

To obtain results that are valid for any floating-point input,
we must find results for z belonging to two consecutive bi-
nades. Hence, we consider two cases:

e y =1/(2/z), with z,y € [1/2,1). This corresponds
to the case of floating-point inputs in intervals of the
form [221~1, 22i], We get

P(z,y) = 1 - 4ay’
Ao =1 ago =0; Az =-4, az2=2
Vnt1 =min{apq —np — (n +1)g} = =3n.
P.q
Clj] = 8zy[j] + ... max(C[j]) =8
k<log,(8) —n—2+3n=2n+1 (15)
e y = 1/y/2xz, with z,y € [1/2,1). This corresponds
to the case of floating-point inputs in intervals of the
form [22%, 22i+1], We get
P(x,y) =1 - 2zy?

and we deduce the same bound as in the previous case.

2.4.6 Norms

Since P(z,y) = 22 4+ v? — y2, the bound is the same as for
square root, namely,

k<n+1 (16)

2.4.7 Normalization of 2-D vectors

The function to compute is y = «=/Vz? +v? for 1/2 <
z,v < 1. We consider the case 1/2 < y < 1, which re-
quires 322 > v2. The algebraic function is

P(z,y) = 2 — (z® +v*)y?

Then
Ao = [Az2| =1, a0 =an=0

[Aoz2| = v* oz = 2logyv
Vpy1 = —4n -2

Clj] = 2(2* +v*)y max(Clj]) <4

k<2-n—-24+4n+2=3n+2 amn
2.5 Longest run of ones
A run of k£ ones following a zero in y = f(x) cor-

responds to a run. of zeros following a one in function
z = 1 — f(x). Hence, it suffices to apply the previous
results to the function z = 1 — f(z) to obtain the longest
run of ones in f(x). To achieve the range of 1/2 < z < 1
we use 3/2 — f(x).

3 Actual maxima for some functions

In the previous section, we have obtained bounds on k.
We now explore whether these bounds are attained.

3.1 Reciprocal

For this function it is easy to find a case that attains the
bound for the run of zeros. Namely, for 1/2 < z,y < 1if
z=1-2"wegety=1/2=1+2""+2"2"+ . Since
this is larger than 1, it is necessary to normalize resulting in
a 1 in position » + 1 and the next 1 in position 2n + 1.
Consequently, there are k = n — 1 consecutive zeros.

For the run of ones it can be shown that it is attained for
n odd. Namely, for z = 1 — 27(*=1/2 4 27 regults in
y=142"("1/2 L 9-n _ 9-2n_ This can be easily
shown by defining t = 2~(*~1)/2 and obtaining the Taylor
expansion of 1/(1 — ¢ +¢2/2).

17

For n even’, an analysis similar to the one performed for

square root (see Section 3.3) and applied to the algebraic

function P(z,y) = 3z — 1 — zy, results in
e=2"-b(3x2" - (2a+1))

. Consequently, the lower bound of e = 1 is achieved for

b a factor of 22" + 1 with 2"~! < b < 2". By exhaustive

search, the bound is achieved for n = 24.

3.2 Division

For the run of zeros the same case as for reciprocal ap-
plies. For the run of ones consider the case ¢ = a/b with
A=2"=3%x2"2+4+2and B = 2" = 2"! +1.
Then, defining t = 1/(2"71), the quotient A/b is f(t) =
(3+2t)/(1+t) with Taylor expansion 3—t+t2 —t3 41— ...
Hence A/B =3 — 2"l 4 272742 _ o its first bits
are: 1.100000..0 (n bits) O (round bit) 1111111...1 (n — 1
ones) 000..

3.3 Square root

Here we show that the actual maximum number of con-
secutive zeros after y,41 = 1l1is k = n — 1. We first tighten
the bound and then show the existence of a case that satisfies
this bound.

From the bound obtained in the previous section (w[n +
1] > 2=(+1)y we get
(18)

wln +1] = 2= einteger

Moreover, since Yn4+1 1 (rounding bit), we obtain

from the recurrence

wln + 1] = 2wln] — 2y[n) — 2+ (19)

Replacing w([n] by its definition (w[n] = 2"(z — y[n]?))

results in
27 (z — y[n]?) - 2y[n] — 2~ (") = 2= ("D (20)

Calling (2™)z = b (integer) and (2")y[n] = a (integer) we
get

e+1=4(2"b—a’> —a) =4(2"b—a(ec+1)) Q21
Since 2"b and a{a + 1) are even we get
e+1>8
resulting in
e>"7 (22)

5This was pointed out to us by one reviewer

That is, the minimum residual is bounded by 7 x 2~ {"+1)
and consequently £ < n — 1.

Now we need to show that this bound is achieved. Mak-
inge = 7in (21) we get

2"b—a(a+1) =2

with2"" ! <a<2%and2""2 < b < 2"

We now need to show that this equation has an integer
solution in the range of a and b. It is possible to prove by
induction the following solution recurrence:

a(2y=2 b(2)=2

If b(4) is odd THEN a(i + 1) = 2° + a(4)

If b(4) even THEN a(i + 1) = 2T —a(i) — 1

Moreover, b(i +1) = [a(i+1)(a(i+1) +1) +2]2~(+1

Now we can prove by induction that these values are in-
side the range:

If 2i-1 < a(i) < 2 then

for b(i) odd 2° + 217! < a(i + 1) = 2' 4+ a(i) < 27!
(inside the range)

forb(i) even2it1 -2 —1 < a(i+1) = 2" —q(i) -1 <
2i+1 _ 2i=1 _ 1 (inside the range).

Similarly, we can show that b(4) is inside the required
range. As a consequence, there is always a solution inside
the range and the bound is achieved.

This method can also be used to obtain an example, even
for large precision. For instance for quad precision (n =
113) the values are (in hex)

a = ‘10720461FD6E2F325A24E31B39FA5*

b = ‘8739AA138358BAE6FCIAT6AO5S8ES"

(obtained very fast with Maple).

Finally, for the run of ones two simple cases that
achieve k n + 1 are sqrt(0.11111...11111) and
sqrt(1.0000...000001).

3.4 Cuberoot

The case of cube root seems quite different from square
roots. We have not found a “general formula” for the ac-
tual bound. For small values of n, we have performed an
exhaustive search, the result of which is given in Table 1.

3.5 Reciprocal square root

As for cube roots, we have not found a general formula
for the maximum value. Using an analysis similar to that
of square root we obtain that the minimum residual e
wln + 1]227+1 is given by the expressions

e=25"T2 _ 2ph(2a 4+ 1)2

and
e=23""2 — 4h(2a + 1)?

Table 1. Bounds for cube roots for 4 < n < 20

{n l: (binary) /3 [k
4 | 0.01001 0.1010011110- - 4
5 | 0.0011101 0.100111000001 - - - 5
6 | 0.0101110 0.1011011000000001 - - - 8
7 | 0.01001111 0.1010110011111120--- 7
8 | 0.10011101 0.11011001100000000001 - - - 10
9 | 0.00100010100 0.1000001101000000000001 - - - 11
10 | 0.01000000001 0.101000010101111111110 - - - 9
11 | 0.010101010001 0.1011000101010000000000000001 -+ | 15
12 | 0.00111010010100 0.100111000101100000000000001 - - - 13
13 | 0.01100010100111 0.10111010010000111111111111110--- | 14
14 | 0.011101011000001 0.11000101011110011111111111110 --- | 13
15 | 0.0100100101111001 0.1010100011011100170- - . 17
16 | 0.001001101101110000 0.100010001000111110%1 1 ... 21
17 | 0.10000011001001101 0.1100110011010111010%91 . .- 19
18 | 0.010101111110000011 0.10110011001111110101'90 - - 19
19 | 0.0111111010001000011 | 0.110010100110100001110221 .. 22
20 | 0.01101101111011101001 | 0.1100000100100011010101230-- - 23

18

for the two binades to consider. Using these expressions, by
exhaustive search, we have found the actual bounds for n
from 4 to 20, and for n = 24, 32 and 53 (see Table 2). For
n < 20, we have used a Maple program and for the larger
values of n, we have used a dozen of workstations in paral-
lel during a few days, running a program implementing the
algorithm presented in [316 Note that there are many values
of n (at least, n = 5,7,9,10,11,12, 13 and 18) for which
the bound is obtained for 0.111111...110 x 2P, where p is
an even exponent (in Table 2, this corresponds to the values
of the form 11.1111...110).

3.6 Normalization of 2-D vectors

Table 3 shows the actual values of k for n from 3 to 10.
Although the bound of 3n + 2 is far from achieved, there are

6We thank Vincent Lefevre for the help with this.

Table 2. Bounds for reciprocal square roots
for 4 < n < 20 and for n = 24,32 and 53 and
1 < z < 4 (which suffices to deduce all cases).

Table 3. Bounds for normalization of 2D-
vectors (z.v) (thatis, /2% + v2)for3 < n <
10, with 1 < z,v < 2.

[Teomm T ™
4 | 1101 0.110010001 - - - s | | n |z (binary) v (binary) z/Vx? + 0?2 k
5 11.110 0.10000100001 - - - 4
6 11.0100 0.10001110000000001 - - - 9 3 0.111 0.101 0.1101000001 - - - 5
7 | 1mnte 0.100000010000001 - - - 6

4 0.1010 0.1000 0.110001111110--- 6
s | 10.011011 0.1010010001111111110 - - - 9
o | 11.1111110 0.1000000001000000001 - - - s 5 |0.11001 0.10101 0.11000100000001 --- | 7
10 | 11.11111110 0.100000000010000000001 - - - 9
11 | 11111111110 0.1000000000001000000000001 - - - 10 6 | 0.100000 0.110010 0.10001001°0- - - 9
12 | 111111111110 0.1000000000001000000000001 - - - 11 i

7 0.1111011 0.1011100 0.110011001*°0- - - 12
13 | 11.11111111110 0.100000000000010121 - - . 12
14 1.0010001110011 0.1110111111011101140- . 14 8 0‘10010110 010101000 071010101010131. .. 13
15 11.1000101000110 0,10001000000]00001160- . 16
16 | 10.11111110001000 0.100100111111101110151 . .. 15 9 |0.110010001 | 0.111011000 | 0.10100101101'%0--- | 16
17 1.0111111000101100 0-110100011000010111019 1.-- 19

10 | 0.1101010000 | 0.1111111111 | 0.101000110101'70--- | 17
18 | 11.1111111111111110 0.1000000000000000001017 1 . - . 17

1.100010000011110011 0.11001110110100010001023 1 .. .

23

20 1.0000101100011113101 0.1111101010011100111110201

24 10.1110100001100011 0.10010110001000001001111

100011 001270 . -

32 1.000111100000110110001011 0.1111001000101101110111010

0101101 100101010321 . ..

53 1.10100110101010011100110000 0,11000111001110111101000010001

01010110101011110011001110 10001010001100001001010101570 . . .

57

some values which are significantly larger than n, which is
the value expected by probabilistic considerations.

4 Comparison with results given in [1] and
conclusions

Table 4 shows a comparison with the results reported in
[1]. As can be seen the specific results are essentially the
same, with minor differences for reciprocal, square root,
and reciprocal square root. As indicated, we provide ex-
pressions for the bound for the class of algebraic functions.

The main issue that is still pending is to obtain better
bounds for those cases, such as reciprocal square root, for
which the bounds are far from being achieved for specific
values of n and show whether they are achieved for some 7.

In Section 1.3 we have given a radix-2 restoring digit-
recurrence algorithm for algebraic functions. As is well
known for division and square root, this can be extended
by the use of a redundant digit set for y; (usually signed-

19

digit) to simplify the selection function. Then, the argu-
ments of the selection function are low precision estimates
of the residual and of C[j]. The feasibility of the implemen-
tation depends on the complexity of the selection function
and of the computation of C[j].

Acknowledgment. Special thanks to the reviewer that
did an extraordinary job. He/she checked every detail find-
ing a few mistakes, gave us suggestions on presentation, and
even contributed some additional results. As Jean-Michel
said: “what a reviewer!”.

References

[1] C. S. lordache and D. W. Matula, Infinitely Pre-
cise Rounding for Division, Square root, and Square
Root Reciprocal, Proc. 14th IEEE Symp. on Computer
Arithmetic, 1999, pp. 233-240.

V. Lefevre, J-M. Muller, and A. Tisserand, Towards
Correctly Rounded Transcendentals, Proc. 13th IEEE
Symp. on Computer Arithmetic. 1997, pp. 132-137.

(2]

V. Lefevre and J-M. Muller, Worst Case for Correct
Rounding of the Elementary Functions in Double Pre-
cision, submitted to ARITHI15.

Table 4. Comparison with results given in [1]

Function run of ones run of zeros
I-M Our I-M Our
Reciprocal <n-1 = n — 1(all n odd) =n-1]| =n-1
= n — 1(some n even)

Division =n-1 =n-1 =n—-1] =n-1
Square root =n+1 n+1 <n-1 =n-1
Rec. squareroot | < 2n —1 <2n+1 <2n—-1|<2n+1
Norm - <n+1 - <n+1
g-root - <logyql+(n+1)(g—1)-1 - (same)
2D normalization - <3n+2 - <3n+2
algebraic - < [logy(maz(C[j])] = n —2 — vpi1 - (same)

[4] P. W. Markstein, Computation of elementary Func-
tions on the IBM RISC System/6000 Processor, IBM J.
Res. Develop., vol. 34, no. 1, Jan. 1990, pp. 111-119.

[5] M. Schulte and E.E. Swartzlander, Exact Rounding of
Certain Elementary Functions, 11th Symp. on com-
puter Arithmetic, 1993, pp. 138-145.

20

