Correctly Rounded Reciprocal Square-root by Digit Recurrence and
Radix-4 Implementation*

Tomés Lang
Dept. Electrical and Computer Eng.
University of California at Irvine.
Irvine, CA 92697. USA
tlang@uci.edu

Abstract

In this work we present a reciprocal square—root al-
gorithm by digit recurrence and selection by a staircase
function, and the radiz-4 implementation. As similar
algorithms for division and square—root, the results are
obtained correctly rounded in a straightforward manner
(in contrast to existing methods to compute the recipro-
cal square—root). Although apparently a single selection
function can only be used for j > 2 (the selection con-
stants are different for j =0, 5 =1 and j > 2), we
show that it is possible to use a single selection func-
tion for all iterations. We perform a rough comparison
with ezisting methods and we conclude that our imple-
mentation is a low hardware complexity solution with
moderate latency, specially for exactly rounded results.

1. Introduction

The reciprocal square-root operation is important
for applications, such as graphics and scientific compu-
tations. We here present a digit-recurrence algorithm
and a radix-4 implementation. Digit recurrence is one
of the preferred methods for division and square root.
It is therefore natural to explore the possibility of a
method of this type for reciprocal square root. Previ-
ously we had used this method for a very-high radix
implementation for \/z/d, which includes reciprocal
square root [1]. However, this approach requires scaling
operations, which make the implementation complex
and significantly slower than the corresponding imple-
mentation for division. We here develop the low-radix
case, using a ”standard” selection function, instead of

*E. Antelo has been partially supported by Xunta de Galicia
under project PGIDT99PXI20601A.

0-7695-1150-3/01 $10.00 © 2001 IEEE

83

Elisardo Antelo
Dept. Electronic and Computer Eng.
University of Santiago
Santiago de Compostela. SPAIN
elisardo@dec.usc.es

the selection by rounding used for very-high radix. We
concentrate specifically on the radix-4 case, but the de-
velopment is general so that radix-8 and radix-16 with
overlapped radix-4 can be considered.

As discussed further below, these digit-recurrence
implementations allow simple correct rounding, which
is hard to achieve for other approaches.

One aspect we develop fully for the radix-4 imple-
mentation is to determine a single selection function for
all iterations. This requires an extensive analysis, since
as in square root the direct use of the selection func-
tion for large j to the first iterations does not produce
convergence [5].

The implementations of reciprocal square root used
today depend on the precision required!: for low preci-
sion (up to 10 bits) a direct table method, for medium
precision (up to 16 bits) a bipartite table method [3]
[13], for single precision floating-point (24 bits) a lin-
ear approximation method or an iterative method with
quadratic convergence [2] [4] {7] [11] [14] [15] [17], and
for double precision floating-point (53 bits) an iterative
method with quadratic convergence or a table-driven
polynomial approximation [2] [6] [8] [11] [16]. Except
for the direct table approach, these methods provide
an approximation for which it is hard to produce a
correctly rounded result. To obtain exactly rounded
results with these schemes, one possible method con-
sist in computing the remainder (1 — dP2) (P is the
approximation truncated to the rounding bit of 1/v/d),
and then correct P if necessary.

We performed a rough comparison of representative
instances of these methods (only for single and double
precision) and our method (a radix—4 algorithm). We
compared the designs for both exactly rounded results
and for one ulp of precision. From the comparison we

!Some of the references do not implement specifically the re-
ciprocal square-root, but they can be adapted easily.

concluded that our implementation is a low hardware
solution with moderate latency, specially for exactly
rounded results. The latency can be further reduced if
a radix—8 or radix—16 instance is used. Further details
of the comparison are given in Section 4.1.

Much of the notation and development is similar to
that for division and square root. We assume that the
reader is familiar with these algorithms [5).

2. Operands, result and recurrence

We want to obtain P = Ld for operand and result
represented in floating point using the IEEE-754 stan-
dard, namely with significand in the range [1,2). To
achieve this range of the result it is necessary either
to modify the range of the operand or to postnormal-
ize the result. Moreover, the exponent of the result is
obtained by making even the exponent of the operand
(and scaling the significand accordingly) and dividing
the resulting exponent by two. Because of these consid-
erations, there are several alternatives for the range to
which the significand of the operand can be scaled, be-
fore performing the actual digit-recurrence algorithm.
The best choice depends on the way the algorithm is
performed; for the input operand we selected the range
[1/4,1). We discuss the reasons of this choice at the
end of this section. Specifically, calling the operand
significand d we obtain a scaled operand significand 2z
such that

|

As aresult, z € [1/4,1) and P € (1,2]%.

In a radix-r digit recurrence one digit of the result
is obtained each iteration. Consequently, the result is
represented in radix r = 2* by

n—1
P= Zpﬂ'_i
i=0

As is usual in these type of algorithms, we use a
signed—digit representation with —a < p; < a and
r/2 < a £ (r — 1) (not over-redundant). The cor-
responding redundancy factor is p = a/(r — 1).

In the type of recurrences we consider, the digits
are obtained most—significant digit first. Consequently,
after j iterations the partial result is

271d (2>1/2) if odd exponent
272d (2 <1/2) if even exponent

1)

2

Plj) = PO]+ Y pir™ (3)

2This is in the range of the IEEE standard, except for the case
P = 2. However, this corresponds to d = 1 and even exponent.
Consequently, to avoid a postnormalization this trivial case can
be handled separately.

84

D(j] [o/41)

Pj.1

[ADDER right shift
To OTF byr
D1y conversion wljs1] Clj+1

Figure 1. Block diagram.

Note that we replace the digit py by the initial value
P[0]. Since P € [1,2), we can only choose a single value
for P[0] for the whole range of P for the case p = 1. In
other cases, we can choose P[0} =1for P <1+ pand
P0] =2 for P > 2 — p. We make, 3

1 if odd exponent (z > 1/2, P < /2)
2 if even exponent (z < 1/2 ,P > /2)
(4)

The digit recurrence to compute P is as follows [1]

Pm={

wlj + 1] = rwlj] - Pljlpjr12 = 27195, 77UV (5)

with
w[0] = 271(1 — 2P[0]?) = { 8;38 _ 24) g ﬁ‘éﬁn
(6)

To simplify the description and the implementation
we define the following variables:

D[j] = 2P[j] and C[j]=2"1r"0U+D; (1)
Using these variables, we obtain the recurrences
wlj+1 = rw(j] — Pi+1Dl[j] _P?+1C[.7.] (8)
Dij+1] = D[j]+2pinClj] (9)
Cli+1 = riC[j] (10)
where
D[0] = zP[0] = (1/2)d (11)

2-3p-14
2-2p—14

if exponent even
if exponent odd
(12)
Figure 1 shows the block diagram of these recurrences.
The bound for w{j] in terms of D[j] is given by

cpj=2""r"1z= {

—pD[j]+27 p*r 9z < wlj] < pD[j]+2"p*r 2 (13)

3This can be done for p > 2 — /2.

Table 1. Alternative ranges

scaled operand result P[0] | postnor. | num. of iters. | D[j] | sel. bits
[1,4) (1/2,1] 1 No [(n+1)/b] (1,4) largest
(1/2,2) 1/v2,v2) | 1 Yes [(mn+1)/b] | [1/2,2) | medium
[1/4,1) (1,2] 1,2 No [n/b] [1/2,1) | smallest
In terms of these variables, p;4+1 is selected so that That is,

w(j + 1] satisfies the bound of (13). Consequently, the
selection function has as arguments rw(j], D[j], and z.
As shown in Figure 1, we develop a selection function
depending only on rw[j] and D[j]. That is,

pj+1 = SEL(rw[j], D[j])

As indicated before, there are several choices for the
ranges of operand and result. The characteristics of the
implementation influenced by the choice are: (1) value
of P[0], (2) need of postnormalization and number of
iterations, (3) handling of special cases, (4) range of
D[j], and (5) complexity of the selection function. In
Table 1 we summarize these characteristics for three
possible alternatives. From these alternatives we have
chosen the scaled operand 1/4 < z < 1 so that 1 <
P < 2 (for in depth explanation on the reasons for this
choice see [10]). To obtain a normalized result it is only
necessary to detect the case d =1 and set P = 1.

2.1. Rounding

As for other digit-recurrence implementations, in
this case it is simple to include correct rounding: it suf-
fices to determine one additional result bit and assure
that the remainder (last residual) is positive. More-
over, the zero remainder is used to determine an exact
result. For the correct determination of the sign and
zero of the last residual the datapath has to have about
2n fractional bits (see Figure 2). We discuss the effect
of this on the area later.

3. Direct implementation and retiming

To reduce the delay, the iteration step is imple-
mented with adder structures using redundant adders.
If carry-save representation is used, the addition to
produce w[j + 1] results in a 5-to-2 adder structure.
Moreover, the selection is done using low—precision es-
timates 7w[j] (with ¢ fractional bits) and Dj] (with
s fractional bits), which are obtained from the assim-
ilation of some bits* of the carry-save representation.

“The number of bits of these estimates to assure convergence
is determined in Section 5.

85

pi+1 = SEL(Fw[j), ﬁ[]])

The resulting critical path corresponds to the sum of
the following component delays: selection function, in-
cluding the assimilation, multiple generation, and 5-to-
2 carry-save addition.

To reduce the iteration delay, we retime the itera-
tion®. The corresponding implementation is shown in
Figure 2 (this is an instance of the radix-4 implemen-
tation discussed in Section 4). As shown, instead of
having the selection at the beginning of the iteration,
it is moved to the end and the selection of p; 2 is per-
formed using estimates of rw[j + 1] and D[j +1]. This
retiming permits the assimilation of D[+ 1] and a par-
tial assimilation of w[j +1] in parallel with the selection
function. This has the following consequences:

e The 5-2 adder can be replaced by a 4-2 adder.

e Since the selection function depends on an esti-
mate of w[j + 1], in the calculation of this esti-
mate it is possible to use the partially assimilated
w[j] (with h fractional bits). Consequently, a 3-2
adder is used in the selection function path. The
bound on A is given by h > 1+ b+ ¢+ 2 (which
is the number of leading bits of rw[j] used in the
selection).

o Similarly, the selection function depends on an es-
timate of D[j+ 1], which can be obtained also with
a partial assimilation (of z > s fractional bits).

From Figure 2 the possible critical paths are

e The calculation of pjy2: delay of multiple gener-
ation + 3-2 adder + CPA(t)+ selection function
OR delay of multiple generation + CPA(z) + se-
lection function. The delay of this path is similar
to that of division.

e The calculation of w[j + 1] (assimilated part): de-
lay of multiple generation + 4-2 adder + CPA(h)

5 A similar retiming was used for division before the utilization
of redundant adders (it was called a scheme with prediction) [12].
Recently, it has also been used to reduce the energy for division
and square root [9].

v20

n

B

Register
-h
2
1 d 0
2" 2" 20 .2-9
: DL =2 [wljll 1sbetsl ; [4wljly
: ! Hwljlk
e el Dfj] 1+b+t:+2 — DI
d| de : L0 cjp 14b+43 cij
oddi H: 21+1+2), p ' : ' j_] l
‘eben- j=0 j‘_E 1.3/
=0 41 mux en. 214142 +4+1 +1 +4] 2-
D pror = s SRR PR R 5t e [P01 [
‘ 8+ 8
L St 51l 1 wlo] l
3-to-2
Carry-propagate adder CPA [5:7. 4-t0-2 CSA
[4w(j]l, | 4wl0]-| -
1+b+t;
cll 1 4clo] B Sy .
cpPa | | 29
Bapr |7 AT
right shift o1 Digit cra
c2) '| Selection| 9
D1y 2
Clj+1] 277 19 1 A
2p+(n mod b)-b+1 -~ 4 (de¢oded) 2h
2p+(n mod 2)-1 [w(j+1]]g [wlj+1]],
[Register 1 Register —[
l Register [Reglster |
2n+(n mod 2)-3 2n+(n mod 2)+1

2n+(n mod b)-2b+1

D -> msb -(1); Isb -(2n+(n mod b)-b+1)

C -> msb -(b+2); Isb -(Zn+(n mod b)-b+2)

2n+(n mod b)-b+3
W -> mab +(0); lsb -(2n+(n mod b)-b+2)

Figure 2. Block diagram of the radix—4 modified implementation (widths also specified for r = 2°;
msb (Isb) & (a) means most (least) significant bit with weight 2+2),

¢ The calculation of D[j + 1]:

CPA.

In terms of the hardware required, if redundant
adders are used, the 5-to-2 and 3-to-2 adders of Fig-
ure 1 have been replaced by a 4-to-2 adder plus one
conventional carry-propagate adder. Moreover, two ad-
ditional partial assimilations are included.

3.1. Complete execution

We now describe the complete execution of the oper-
ation using the implementation of Figure 2. It consists

of the following cycles:

¢ Cycle 1: Initialization and computation of p;

1/2)(1 - d)
w] {E1/2>(1—d/4)
D] = (1/2)d
cp = {3:2:13

if exponent even
if exponent odd

if exponent even
if exponent odd

P[0]

D1

e Cycles2to N

Plj +1]
wlj + 1]
D[j+1]
Clj + 1]

Djt2

1
2

{

Il

if odd exponent
if even exponent,

— e~

SEL(rw(0), D[0))

[n/b] Iterations (0 < j < N —2)8
CONV ERT(P[j],pj+1)
rwlj] = Djlpj+1 = Clilpi
D{j] + 2p;+1Cls]
r1C[4)
SEL(rw[j +1], D[j +1])

e Cycle N+1 Obtain last residual, correct and round

w[N] = rw[N — 1] — D[N — 1]px — C[N - 1]p%

if w[N] <0 then py =pnv -1
P = RoundConvert(P[N — 1],pn) [5]

86

SThe conversion is done on-the-fly [5].

Table 2. Example of execution

Number of bits of input operand (in interval [1,2)):8
d=1.0100101 x 2* = 0.0101001010000000 x 2°

Initialization for on-the—fly conv.&round. P = (2)s PM = (1)
INITIALIZATION AND COMPUTATION OF p,

WS5[0]=1.1101101100000000
WC[0]=0.0000000000000000

D[0] = 0.101001010000000
C[o] = 0.0000101001010000
ITERATION j=0
D[1] = 0.100100000110000
C[1] = 0.0000001010010100
ITERATION j=1
D{2] = 0.100100000110000
C[2] = 0.0000000010100101
ITERATION j=2
WS[3]=1.1101100111000100 D3] = 0.100100011010101
WC[3]=0.0000000000110111 C[3] = 0.0000000000101001
SIGN OF LAST REMAINDER AND ROUNDING:
WS[4]=1.1111100010000000 Sign of last remainder = -
WC[4]=0.0000000011101101
RESULT OF THE ALGORITHM: (1.3002); x 273

WS[1]=0.0000011010101111
WCJ[1]=0.0000000000000001

WS[2]=0.0001101010110000
WCJ[2]=0.0000000000010000

D =20/32, 4w = —10/16

n= —1, P= (1.3)4, PM = (12)4

D =18/32, 4w = 1/16,

p2 =0, P=(1.30)4, PM = (1.23),

D =18/32, 4w = 6/16,

p3s =1, P =(1.301)s, PM = (1.300)4

D =18/32, 4w = —11/16,
pa=-1

PR = (1.3002),

EXPONENT COMPUTATION: 1/1/26 = 2-3

Selection function (radix—4 algorithm). The selection is performed as follows: p;j41 = k if D = Dp[i]
(D: 5 ms fractional bits of D[j]) and my, < 4w < my4; (4w: 7 msb of 4w[j]).

D[] scaled by 32 and my, scaled by 16.

(D[[[16 [17 [18 [19 [20 | 21 | 22 [23 | 24 | 25 | 26t | 27 | 28 [26 | 30 [31 |
m-1 -13 | -14 | -14 | -15 | -16 | -17 | -18 | -18 | -19 | -19 | -20 | -21 | -23 | -23 | -24 | -25
mo 5| -5 [-5]-6]|-6|61!-7]-7T]-7]-8 -8 8 -9 -9 -9 [-10
my 3 4 4 4 4 4 4 5 5 7 7 6 5 6 8 8
m 12 13 14 14 15 15 16 17 17 18 19 19 20 21 21 22
t For j = 0 use the constants of the row Dy[i] = 24/32.

In Table 2 we show an example of the execution of
the algorithm at the bit level for radix—4. The selection
function is shown at the bottom of the table. This
selection function is obtained in Section 5 (Table 9).
The example is for an input operand of 8 bits. We
verified the algorithm with an exhaustive simulation
for input operands of 24 bits.

4. Radix-4 implementation

We now present the radix-4 implementation (see
Figure 2). For this instance of the algorithm,

¢ From Section 5, s =5,t=4,z =8 and h = 9.

e The generation of multiples p;11D[j] and
2p;+1C[j] are each implemented with a 4-to-1 (de-
coded) multiplexer.

¢ The generation of pf 1 i performed by two OR
gates and that of p?, ; C[j] by a 2-to-1 multiplexer.

4.1. Estimation of delay and area

We now estimate the delay and the hardware com-
plexity of our design, and compare with other units.
For the estimation of delays we use a rough model in
terms of a full-adder delay. For the hardware complex-
ity we just list the wide datapath elements.

The possible critical paths are as shown in Figure
2, including the delays of the components. We con-
clude that the critical path goes through the selection
function and an estimate of the cycle time is 5.5 ¢ fa-
In comparison with a division unit, the increase in the
critical path corresponds to the delay of one 3-2 csa
(1tg,). In terms of hardware complexity the reciprocal
square-root unit uses a 4-2 csa instead of a 3-2 csa, and
one additional multiple generator (multiplexer), both
in the w datapath. Moreover the reciprocal square-
root unit needs a datapath for D[j] (two registers, mul-
tiple generator and cpa). For exactly rounded result,
the reciprocal square-root unit needs about twice the
width of the datapath.

87

In Table 3 we show the latency and hardware com-
plexity of our architecture in comparison with other
representative methods’. We compare for IEEE-754
single (SP) and double precision (DP) formats.

We evaluated the designs for exactly® and non ex-
actly rounded results. We assumed that the hardware
is reused when possible (specially for the case of exactly
rounded results).

From the table we conclude that our implementa-
tion is a low hardware solution with moderate latency,
specially for exactly rounded results. The exact round-
ing is straightforward in the proposed algorithm (as for
additive division an square-root), whereas this results
in a complex process for the other alternatives. The la-
tency can be reduced further considering a higher radix
(radix-8 or radix—16) using similar techniques as used
before for division and square-root.

5. Selection function

We now derive the selection function for the scheme
of Figure 2. This selection function is of the staircase
form, as used for division and square root. We begin
by determining the conditions for the radix-r case and
then obtain the selection function for r = 4. Although
apparently a single selection function can only be used
for j > 2 (and the iterations j = 0 and j = 1 require
special functions), we show that it is possible to use a
single function for all j. This is based on the fact that
for j = 0 and j = 1 the possible pairs (w[j], D[j]) are
restricted.

5.1. Conditions for radix-r case

We call® (Ug[j], Li[4]) the interval of rw[j] for which
Dj+1 = k can be selected. This interval is obtained from
the recurrence and the bounds of w[j + 1}, resulting in
(10],

Uslil = (k+p)D[j]+27 (k +p)*r 9tV 2(14)

"For each precision we compare with a fast method (linear
interpolation for SP, and reference [6] for DP) and a common
microprocessor implementation (reference {11]). There are other
instances that could be used, but we estimate that similar con-
clusions would result.

8For the other designs we assumed a similar method of that
for division and square-root to obtain exactly rounded results,
adapted to the reciprocal square-root case. That is, P is trun-
cated to the n + 1 fractional bit, obtain P2, multiply by d and
compare with one (this way the sign of 1 — d P? is obtained),
adjust P and round. Since P2 has about 2n bits, we assume
that the multiplication d P? is performed in two steps of a n xn
multiplication. Therefore three multiplications are needed for
the rounding.

9 Although for the retimed implementation we used rw[j + 1]
and D[4 + 1] to determine the digit, to simplify the presentation
of this section we use the index j.

88

Lilj] = (k—p)D[]+27 (k- p)2r~ Utz (15)

The staircase implementation has the following
characteristics:

e The domain of the argument D[j] is divided into
intervals [Dy, (i), Dy (é)), such that!®
1
Dy (i) = 5+ix2™* and Dy(i) = Dy(i)+2~*+2"*
e Ininterval i of D[j] the selection function is defined
such that pj11 = k if mg (i) < 7F0[5] < mppa ()1

e For convergence, the conditions for the comparison
constants arel?

max(Lalj]) < (i) < min(Upoa i)~ 27 (16)

where the maximum and minimum are evaluated
in interval ¢ of D[j].

From (16) we obtain a necessary condition that re-
lates the parameters s, z, and t. Namely, for all

min(Us1j]) - 27 - max(Lulj]) 20 (17)

5.2. Radix-4 with ¢ = 2

We now concentrate on the radix-4 case and a quo-
tient digit set with a = 2. For this case, (16) results
in

max (D[j](k 2+ g4 (k- §)2> <
my(i) < min (D= 3)) =2 ()

We now
Since

Notice that z appears in this expression.
determine a bound for 2z in terms of D[j].
D[j] = 2P[j], we have'?

10Note that in the retimed implementation (Figure 2) we com-
pute the estimate of D[j + 1} = D[j] + 2p;41C[j] by performing
a truncated addition up to z fractional bits and truncation of
the result to ¢ fractional bits. Therefore the intervals overlap by
2=,

11 Actually, in the retimed implementation (see Figure 2) we
compute the estimate of rw[j + 1] = r(rw[j] — D[jlpj4+1 —
CLj]pJ?H) by (1) assimilating rw([j] up to bit of weight 2 (A—1);
(2) performing a truncated addition to produce an estimate with
t fractional bits.

12The derivation of this condition is similar to that for division,
as described for instance in [5].

13The exact solution of the inequality complicates the presen-
tation, so that we used the bound z < 1. Moreover, we have ver-
ified that the same selection function is obtained using z = 1/4
(lower bound of z) and z = 1 (upper bound of z).

Table 3. Our design in context: latency and hardware complexity.

er. = Add 3 x (tmac(256 x 25 + 50) + treg)
13 tgq +3 x (11.0 + 1.0) £5, = 50 t4,

[Latency (SP) Latency (DP)
Design Design
quadratic 15 cycles of fpmul. 23 cycles of fpmul.
conv. [11] | 15 x (7.0(ttree) + 1.0(treg)) tso = 120 t4, 11} 23 x (7.0(ttree) + 1.0(treg)) tro ~ 185 ty,
e.r. = Add 3 mults. (12 cycles) e.r. = Add 3 mults (12 cycles)
27 x (7.0(ttree) + 1.0(treg)) ts, = 215 g, 35 x (7.0 (ttree) + 1.0(treg)) ts, ~ 280 iy,
Tinear iT(12) + tmac(15 x 15 + 26) ref [6] | ¢7(14) + tm(15 x 56) + 2 x tm(14 x 14)+
Interp. [4] 2.5+ 105 =13 t;, ta(3 — 2) + ta(4 — 2) + tm(43 x 44)

30+90+2x45+10+15+12.0=35 ¢,

er. = Add 3 x (tmac(54 x 54 + 108) + treg)
35tp, +3 x (12.0+ 1.0) t5, =~ 75 t4,

12 x (tmuz + ta(3 — 2) + tsel + treg)
12 x (0.5+ 1.0 + 3.0 + 1.0) £, ~ 65 tg,

e.r. — Add one iter.
13 x (0.5+ 1.0+ 3.0+ 1.0) tf, = 70 t¢,

26 x (tmuz + ta(3 — 2) + tsel + treg)
26 X (0.5 + 1.0+ 3.0+ 1.0) t7, ~ 145 £,

e.r. = Add two iter.
28 x (0.5 + 1.0+ 3.0+ 1.0) ¢7, =~ 155 £¢,

Keys: tT'(a): delay of a table of a inputs; tm(a x b): delay of multiplier of a x b bits.

ta(3 — 2),ta(4 — 2): delay of a 3-2, 4-2 csa; fpmul: floating-point mult. of four stages.

tmac(a x b+ ¢): delay of a multiplier-accumulator with a multiplier of a bits, multiplicand of b bits and
and accumulation of ¢ bits.
tsel: delay of a short cpa and selection function of 11 input bits. treg: delay of a register.
er.: Exactly Rounded results.

Hardware (SP)

Hardware (DP)

Design Design
quadratic 10 % of a 76 x 76 fp—mult. 10 % of a 76 x 76 fp—mult.
conv. [11] [11]
er. = Add mux, reg. er. — Same as SP
and change mult. for mac
Linear Tables: 2'2 x 26, 2'% x 15 ref. [6] Tables: 21 x 15, 217 x 56
Interp.[4] mac: 15 x 15+ 26 mult: 56 x 15, 14 x 14, 44 x 43
csa: 2 (4-2),7 (3-2)
e.r. — Change mult. for mac: 25 x 25 + 50 e.r. = Change mult. for mac: 54 x 54 + 108
2 reg., 3 mux 2 reg., 3 mux
Our Table: 211 x 4 Table: 2'T x 4

datapath(~ 24 bit):3 4-1mux,
4-2csa, cpa, 4 reg.

e.r. = double width (48 bits)

datapath(~ 53 bit):3 4-1mux,
4-2csa, cpa, 4 reg,.

e.r. — double width (105 bits)

89

Table 4. Conditions for selection constants.

k>1

27 [2H(Du (i) (k — 3) + 347 (Dy (5) + 2479)2(k — 2)%)] < ma(6) <278 28D (i) (k - §) ~ 27%)]

k<0 | 278 [2(D()(k - §) + §479(DL(0) + 34792 (k - §)*)] < ma(3) < 27° [2X((Du()(k ~ §) — 27%)]

Necessary condition: § — 73

D[j] 2 vz - (2/3)4792 > V/z — (2/3)477
Therefore z < (D[j] + (2/3)477)2, and substituting
in (18) we obtain

<

max (DJjl(k ~ 3) + 547 (DU + 2479 (k ~ 2)°)

mi(i) < mia (D)(k -) =27 (19)

Because of the max and min functions, we now con-
sider separately the cases k¥ > 1 and k£ < 0. Moreover,
since the selection constants are integer multiples of
27t we limit the interval to integer multiples of 2~
and give the intervals in 2~ units. The resultant ex-
pressions are shown in Table 4. The necessary condi-
tion was obtained from the worst case: k¥ = —1 and
D) =1/2.

Determination of possible parameters

The parameters are obtained from the necessary condi-
tion (see Table 4). We see that there is no solution for
all 7, so that apparently it is necessary to have different
selection functions for different j. We also observe that
there is a solution for j > 2. Consequently, we consider
first the case j > 2 and then the cases j =0 and j = 1.

For j > 2 the condition is satisfied with s =4, ¢t =4
and z = 7. However, for these values there are no selec-
tion constants with granularity 2-¢ 4. Consequently,
we choose s = 5, t = 4 and z = 8 !5 Applying
the conditions for the selection function we obtain the
ranges of Table 5.

5.2.1 Selection for j=0and j =1

As indicated in the previous section, apparently the
same selection function for j > 2 cannot be used for j <

*4We verified that for these values of s and ¢ a large value of
7 is required. Consequently, this is not a good solution.
15We minimize the possible value of ¢ to minimize the delay.

90

-Bai(+ 2492 420 +27%) -2t >0

1. However, we now show that it is actually possible
to use the same selection function for all j. This is
based on the fact that for j < 1 only a reduced set of
pairs of values (w[j], D[j]) are possible. We consider
separately the cases j =0 and j = 1.

Case j = 0. The initial value of w is (with D[0] =
zP[0])

|

Consequently, the possible set of pairs of values of
(w[0], D[0]) are described by the two lines of Figure
3(a). For j = O the intervals of D[0] do not overlap
because D{0] is not in redundant representation.

Moreover, the selection intervals for j = 0 arel®

2-1(1-D[0]) if P[]
2-1(1 - 2D[0]) if P[]

1 (exponent even)
2 (exponent odd)

w(0]

Ui[0] = (k + 2/3)D[0] + 273(k + 2/3)2D[0]/ P[0]

L4f0] = (k - 2/3)D{0] + 2 (k — 2/3)2D[0)/ P[0

These intervals are also shown in the figure. Note that,
although it seems that there should exist two regions
for each interval (for the two values of P[0]), this is not
the case because the allowed region of (w[0], D[0]} is
always positive (negative) for P[0] =1 (P[0] = 2).

Because of the limitation in the possible pairs of
values of (4w(j], D[j]), the acceptable interval for a se-
lection constant might be extended. Specifically, the
standard interval max;(Lg) < mg() < min;(Ug—y) is
extended to the adjacent (continuous) regions in which
there is no possible value of 4w[j] in the interval i of
D[j] (see Figure 3(b)). Using this fact we obtain the
acceptable intervals of my given in Table 6.

Case j = 1. We have

w[1] = 4w(0] — p, D[0] — 2~°p; D[0]/ P[0]

Moreover,
w{0] = 27 (1 - D[0]P(0])

18We give the expressions in terms of D[0]/P[0] instead of in
terms of d since the selection is performed using D[0)

Table 5. Ranges of m; for j > 2 (D[] scaled by 32 and m,;, scaled by 16).

[DL[{] 16 17 18 19 | 20 21 22 [23]
m_ -13 -14 -14 -15 -16 -17,-16 -18,-17 -18
mo -5,-4 -5 -5 -6,-5 -6,-5 -6,-5 -7 to -5 7,6
mi 3,4 4 4,5 45 45 4,6 46 5,6
M2 12 13 13,14 14 15 15,16 16,17 17,18
(D]] 24 T 25 | 26] 27 28 [2 T 30 | 31 |
m_y || -19,-18 | -20,-19 | -21,-20 | -22 to -20 | -23 to -21 | -23,-22 | -24 to -22 | -25 to -23
mo 7,6 8,6 -8,-6 -8,-6 -9,-6 -9,-7 9,7 -10,-7
mi 5,7 5,7 5,7 5,8 5,8 6,8 6,9 6,9
ma 17,19 18,19 19,20 19,21 20,22 21,23 21,24 22,24
30
20
4w[0]-vs-D[0] (P[0}=1) U2 [0]
10
i 9 .
—
= o, L,[0]
= 0 = 1
% O? Intenval for !
]]
<+ <+ L ; _veo
-10 4w[0]-vs-D[0] (P[0]=2) -24 m, (:] >2) : : 4w[0]-vs-DI[0]
1
U_,[0] | | | 1 .
o S 226 | | |
20 1 I]
28 .
} NN O O O T O O O .30
1617 18192021 2223 24 25 26 27 28293031 32 24 28
DI[0] (x32) DI[0] (x32)
(a) (b)

Figure 3. 4w[0] versus D[0] (Dashed areas: intersection intervals between the cases j = 0 and j > 2).

D(1] = D[0] + 2™p, D[0]/ P[0]

resulting in

_ o _ 2P[0]* + p1 P[0] + 27%p}

w[l] =2 Pl0] 2%, D[1]
Consequently, the possible values of the pair
(w[1], D[1]) correspond to linear segments for the val-
ues of P[0] and p,. As shown for the case j = 0,
the possible pairs are (P[0] = 1, ;1 = 0, 1, 2) and
(P[0] =2, p1 =0, —1, —2), resulting in six line
segments!”. Note that because D[1] is in redundant

17 Although the range of D[0] for each line segment is limited
(because the choice of p1 = & is limited to a range of D[0]), to
simplify the analysis we have considered the whole range of D[0]
to determine each line segment

91

representation (carry—save) the intervals of D[1] over-
lap.
The selection intervals are

Ui(1] = (k+2/3)D[1]+27%(k+2/3)>D[1]/(P[0]+2 %p,)
Li[1] = (k—2/3)D[1]+27%(k—2/3)*D[1]/(P[0]+22p1)

Note that the selection interval (as a function of D[1])
depends on the pair (P[0], p1). Using the same con-
ditions as for j = 0 we show in Table 7 the possible
range of values of my, for j = 1.

5.2.2 Selection function for all j

The selection for all j is obtained from the intersection
of the ranges for j > 2, j = 0 and j = 1. This re-
sults in the Table 8 As is shown in the table, the only

Table 6. Ranges of m;, for j = 0 ("-" means don’t care, D, [i] scaled by 32 and m; scaled by 16).

[DLE [16 [tr | 18 [19 [20 [21 [22 [23 |
m_1 <-2 <4 <-6 <8 | <-10 | €£-12 | <14 | <15
mo <2 [<-3 - >—6 | >-8 | >-10]| >—-12 | >~-14
my <15 | <14 13 <12 <11 <10 <9 <8
M2 - - > 14 >13 > 12 > 11 > 10 >9

(DL [24 [25 [26 [27 [28 | 20 | 30 31 |
m_y - >-19 | >-19 | >-21 | >-24 | >-26 | >-28 | >-30
mo >_16 | >—18 | >-20 | >—22 | >—24 | >-26 | > -28 | >-30
mi - - - >5 >4 >3 >2 >1
ma >8 >7 >6 >5 >4 >3 >2 >1

Table 7. Ranges of m;, for j = 1 (D [i] scaled by 32 and m,, scaled by 16).

[DL0] 16 [7 [18] 19 [20 [21 22 [23]
m_y <-9 14t0-12 | -16t0-6 | -24t0-13 | -16to-14 | -19t0o-6 | -26 to-11 | -33 to -17
mo -5,-4 8tol | -16to-4 | -6to7 -12to1 | -19to-56 | -7Tto-5 -10to 7
my 0to8 3tod 2to 13 -5t 7 4t06 2to 17 -4 to 12 -10to 7
ma 12,13 9to 19 2to15 | 14to 27 8 to 22 210 18 16t035 | 13 to 31
[DLAI [2 [25 [26 [27 | 28 [29 [30 | 31 |
m_1 || -19to-17 | -22t0-3 | -28t0 -8 | -34 to-13 | -40to -18 | -46to -21 | -24to3 | -27to -1
mo -16 to 2 -22 to -3 -28 to -6 -8 to 15 -12to 11 -17to0 7 -22to0 3 -27 to -1
m1 5107 3t023 | 2t019 | -7tol5 | -12to1l | -17t09 >6 >4
ma 8 to 27 3t023 | -2t022 >19 >16 >12 >38 >4

case in which the intersection is empty (no overlap) is
for Dp[i] = 26/32 and m_,. This is due to the point
(26/32,-20/16) in the graph D[0] — vs — 4w[0], which
corresponds to the case j = 0 and even exponent. To
solve the problem, we note that the selection would
be correct with the selection constants of the row cor-
responding to Dy [i] = 24/32, for even (negative part
of the graph) or odd (positive part of the graph) ex-
ponent. Therefore when D =26/32 and j = 0, we
transform D into 24/32 (setting to zero just the third
fractional bit) before input to the selection function.

5.2.3 Range of D[j]

As mentioned before, the selection function might pro-
duce a D[j + 1] which is out of the range [0.5,1). Since
this is inconvenient for the implementation we deter-
mine in [10] the requirements on the selection constants
so that this out-of-range situation does not occur. We
then prune the selection function we have obtained so
that it satisfies these requirements. The resulting se-
lection function is given in Table 9. The ranges which
were reduced by the pruning are indicated by *. How-
ever, since D is an estimation of D[j], with a negative
error of 275+ 278, we may obtain D = 15/32 < 1/2, as
input to the selection function. To simplify the imple-
mentation of the selection function it is convenient to
have the bit with weight 2~! always set to one. There-
fore, since a value of D = 15/32 corresponds to the

92

bound 1/2 < D[j] < 1/2 + 275 + 278, we saturate
D to 16/32 in this case, before input to the selection
function, allowing a correct selection. This scheme is
performed by detecting a zero in the weight 27! of D,
and inverting all the bits in that case.

6. Conclusions

We have presented a reciprocal square-root algo-
rithm by digit recurrence and selection by a staircase
function. The algorithm permits to obtain exactly
rounded results in a straightforward manner, in con-
trast to existing methods. We described in detail the
radix—4 implementation. Specifically, we developed a
detailed analysis to show that a single selection func-
tion can be used for all iterations. We also analyze
the latency hardware complexity trade—off, by com-
paring with existing alternatives. We concluded that
our implementation represents a low hardware alterna-
tive with moderate latency. Moreover, the latency can
be reduced if radix-8 or overlapped radix—4 (radix-16)
schemes are developed following the method used for
the radix—4 implementation.

References

[1] E. Antelo, T. Lang and J.D. Bruguera, “Computation of
y/z/d in a very high radix combined division/square-root

Table 8. Intersection ranges of m;, for all iterations. (D[] scaled by 32 and m;, scaled by 16).

(DL [16 [17 18 [T19 20] 21 22 [23 |
m-1 -13 -14 -14 -15 -16 -17,16 [-18,17 -18
mo -5,4 -5 -5 -6,-5 -6,-5 -6,-5 -7to-5 7,6
m 3,4 4 4,5 45 45 4t06 4t06 5,6
) 12 13 14 14 15 15,16 16,17 17,18
[DL] [24] 25 [26 [27 [28 T 29 [30] 31]
m—1 -19,-18 -19 } no overlap | -21,-20 | -23 to-21 | -23,-22 | -24 to-22 | -25 to -23
mo -7,-6 -8 to -6 -8 to -6 -8 to -6 -9 to -6 -9 to -7 -9 to -7 -10 to-7
m 5t07 | 5to7 5to 7 5t08 5 to 8 6to 8 6to9 6to09
me || 17to 19 | 18,19 19,20 19to2l | 20to22 [21t023 | 21to24 | 22to24

t For j = 0 use the constants of the row Dp[i] = 24/32

. For j > 1 use the constants -21 or -20.

Table 9. Ranges of m; for all iterations with 1/2 < D[j] < 1 (D, [i] scaled by 32 and m,; scaled by 16).
| I]

(2

[Del T 16 [17] 18 [19] 20 21] 22 23
m_y -13 -14 -14 -15 -16 -17,-16 -18,-17 -18
mo *5 -5 -5 -6,-5 -6,-5 -6,-5 -7to-5 7,6
m1 3,4 4 4,5 4,5 4,5 4t06 4to6 5,6
ma 12 13 14 14 15 15,16 16,17 17,18
[DL [24] 25 | 26 [27] 28 [20 T 3 [31]
m_q -19,-18 -19 t nooverlap | -21,-20 | -23to-21 | -23,-22 | -24 to -22 | -25 to -23
mo -7,-6 -8 to -6 -8 to -6 8to-6 | -9to6 | -9to-7 | -9to-7 | -10to-7
m1 5to7 *7 *7 *6to8 5to 8 6to8 *8,9 *89
ma 17to 19 | 18,19 19,20 19to21 | 20t022 [21t023 | 21t024 | 22t024

1 For j = 0 use the constants of the row Dp[i] = 24/32.

unit with scaling”, IEEE Transactions on Computers, vol
47, no .2, pp. 152-161, 1998.

R.C. Agarwal, F.G. Gustavson, M.S. Schmookler, “Series
approximations methods for divide and square root in the
Power3 processor”, in Proc. 14th IEEE Symposium on
Computer Arithmetic, pp. 116-123, 1999.

D.Das Sarma and D.w. Matula, “Faithfull bipartite ROM
reciprocal tables”, in Proc. 12th IEEE Symposium on Com-
puter Arithmetic, pp. 17-28, 1995.

D.Das Sarma and D.w. Matula, “Faithfull interpolation in
reciprocal tables”, in Proc. 13th IEEE Symposium on Com-
puter Arithmetic, pp. 82-91, 1997.

M.D. Ercegovac and T. Lang, “Division and square root:
digit-recurrence algorithms and implementations”, Kluwer
Academic Pub., 1994.

M.D. Ercegovac, T. Lang, J.-M. Muller and A. Tisserand,
“Reciprocation, square root, inverse square root, and some
elementary functions using small multipliers”, IEEE Trans-
actions on Computers, vol. 49, no. 7, pp. 628-637, 2000.

H. Hassler and N. Takagi, “Function evaluation by table
look-up and addition”, in Proc. 12th IEEE Symposium on
Computer Arithmetic, pp. 1016, 1995.

V.K. Jain, L. Lin, “High-speed double precision computa-
tion of nonlinear functions”, in Proc. 12th IEEE Sympo-
sium on Computer Arithmetic, pp. 107-114, 1995.

A. Nannarelli and T. Lang, “Low-power divider”, IEEE
Transactions on Computers, vol. 48, no. 1, pp. 2-14, 1999.

93

(10]

(1]

[12)

(13]

(17]

For j > 1 use the constants -21 or -20.

T. Lang and E. Antelo, “Correctly rounded reciprocal
square-root by digit recurrence”, Internal Report. Dept.
Electrical and Computer Eng., University of California at
Irvine. Link: http://www.ece.uci.edu/numlab.

S. Oberman, “Floating point division and square root algo-
rithms and implementations in the AMD-K7 microproces-
sor”, in Proc. 14th IEEE Symposium on Computer Arith-
metic, pp. 106-115, 1999,

J.E. Robertson, “A new class of digital division methods”,
IRE Transactions on Electronic Computers, vol. EC-7, pp.
218-222, 1958.

M.J. Schulte and J.E. Stine, “Approximating elementary
functions with symmetric bipartite tables”, IEEE Trans.
on Computers, vol 48, no 8, pp. 842-847, 1999.

M.J. Schulte and K.E. Wires, “High—speed inverse square
roots”, in Proc. 14th IEEE Symposium on Computer Arith-
metic, pp. 124-131, 1999.

N. Takagi, “Generating a power of an operand by a table
look-up and a multiplication”, in Proc. 13th IEEE Sym-
posium on Computer Arithmetic, pp. 126-131, 1997.

W.F. Wong and E. Goto, ”Fast hardware-based algorithms
for elementary function computations using rectangular
multipliers”, IEEE Transactions on Computers, Vol. 43,
no. 3, March 1994.

W.F. Wong and E. Goto, “Fast evaluation of the elemen-
tary functions in single precision”, IEEE Transactions on
Computers, vol 44, no. 3, pp. 453-457, 1995.

