Improved Table Lookup Algorithms for Postscaled Division

David W. Matula
Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas, 75275-0122
matula@seas.smu.edu

Abstract

Postscaled division is a non-iterative algorithm deliver-
ing a quotient of single precision accuracy by the three term
product (z3j)c and of double precision accuracy by the for-
mula [(z§)c][2 — (y§)c]. Here x is the dividend, § is a
low order part complemented form of the divisor y, and ¢
is a table lookup value approximating a “reciprocal func-
tion” 1/(yg) to a precision of over 27 bits. Table lookup
latency is hidden by performing the lookup in parallel with
the first multiplication (zj), with the second multiplication
the “postscaling” by the lookup function value.

Our contribution herein is the description of two new
lookup algorithms for approximating the reciprocal func-
tion yl—ﬁ to high accuracy in fewer cycles than a typical float-
ing point multiply latency. Our indirect bipartite lookup
procedure has a latency of two successive lookups followed
by a small integer addition. This first algorithm generates
a 27 bit approximation of = with total table size about 5
Kbytes. Our second lookup algorithm generates a 34 bit
approximation with latency determined by 11 and 12 bit ta-
ble lookups and a 4-1 addition. This second approximation
employs some 20 Kbytes of tables to allow for a double ex-
tended precision division result in the same number of cy-
cles as a double precision result.

1 Introduction and Summary

Division is the hardest to implement of the standard
arithmetic operations due to the inherent dependent oper-
ations in all of the popular known algorithms [Go64, F170,
FS89, WF91, EL94]. For high precision division the itera-
tive methods based on Newton Raphson reciprocal refine-
ment seem the most efficient. Goldschmidt [Go64] pro-
vided a major improvement to the reciprocal refinement
method for pipelined multipliers by cutting in half the num-
ber of required dependent multiplications to achieve a de-
sired accuracy.

0-7695-1150-3/01 $10.00 © 2001 IEEE

101

Many researchers have dealt with improvements to
Goldschmidt’s method either by employing a more accu-
rate initial table lookup procedure or by accelerating the it-
eration accuracy [WF91, DM95, 1T97, Ob99, EI00].

In a recent paper [IM99] Iordache and this author pre-
sented a new variation of the Newton Raphson refinement
procedure that effectively allowed a formula based non-
iterative computation for IEEE standard [IEEE85] single
and double precision division. Single precision is provided
by the three term product (z7)c and double precision by the
formula [(z§)c][2 — (y§)c]. Here x is the dividend, § is a
low order part complemented form of the divisor y, and ¢ is
a table lookup value approximating a “reciprocal function”
1/(y§) to a precision of over 27 bits.

The impetus for our method comes from the recent re-
sult of Ito, Takagi and Yajima [IT97] that the equivalent of
linear interpolation for a reciprocal approximation can be
obtained by a single multiplication operation ¢jj with a sin-
gle table lookup of c. The reformulation of one Newton
Raphson refinement to obtain a high precision quotient ap-
proximation from the formula [(z5)c][2 — (y§)c] offered a
novel approach to speeding up division. In particular, the
operations may be rescheduled to start with the pipelined
computations of y§ and z while the table lookup value ¢
is determined in parallel and off the critical path. Since the
constant ¢ ~ L. need only be obtained in the time of the
pipelined multiplier latency, new table lookup algorithms
utilizing up to 3 or 4 cycles can be employed without in-
creasing the overall division operation latency.

In Section 2 we summarize the “postscaled” division al-
gorithm and results from [IM99] sufficient to make this pa-
per self contained.In Section 3 we describe a table lookup
procedure using successive dependent table lookups. The
resulting “indirect” bipartite lookup algorithm provides that
¢ ~ L can be determined to some 28 bits of accuracy em-
ploying only 5 Kbytes of tables with a latency of two suc-
cessive 10 bit indexed table lookups and a low precision
addition.

In Section 4 we describe a table lookup procedure hav-

ing the latency of a table lookup and a 4-1 addition. This
improved multipartite lookup procedure provides some 27
bits of accuracy for ¢ = yl—. with less then 4 Kbytes of ta-
bles, and nearly 34 bits of accuracy with some 20 Kbytes
of tables. The latter result allows for an aggressive design
achieving double extended division in the same number of
cycles as double precision.

2 Postscaled Division

Let y = 1.b1bobs - - - bp—1 be a normalized p-bit divisor
and y < 2 < 2y be a p-bit dividend normalized relative to
v so that the infinitely precise quotient falls in the standard
binade1 < ¢ = i;; < 2 Lety; = 1.b1bobs - - - b;, with the ¢
bit string by bobs - - - b; providing the primary index for a re-
ciprocal function table lookup. Let f = .b;y1bi40 -+ bp_y
be the low order part of y normalized as a fraction so that
y = y;i + f2~%. We shall also be interested in a partially
complemented version of the divisor § = y; + (1 — f)27¢,
termed the low order part complemented divisor.

Ito, Takaji and Yajima introduced and demonstrated a
fundamental property of the low order part complemented
divisor that can be expressed as follows:

Lemma 1 [IT97]: Let a linear interpolated approxima-
tion of the reciprocal of the divisory = y; + f27¢, be given
by the multiply-add operation approw(i) =c —caf271,
withe, = - e = W Employing the l‘ow order
part complemented divisor § = y; + (1 — f)27%, we can
compute approz(i) by a single multiply operation

1
approx(g) = caf. e))

Employing (1) for linear interpolation, only one table
lookup is required. More important for our purposes is the
fact that the operation simplifies to a single multiplication,
albeit of necessarily higher precision operands.

Lemma 1 allows that the i bit indexed table lookup value
¢ provides an approximation to ﬁ of accuracy somewhat
over 2i bits, Note thaty = y;+f2 " and § = y;+(1—f)2~*
are symmetric about the midpoint within the ¢ + 1 bit ulp
interval determined by y; and y; + 27%. Thus the product
y% has the first order effect from f cancel out, leaving only
a small second order dependence on f. Thus the reciprocal
function -1 considered as a function of i and f has a large
dependence on the i bit string by b; - - - b; and only a second
order dependence on f = .bjy1biya -,

1 1
y§ oy w2+ f(L-)22
The importance of the multiplicative nature of (1) and
the facility to obtain a very accurate approximation of ,71,7

2

with a relatively small sized table lookup led Iordache and
this author [IM99] to propose a simplified non-iterative di-
vision algorithm where the equivalent of just one Newton
Raphson reciprocal refinement provides a quotient approx-
imation of double precision accuracy. The following pro-
vides the fundamental operations sufficient to obtain IEEE
single (p = 24) and double (p = 53) precision results.

Observation 2 [IM99]: Let ¢ = #(1 + 6) with
|6] < 2727, Then

o = (wz})c=§—(1+6), 1Bl <272, (3

2 = [(=)d2 - (vic)]

= Za-6), 2<27% @)
y

For (3) note that ¢; may be rounded to 25 bits with less
than one ulp error in the last place, and this is sufficient to
determine the correct round and sticky bits from the sign of
the remainder associated with ¢;. For a double precision
result, g2 in (4) can be rounded up to 54 bits determining
a rounded quotient with less than one ulp error in the last
place, allowing the correct round and sticky bits to be com-
puted from the sign of the associated remainder.

The equations for ¢; and g2 in Observation 2 facilitate
scheduling of concurrent computations leading to an im-
proved cycle time compared to division algorithms employ-
ing multiple dependent operations. A description of the al-
gorithm [IM99] sufficient to make this paper self contained
is presented here.

Postscaled Division Algorithm
For a single precision quotient (p = 24):

e Step 1: The input dividend x is multiplied by the low
order complemented input divisor §j, with table lookup
of c initiated in parallel.

e Step 2: The product (x§) is multiplied by the lookup

value ¢ and the result rounded to 25 places determining
J

q.

¢ Step 3: The positive, negative or 0 status of the asso-
ciated remainder rem = z — yq' is determined by a
multiply-add operation or a separate logic computa-
tion, and the result used to select the correctly rounded
24 bit result.

For a double precision quotient (p = 53):

e Step 1: The input dividend x and the input divisor y are
each multiplied by the low order complemented divi-
sor g, with table lookup of ¢ initiated in parallel.

e Step 2: The products () and (y§) are each multiplied
by the lookup value c.

e Step 3: The product [(z§)c] is multiplied by the 2’s
complement product [2— (y§)c] and the result rounded
to 54 bits determining ¢'.

e Step 4: The positive, negative or 0 status of the asso-
ciated remainder rem = z — yq' is determined by a
multiply-add operation or a separate logic computa-
tion, and the result used to select the correctly rounded
p=53 bit result.

Properties of Postscaled Division

o The latency for a single precision rounded result is two
multiply latencies plus the rounding latency.

e The latency for a double precision rounded result is
three multiply latencies plus the rounding latency.

e For a pipelined multiplier with the remainder sign
computed in alternative circuitry, the pipeline stall de-
termining the throughput is just one multiply latency
for single precision division, and two multiply laten-
cies plus one cycle for double precision division.

e The facility to schedule multiplication by the table
lookup value c as the second operation in evaluating
the three term product zgc (alias postscaling), allows
the time of a full multiply latency for table assisted
computation of c.

Figure 1 illustrates a pipeline schedule for a double pre-
cision implementation of postscaled division. In this exam-
ple we have assumed a 4 cycle latency multiply operation
for a dependent multiply which allows up to four cycles
for lookup of c. We have also assumed that rounding can
be performed in two cycles by producing two alternative
rounded values with final selection dictated by the parallel
computation of the remainder sign(+, -, or zero) in special
circuitry.

The postscaled division example of Figure 1 suggests the
feasibility of implementing IEEE standard double precision
division with a throughput of 9 cycles and a latency of 15
cycles. A necessary feature to achieve such an implemen-
tation is a cost effective table lookup procedure for deter-
mining ¢ & L{/ to some 27 bits of accuracy. The case for
double extenzfed precision (p = 64) division is considerably
more demanding. To achieve a 64 bit rounded quotient, and
possibly also to support an internal division of say 68 to 70
bits for microcoded transcendentals, some 33 to 35 bits of
accuracy in the approximate ¢ would be required.

The following identity from [IM 991 is the basis for mod-
eling our table lookup algorithms.

Cycle Operations

1 y X § , initiate lookup of ¢
2 XY

3 -

4 -

5 (W xe

6 (zg) x ¢

7

8

9

2’s comp (ygc)

10 (zgec) x (2 — yje)

11 -

12 -

13 -

14 initiate rounding

15 rounded output available

Figure 1. Pipeline schedule for an implemen-
tation of postscaled division.

Observation 3: The reciprocal function ;77 for a given i
and f satisfies

% _c. 2?—(;f_+(-12-:i;‘2)2_(2i+3) 402D (5
with 0 < & < 1, where
1 9—(2i+3)
Twlt2) it
Note that C; is a function of the i bit primary index
bibabs - - - b; and may be looked up to any desired accuracy

in a table of sufficient width, say here between 37 and 4i + 4
bits. For 1 < a < 2, let

©)

i

1-8f(1-f)
yi(yi +270)2

be an approximation of the second term in (5) accurate 10
bits.

Employing ¢ = C; 4+ C'2~(2i+3) then yields a quotient
approximation zgc of accuracy some 2¢ + o + 3 bits. We
note the following tradeoffs in obtaining 2i + a + 3 = 27.

Employing only C; ~ @1—. requires an i = 12 bit primary
table with width 39 bits anc’f table size 19.5 Kbytes [IM99]
to obtain 27 bit accuracy. Using an i = 11 bit primary table
and deriving a = 2 bits of accuracy from a table for the C”
term, the total table size for a 27 bit accurate approxima-
tion can be reduced to a manageable 7.5 Kbytes by bipartite
evaluation [IM99]. To further reduce table size and lookup

C'=C'(y,f) = (1+e27%), el <1, (D

time for the primary table for Cj, it is desirable to find bet-
ter approximation schemes for C” ﬁ%%}f)% yielding
accuracies of say one partin 2® for4 < a < 9.

3 Indirect Bipartite Table Lookup

Direct bipartite evaluation of ¢ = C; + C’ involves table

lookup of C’ ﬁ%%‘% using some % leading fraction

bits each from y; and f. Only some & & % — 2 bits of
improvement come from the C' term due to the excessive
non linearity in both the numerator f~factor 1 — 8 f(1 — f)
and reciprocal denominator y-factor W. Note in
particular that for 1 < y < 11, the y-factor covers the in-
terval [.625, 1], which is most of a binade. Similarly, for
933 < f < 1, the f~factor covers the binade [.5,1]. Thus
some four bits (two for y and two for f) of the C’ table index
is lost to this non linear “overhead”.

Using an 11-bits-in 29-bits-out table for C1; and an
8-bits-in 8-bits-out table for C’, the approximation ¢
C11 + C' was confirmed to provide 27 bit accuracy for ap-
proximation of - in [IM99]. The tables total a somewhat
modest size of 7.5 Kbytes, but further reduction is desirable.
Note that a 10-bits-in table for ¢ = Cy9+C’ requires a table
index of some 12 bits for C’ to produce a 27 bit accurate c,
making the secondary table too large.

We now present an indirect bipartite lookup algorithm
that substantially reduces table size at the cost of an addi-
tional dependent table lookup step in the lookup value la-
tency. We introduce an index mapping table that briefly op-

1 1
erates as follows. The range [4, 1] of the factor P2

is partitioned into 2’ intervals with widths of equal or de-
creasing size as the interval boundaries approach unity. The
y; mapping table is i-bits-in, n'-bits-out giving an n’ bit y-
key denoting the interval containing the factor 7 (y;}r2_,)2 .
For the factor 1 — 8 (1 — f) the unit interval is partitioned
into 27" intervals with widths of non increasing size. The
[; mapping table is then a j-bits-in, (n'"’ + 1)-bits-out table
giving a sign bit and an n' bit f-key denoting the interval
containing the magnitude of the factor 1 — 8f;(1 — f;),
where f; = .biy1bio - biy;1 is determined by the j-bit
secondary index biy1biya - - - biyj. The y; and f; mapping
table output keys are concatenated to form an (n’ + n") bit
index to a product table that produces an approximation of
C'.

Indirect Bipartite Lookup Algorithm

This algorithm uses three table lookups and an addition
to form the lookup value ¢ = C; + C' ~ 5.

e Step 1: The primary index bybs---b; is utilized to
lookup both the term C; and an n' L bit y-key

~
~

104

for the factor Z?Gder*’)_T Separably and in parallel
aj ~ i bitindex biy1bit2 - - - by is utilized to lookup
an n' = £ bit f-key and a sign bit s in an f; mapping
table.

Step 2 [Second level lookup): The y- and f-keys are
concatenated to form an (n’ + n"’) & ¢ bit index into a
product table providing the magnitude of C’.

Step 3 [Fusion]: The value ¢ = C; + (—1)%|C'| is
formed.

Performance of Indirect Bipartite Lookup
Latency: The latency is the time of two successive Z bit
table lookups plus a small precision integer addition.

Accuracy: The accuracy is =~ (33 + 3) bits.

Table Size: The total table size is about 2(:—10)(it1)
Kbytes, split about 2 for C; and £ for the C" tables.

The symmetry of the product f (1— f) allows the f; map-
ping table to be halved in size by employing the condition-
ally complemented j — 1 bit index determined by

{

Figure 2 illustrates a circuit for indirect bipartite lookup.
Let us consider the case i=10 in Figure 2. Table 1 em-
ploys a 10-bits-in 34-bits-out table producing both a 29 bit
value for Cjg and a 5-bit key. Table 2 uses the condition-
ally complemented 9 bit index for f, from (8) to output
a sign bit and a 5 bit key. Table 3 employs a 10 bit index
formed from the two keys to output a 6 bit value for the
magnitude of C’. The adder then yields a 29 bit value for
75 ~ ¢ = Cio + (=1)°|C’|. Total table size is slightly less
than 55 Kbytes with accuracy for .- of about 28 bits.

The indirect bipartite lookup algorithm can be refined to
allow for smaller table sizes by having the mapping tables
produce keys denoting floating point factors. Specifically,
the y; mapping table can provide a 2 bit exponent and an
n = %z bit index denoting one of 2" intervals covering
the range [%, 1] that contains the significand value for the
y-factor W Similarly, the f; mapping table can
provide a sign bit, an exponent, and an n" bit index for the
significand value of the factor 1 — 8f;(1 — f;). This allows
the product table to output a floating point product having
one additional bit of accuracy since each of the input sig-
nificands is in an interval of about one half the size of the
inputs previously described.

Figure 3 illustrates a circuit for this floating point version
using a 9 bit primary index to produce 21 bits of accuracy

if bi+1 = 0 3
ifbi+1 = 1 .

0biyabiys - biy ;1
Obiy2biys -« biyjl

f; ®)

y=154 |_2__1] i+l fufm" bzi"

-

ti-1
1
i

Table 1
y-key

| i
2

Zit+d Yy

2]

Table 3
ICl

/_i +1

2

Addet/ Substractor
C + [abilel!

rd “;i+4

Register

Figure 2. Table lookup circuit for indirect bi-
partite lookup.

in Cy. The secondary table for C’ provides an additional 6
bits of accuracy to achieve yl—ﬁ mc=Cy+C".

In Figure 3, Table 1 produces a y-key with 2 exponent
bits and 5 significand bits determining an interval of width
about 55 for the factor _’(T'? Table 2 produces an f-
key w1th a sign bit, 3 exponent bits, and 5 significand bits
determining an interval of width about 515 for the factor
1 - 8f(1 — f). Three exponent bits are sufficient since
otherwise |C’| < 272°. The product is then determined by
Table 3 to be in an interval of size less than 515 with a mid-
point approximation giving accuracy to :i:,l%,r. It is possible
to systematically reduce the intervals covering [.5, 1] from
somewhat over g5 at .5 to somewhat less than % at unity,
allowing the product table to produce about % bit extra ac-
curacy in the limit. The details are somewhat tedious and
will not be given here. The extra accuracy allows for rel-
atively few output guard bits to provide the overall 27 bit
accuracy.

The architecture of the table lookup scheme in Figure 3
provides for 9 bit indices for Tables 1 and 2, which should
be implementable in a single cycle. The 10 bit index lookup
of Table 3 and shift of the output should be possible in at

105

y=Lb bbby BBy by by

LZ'" ? 10 Lll 2
Io
1
9
Mux
Table 1 To

a
A5
42 1

Exponent
Adder

L

Shifter

—

Adder/ Substractor

129

Register

Figure 3. Table lookup circuit for floating point
indirect bipartite lookup of ¢ ~ L to 27 bit
accuracy.

most 2 more cycles, with a 4th cycle for the low precision
addition. This lookup scheme would match the critical path
for a four cycle latency multiplier producing the first prod-
uct z7 in the postscaled algorithm, Note that the total table
size here is under 4 Kbytes to achieve the 27 bit accurate
result at a latency of two successive table lookups followed
by a shift and a 2-1 add. Furthermore, note that the adder-
subtractor could be replaced by a redundant binary recoder
[Ni82, DM95, LM95] providing the output ¢ in Booth re-
coded form for use in the subsequent multiply operation.

The floating point indirect bipartite lookup procedure
provides a candidate for double extended precision accu-
racy using i = 12, In this case the six bit significand keys for
the y- and f- factors yield a 12 bit index product table with
output producing C" to some 7 bits of accuracy. The term ¢
is then available to some 34 bits of accuracy sufficient for a
double precision quotient of some 69 bits of accuracy.

In this case the total table size would be some 28 Kbytes,
with the successive 12 bit table lookups possibly extending
the table lookup computation beyond the pipelined mul-
tiplier feedback latency. For double extended precision
postscaled division an alternative multipartite table proce-

dure is described in the next section.

All three bipartite algorithms for approximating L by
¢ = C; + C' employ a primary table for C; that contributes
accuracy quadratically to c at the rate of 2 bits of accuracy
per table index bit. Similarly, the three algorithms con-
tribute just % bit of accuracy per table index bit in the sec-
ondary table system for C’. The substantial improvement
in accuracy as a function of table size for the indirect bi-
partite schemes derives from the design overhead changing
from a penalty of two bits to a bonus of one bit in contribu-
tions from the secondary table system. Table 1 summarizes
the contributions of the table system components in terms
of bits of accuracy added per table index bit. Employing
bipartite lookup with i bit primary and secondary table in-
dices yields accuracy at the asymptotic rate of 2% bits per
table index bit in all three cases in Table 1. Alternative table
assisted schemes are needed to obtain a higher asymptotic
rate.

Table Direct Indirect Floating Point
Part Bipartite | Bipartite | Indirect Bipartite
primary 2i+3 2i+3 2i+3
secondary | %i-2 3i Zi+1

Table 1. Bits of accuracy in ﬁ approximation
per table index bit of the primary and sec-
ondary tables for various bipartite lookup al-
gorithms.

4 A Multipartite Lookup Algorithm

An asymptotic rate of three bits of accuracy per table in-
dex bit is seen to be theoretically possible by employing an
underlying log/antilog table system. Consider that a first
pair of tables can deliver the logs of the y-factor and f~factor
of C'. The logs can be added and input to an antilog table
determining C', which is then added to C; to determine c.
With i bit indexed base 2 log and antilog tables for the man-
tissas, essentially i bits of accuracy can be obtained for C’
providing a 3¢ bit accurate c¢. The latency is two successive i
bit table lookups alternating with two 2-1 low precision ad-
ditions. For table size indices i = 11 or 12 as may be needed
for double extended precision, the latency of this log/antilog
system could exceed the pipelined multiplier feedback la-
tency.

In the following we present an alternative lookup system
achieving a 37 bit accurate ¢ & - over the practical index
size range 8 < ¢ < 12 with latency a more acceptable i
bit table lookup and a 4-1 add. This final table lookup al-
gorithm generates an approximation to the product C' of
the y-factor m and the f-factor 1 — 8f;(1 — f;)

106

as the sum of three partial products. The algorithm and its
performance are outlined followed by more details on two
proposed implementations.

Table Fed Partial Product Generation Algorithm

This algorithm uses two table lookups and a 4-1 addition
to form the lookup value ¢ = C; + C' ~ .

e Step 1: The primary index bibe---b; is utilized to
lookup the term C; and one or two n = i bit scaled
partial products of the y-factor Jze—-—z. Separably
and in parallel a j = ¢ bit secondary index
bit1biya - - biy; is utilized to lookup a 3-digit Booth
encoded radix 4 or 8 value dp3* + dy 8 + dy denoting
the interval containing the f~factor

1-8f;(1—f;).

¢ Step 2: Each of the three Booth encoded digits is used
to select an appropriate final partial product of the y-
factor.

Step 3: The three partial products and the C; term are
accumulated in a 4-1 adder providing c.

Performance of the Table Fed PPG Algorithm

The following performance characteristics pertains to the
primary index size range 8 < ¢ < 12 with the secondary in-
dex size j = 1.

Latency: The latency is an i-bit table lookup followed by
a4-1 addition.

Accuracy: The accuracy is = 31 bits.

Table Size: The total table size is about 20:—10) (3§ 4 1)
Kbytes.

The table size refers to radix 8 partial product accumula-
tion. For ¢ < 9, radix 4 PP-accumulation saves about 15%
in table size. The Table Fed PPG implementation can be
extended to ¢ > 13 with the same accuracy and table size
performance, but the latency must grow to be an i bit table
lookup followed by an [#1 to 1 addition.

Figure 4 illustrates a Table Fed PPG circuit with 9 bit
tables employing radix 4 Booth encoding.

Figure 5 illustrates a similar circuit with an 11 bit in-
dexed primary table and a 12 bit indexed secondary table
employing radix 8 Booth encoding. The latency and table
sizes are evident from the figures. Some details on the table
value construction will provide the basis for the accuracy of
the resulting approximation in each case.

y=Lk b Bk bk, by by
19
1
A9
Mux
/’9
Table 1 Table 2
5 d dl dl)
30 ’l’g T—jd T3
PPG J PPG P PPG

4-1 Adder

31

Register

Figure 4. Table Fed PPG circuit with 9 bit ta-
bles and Booth radix 4 PPG’s.

Note that any fixed multiple of the y-factor m
can be looked up to arbitrary accuracy using the i-bit pri-
mary index, so the error analysis rests heavily on the fea-
“tures of the f~factor approximation in Table 2.

Consider the radix 4 case with 9 bit tables in Figure
4. For radix 4 with digit set {-2,-1,0,1,2}, the three
digit number N = dq4? + d14 + dy can represent any
integer in the range [—42,42]. Thus the interval (—1,1]
can be partitioned into 85 intervals (52, 55E] with N

chosen in Table 2 such that the f~factor with j = 10 sat-

—1 1 .
isfies ”TF < 1-8f0(l = fo) < 54;? The maxi-

mum error in approximating 1 — 8f10(1 — fio) is then z=
or about 6.41 bits. The maximum error in approximating
1-8f(1— f) by 1 —8f10(1 — fi0) is 555, so the resulting
accuracy is 6-bits. With Table 2 encoding only the factor
N = dy4? + dy 4 + dy, the output from Table 1 is the scaled
y-factor @W.

Overall the Table Fed PPG circuit of Figure 4 provides an
approximation to ;‘17 of accuracy 27 bits with total table size
just 3Kbytes. The circuit should be implementable in just 2
or 3 cycles. Note that the second table may be increased to a
10 bit index to improve the approximation of 1 — 8 (1 — f)
to about 6.2 bits with only a modest increase of about %

107

y=Lh bbby bbb b

12
1
A1 }
Mux
Ti2
Table 1 Table 2
C 3x Ix d c} d
1l 2.
L2 Jﬁz __Jﬂ P 4
37
— T] —l
[T [T 1
PPG PPG || PPG
4-1 Adder
~4 38
Register

Figure 5. Table Fed PPG circuit with 11/12 bit
tables and Booth radix 8 PPG’s.

Kbyte in table size. Alternatively a radix 8 version could
provide over 7 bits of accuracy from the secondary table
system. Thus design alternatives exist for reaching the goal
of 27T bits of accuracy in the approximation of L with
table size under 4 Kbytes and a table lookup latency of three
cycles or less.

Now consider the radix 8 case with an 11 bit indexed
primary table and a 12 bit indexed secondary table as illus-
trated in Figure 5. The three digit number N = ds8% +
d18 + dy with —4 < dy,d;,dz < 4, has the integer range
[—292,292]. We thus choose a digit encoding for N in Table

2 such that 2%;—% <1-8fi3(1— fis) < ;g—;;» The maxi-
1

mum error in approximating 1 — 8f13(1 — fi3) is then g5z
or about 9.19 bits. The maximurn error in approximating
1-8f(1—f) by 1 —8fi3(1 — f13) is 5555, s0 the re-
sult accuracy is over 8.8 bits for the f~factor. We design the
output from the primary Table 1 to include both the 1x and
3x values needed for partial product selection in a Booth
radix 8 F’PG. These values here are W and
(1463)y2(yi+2-9)%"

In overall performance the Table Fed PPG circuit of Fig-
ure 5 provides an approximation to = of accuracy nearly 34

Y
bits with a total table size of some 5 1 Kbytes. The circuit

should be implementable in three cycles, allowing for it to
remain off the critical path even if the feedback multiplier
latency can be reduced to three cycles.

All four of the table lookup procedures illustrated in Fig-
ures 2-5 suffer some accumulated error which has not been
analyzed in detail herein. Fortunately a clear way to ex-
haustively check these effects exists with only a modest
size computation. The procedure is to compare the lookup
schemes with a single table lookup that uses all the bits
bibe -+ - biy; as a single index. Referring to Figure 5, this
would mean a single table for Ca4. Such a table provides
an approximation to ﬁ of accuracy 51 bits by Observation
3. Thus the output of the lookup algorithm in all 2%* ~ 16
million cases need simply be compared with the value that
would be employed for the 22 outputs of the single table
for Ca4 to determine a worst case accumulated error bound.
The procedure is simple and efficient enough that the table
widths and other design parameters can be fine tuned re-
lying on the modest 16 million or less exhaustive test case
computations to confirm the overall desired accuracy for an
optimized table lookup circuit.

References

[IEEE 85] IEEE Standard 754 for Binary Floating Point
Arithmetic, ANSI/IEEE Standard No. 704, American Na-
tional Standards Institute, Washington DC, 1988.

[CG99] M.A. Cornea-Hasegan, R.A. Golliver, P. Mark-
stein, Correctness Proofs Qutline for Newton-Raphson
Based Floating-Point Divide and Square Root Algorithms,
Proc. 14th IEEE Symp. on Comput. Arithmetic, 1999, pp.
96-10s.

[DM95] D. DasSarma, D.W. Matula, Faithful Bipartite
ROM Reciprocal Tables, Proc. 12th IEEE Symp. Comput.
Arithmetic, 1995, pp. 17-28.

[DM97] D. DasSarma, D.W. Matula, Faithful Interpola-
tion in Reciprocal Tables, Proc. 13th IEEE Symp. Comput.
Arithmetic, 1997.

[FS89] D.L. Fowler and J.E. Smith, An Accurate High
Speed Implementation of Division by Reciprocal Approxi-
mation, Proc. 9th IEEE Symp. Comput. Arithmetic, 1989,
pp. 60-67.

[IT97] M. Ito, N. Takagi, S. Yajima, Efficient Initial Ap-
proximation for Multiplicative Division and Square Root by
a Multiplication with Operand Modification, IEEE Trans-
actions on Computers, vol. 46, No. 4, April 1997, pp. 495-
498.

108

[Ob99] S.E. Oberman, Floating Point Division and
Square Root Algorithms and Implementation in the AMD-
K7 Microprocessor, Proc. 14th IEEE Symp. on Comput.
Arithmetic, 1999, pp. 106-115.

[Pa99] M. Parks, Number-theoretic Test Generation for
Directed Rounding, Proc. 14th IEEE Symp. on Comput.
Arithmetic, 1999, pp. 241- 248.

[WF91]1D.C. Wong, M.J. Flynn, Fast Division Using Ac-
curate Quotient Approximations to Reduce the Number of
Iterations, Proc. 10th IEEE Symp. Comput. Arithmetic,
1991, pp. 191-201.

[EL94] M.D. Ercegovac and T. Lang, Division and
Square Root: Digit-Recurrence Algorithms and Implemen-
tations. Boston: Kluwer Academic, 1994,

[F170] M.J. Flynn, ”On Division by Functional Itera-
tion”, IEEE Trans. Computers, vol. 19, no.8, pp. 702-706,
Aug 1970. Reprinted in Computer Arithmetic, E.E. Swartz-
lander, vol. 1. Los Alamitos, Calif.: IEEE Press, 1990.

[Go64] R.E. Goldschmidt, ”Applications of Division by
Convergence”, MSc dissertation, MIT, June 1964,

[LM95] C. N. Lyn and D. W. Matula: Redundant Binary
Booth Recoding, Proc. 12th IEEE Symp. Comput Arith-
metic, pp. 50-57, July 1995.

[EIO0] M.D, Ercegovac, L. Ilmbert, D.W. Matula, J.-M.
Muller, G. Wei, Improving Goldschmidt Division, Square
Root, and Square Root Reciprocal, IEEE Transactions on
Computers, vol. 49, l'\Io. 7, July 2000, pp. 759-762.

[IM99] C. Iordache, and D.W. Matula, Hiding Table
Lookup Latency in Convergence Division and Square Root,
submitted for publication.

[Se99] P. Seidel, High-Speed Redundant Reciprocal Ap-
proximation, INTEGRATION, the VLSI Journal, 28(1999),
pp. 1-12.

[Ni81] T. Nishimoto: "Multiple/Divide Unit,” U.S. Patent
4337519, June 1982.

