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Abstract

We investigate two sets of hard to round pXp bit frac-
tions arising from division of a normalized p bit floating
point dividend by a normalized p bit floating point divisor.
These sets are characterized by the pxp bit fraction’s quo-
tient bit string, beginning with or just after the round bit,
having the maximum number (p-1) of repeating like bits,
specifically 00...01 or 11...10 for the directed rounding
"RD-hard" set and 100...01 or 011...10 for the round-to-
nearest "RN-hard" set. We show both the pXp bit RD-
hard and RN-hard sets to be of size at least 2P7> and at
most 2P, Two dimensional quotient vs. divisor plots em-
pirically reveal both the RD-hard and RN-hard sets of
pXp bit fractions to be jointly widely distributed. Analy-
sis of patterns and linear sequences of fractions visible in
the quotient vs. divisor plots leads to simplified proce-
dures for generating test suites of hard to round fractions.
Our strongest computational result is the derivation of
formulas that allow 2720 RD-hard and RN-hard pxp
bit fractions to be enumerated based on sequential incre-
mentation of respective numerators and denominators.

1 Introduction and Summary

Various procedures for generating hard to round test
cases for verifying implementations of arithmetic opera-
tions and functions have been described and analyzed in
numerous studies [Ka87, Ta89, SS93, Pa99, LM99, IM99,
MMO0O0]. Test cases for floating point division and square
root are of particular interest since the IEEE standard
[IEEE] mandates that conforming implementations must
correctly round all results by both directed and nearest
modes. Many division and square root algorithms in cur-
rent hardware designs employ lookup tables and iterative
algorithms generating super precise approximations be-
fore rounding. Algorithms for rounding sufficiently accu-
rate approximations for division, square root, and square
root reciprocal have been described and investigated
[CG99, IM99, Ka87]. Discussions of tests discovering ac-
tual chip design shortcomings in implementations of these
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instructions have appeared in [Pa99, IM00].

Test suites for division should be well distributed by
divisor value to cover all values in a divisor reciprocal
table, and well distributed by quotient value to test output
convergence and rounding algorithms over a wide range
of output values. In this paper we focus solely on hard to
round test cases for division,

In Section 2 we develop our pXxp bit fraction model of
binary floating point division. The hardest to round cases
of pXxp bit division are first characterized by four extreme
length quotient p-bit string patterns commencing with the
round bit: 00...01, 011...1, 100...0, and 11...10. Then an
equivalent characterization employing fractions is given
identifying those pxp bit hard to round fractions % near
endpoints s or midpoints % that give rise to the ex-
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treme binax%y quotient bit sl.riég patterns. Finding such a
hard to round fraction directly identifies an input dividend
and divisor pair for inclusion in a division test suite.

In Section 3 we employ and extend tools from the
foundations of fractions and continued fractions that
shows it is possible to exhaustively compute all hard to
round fractions at an effective cost of about one pxp bit
GCD operation per pxp fraction. Our principal result in
Section 3 is the establishment of several symmetries in the
exhaustive 2-dimensional quotient vs divisor plots of hard
to round fractions that allows simple determination of
from 1 to 5 other hard to round fractions for each new
hard to round fraction computed with a GCD.

Our main result in Section 4 is several formulas for
enumeration of sequences of 2(7"2*°W) hard to round frac-
tions that align in a linear progression in the quotient vs.
divisor plots. We provide algorithmic code segments indi-
caling how these linear progressions of fractions may be
efficiently generated by simple incrementation of respec-
tive numerators and denominators. Several test suites
containing hundreds of millions of RD-hard and RN-hard
double precision (53 bit) dividend, divisor pairs are identi-
fied by this process. We further note that hard to round
fractions may be ranked by their distance to the closest
endpoint or midpoint. Using only the desired rank and
precision as input, we show how the associated hard to
round fraction may be found by a pxp GCD computation.



2 Hard to Round pxp Bit Fractions

A positive p-bit number is a binary rational with a
unique factorization z =2%, 1<i<2” ~1, i odd. For
e>0,z=2% is a p-bit integer. For e<0,z=i/2" is a
non integral binary rational. The precision p > 1 provides
a measure of the size of the p-bit number’s significand bit
string in the normalized floating point factored format
2=2(1.byby -+ by).

A pxp bit fraction denotes a fraction 5 where the nu-
merator and denominator are positive p-bit integers. The
rational value g = % is termed the infinitely precise pxp
bit quotient. For our purposes herein a normalized pxp bit
fraction has the denominator in the range 1<d <27 —1,
and the numerator in the range d < n < 2d, so then the
normalized pxp bit quotient is in the standard binade
1<g=%=1.bb,---<2. Note that if this normalization
yields a numerator greater than 27, it must be even.

Rounded p-bit floating point division may be visual-
ized by enumerating the sequence, Q,,, of irreducible
normalized pXp bit fractions ordered by their rational val-
ues. More particularly, this sequence may be enumerated
separately over each ulp interval [, £%], for
2771 <i <2771 1, to investigate the effect of rounding a

Figure 1: A scaled plot of the 5x5 bit fractions Qs,s
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quotient to one or the other endpoint. Figure 1 illustrates
the sequence Qsys.

Each of the 16 rows of Figure 1 corresponds to a
5-bit one ulp interval and contains the 5x5 bit fractions
having the same initial 5-bit quotient string 1. b,b,b3by,
with their position left to right scaled by the value of their
tails .bsbg--- . The sets of rounding equivalent fractions
for determining rounded p-bit quotients are readily identi-
fied by their further partition about the midpoint line cor-
responding to irreducible fractions of the form ;. The
collective values of the tails . bsbg - - - for all 5X5 bit quo-
tients have been illustrated in Figure 1 by projecting each
5%5 bit fraction value to a tic mark on the one ulp interval
at the bottom of the figure. The tail value projections ap-
pear non uniform with interesting gaps about the midpoint
and at both ends of the ulp interval.

The spacing between successive fractions of Qs,s in
Figure 1 appears quite erratic but can be explained by ref-
erence 10 the component denominators and numerators.
Successive fractions have differences of the form

2 _ oo ndoid i 1n [MMOO] we showed for enu-
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merated Q,., that lil=1 unless n, n" are both even, in
which case li/l=2. This relationship explains both the vari-
able spacing and the existence of wider gaps noted on ei-
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ther side of a fraction having a relatively small denomina-
tor, such as £ or 2. This further explains why no pxp bit
fraction can be closer than 2%,, to the midpoint in such a
projection, and why it can be no closer than 22% to an
endpoint unless it is one of the exact endpoints 7.

It is well known that the leading p bits of the tail of a
pXp bit quotient commencing with the round bit can never
be all 1’s, and is all 0’s only when it is the value of a pxp
bit fraction that is a p-bit endpoint 5 , 2l <n<2r—1.
Furthermore a string of p-1 like bits following and com-
plementary to the round bit is the longest such string for
any pxp bit quotient. Thus the four leading p-bit strings
00...01, 011...1, 100...0, 11...10 of the tail constitute the
extreme case run lengths of like bits commencing with or
after the round bit of a pxp bit quotient. pxp bit fractions
yielding such results are of considerable interest for test-
ing division algorithms as they identify input dividend, di-
visor pairs giving rise to the most sensitive rounding
boundary output cases.

A normalized pxp bit quotient is termed hard to
round for directed rounding (RD-hard) if the leading p-
bits of the tail commencing with the round bit is either
00...01 or 11...10, and is hard to round to nearest (RN-
hard) if this p-bit segment is either 011...1 or 100...0.

Equivalently, in the language of normalized pxp bit
fractions, g is: (1) RD-hard iff there is an endpoint frac-
tion 1 < 5% < 2 such that 0 < %57 — 41 < 7, (ii) RN-
hard iff there is a midpoint fraction 1< Z; <2 such that

%;,-' —5l< 22—},_1- Figure 1 is enhanced by shaded regions
at both ends and in the middle to highlight those pxp bit
fractions that satisfy the hard to round criteria.

3 Distribution of Hard to Round Fractions

For division algorithm test suites it is desirable to
identify a large sample of hard to round fractions dis-
tributed reasonably uniformly by divisor value so that all
reciprocal approximations from a lookup table will be
tested. It is similarly useful for the suite to be distributed
reasonably uniformly by quotient values for convergence
algorithms.

It is informative to visualize certain sets of RD-hard
and RN-hard fractions by plotting the fractions on a grid
with the x axis representing a denominator value from
277! t0 27 and the y axis representing a quotient value be-
tween 1 and 2. Figure 2 shows such QD-plots for all RD-
hard fractions for p=7 and p=13. For p=7, the 42 fractions
themselves are plotted, and for p=13, the 2800 fractions
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are represented by dots.

Note that the numerators in QD-plots increase on any
ray away from the origin, with the hyperbola n = gd = 27
denoting the boundary beyond which all numerators must
be even to be p bit integers. The spatial distribution ap-
pears substantially uniform on either side of the hyperbola
for p=13, which is encouraging regarding the develop-
ment of test suites. In addition, there appears to be con-
siderable diagonal axes symmetry and certain embedded
patterns for these RD-hard pxp bit fractions.
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Figure 2b: QD-plot of RD-hard fractions for p=13

Some 296 of the 2800 fractions in the QD-plot for
p=13 fall essentially on just 5 diagonal lines as separately
illustrated in Figure 2b. We will show in Section 4 how
these fractions may be simply and efficiently generated.

Figure 3 shows a corresponding QD-plot for RN-hard
fractions for p=13. While the number and overall distribu-
tion of RN-hard cases appears substantially similar to the



corresponding RD-hard cases, the axial symmetry is limit-
ed and the "diagonal” lines are less visible and flattened to
one half the slope compared to the RD-hard plot. Some
290 of the 2832 RN-hard fractions for p=13 are separately
shown to fall essentially on 8 flattened diagonal lines in
Figure 3. The RD-hard and RN-hard fractions on the illus-
trated lines of Figures 2b and 3, respectively, are related in
a manner that allows their efficient joint generation and
enumeration, as will be shown in Section 4.

.2 12 d 2 13
Figure 3: QD-plot of RN-hard fractions for p=13

Determination of RD-hard and RN-hard fractions and
their associated properties derives from fundamental re-
sults on fractions and continued fractions. The following
terms and results are readily obtained. The development
is similar tc the treatment in [MMOO], derived from clas-
sical treatments in [HW79, ChsIIl and X, Kh35], and
from the study of fractions as a foundation for finite preci-
sion rational arithmetic [MK80].

Terminology and Selected Properties of Fractions

adjacency: % adj X a symmetric relation between frac-
tions denoting lkj —ill = 1.

mediant (f. .%): an operation on two fractions determining

the fraction ?Tl;’ termed the mediant of 5,, L3

« The adjacent fractions ;’,—: and 7 are at a distance ﬁ.

» Every irreducible fraction 4 # 2, ¢, + is the mediant of
two simpler adjacent fractions.

* The mediant %2 of the adjacent fractions % < 4 is ad-
jacent to both and falls between them in numeric
order, s0 % < 2t < 2.

* Bvery normalized pxp bit irreducible fraction 1 < § <2
has a unique continued fraction expansion with
at least three partial quotients, and where the fi-
nal partial quotient is unity.

"For example,
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3 7 38 45

The convergents, f, 5, 5, 59, 33 = 7 arc the sequence of
irreducible fractions obtained by successively truncating
the continued fraction after each partial quotient. The last
two convergents ;—, ;—:, to 4 are the parents of 4 with the
last convergent % being the closest parent. The parents
can be shown to be uniquely characterized by the fact that
they are adjacent fractions having as their mediant the
fraction 4. In the example %, = is adjacent to % =38
with mediant 223% = 23, Further note that the closest par-
ent 2 is at a distance 153 — 33 | = 355 < 55 and is then
RN-hard. Note that the parents of an irreducible binary
fraction, % must both have odd denominators, with one
numerator even and one odd. We thus can define for every

irreducible normalized binary fraction 1 < 3 <2:

odd parent: The fraction determining the unique parent of
5z with an odd numerator.

even parent: The fraction determining the unique parent
of 57 with an even numerator.

odd child: The mediant of the even parent and 2.

even child: The mediant of the odd parent and 2.

Figure 4 illustrates the parents and children of the
fractions Z and %, with left to right order indicating the
numerical order by quotient value, and mediants below
parents. The lines of Figure 4 denote adjacent fractions,
with the solid lines indicating the closest parent. Note
that the closest parent of 5 may be the even or odd parent
and may be smaller or larger in numerical order.

Even Odd
Parent Parent
Odd ‘ % % Even
Parent B . Parent
13 \ ; ) ) / 77
B a a5
16 : . 32
» P 2 P
29 19 37 59
Even 0Odd Even Odd
Child Child Child Child

Figure 4: The parents and children of an endpoint %
and a midpoint 3> of the 5x5 bit fractions

In general, the parity and range of the numerators and
denominators of the parents and children of the irre-



ducible fractions 1 < 5z <2 provide the keys for charac-
terizing the nature of, and analyzing the distribution of, all
hard to round fractions for all precisions.

Observation 1: The denominators of the children of the
irreducible p bit endpoint 1 < 57 < 2 are both odd and in
the range [277! + 1,27 — 1]. The denominator of the clos-
est parent of the irreducible p bit midpoint 1< 55 <2 is
odd and in the range [27™" + 1,27 —1]. o

Theorem 2: The fraction 1 < 5 <2 is an RD-hard pxp bit
fraction iff it is either:

(i) the even child of an irreducible endpoint

l<sgm<2o0r
(i) the odd child of an irreducible endpoint
1<§’37'l<2withn<2”—l. ]

Corollary 3: Any interval 1 < a < b <2 of width at least
k27~ must contain the values of at least | ! | RD-hard
pxp bit fractions. The total number of RD-hard pxp bit
fractions is at least 2772 and at most 277! u]

Theorem 4: The fraction 1 < 5 <2 is an RN-hard pxp bit
fraction iff it is the closest parent of an irreducible mid-
puint 1 < £ <2 and either n is even or n < 277", a

<Z<2o0r

#
3><2 % has a

Corollary 5: Either the irreducible midpoint 1
its 3’s complement irreducible midpoint 5
closest parent that is an RN-hard pxp bit fracuon

Proof: The 3’s complement of the closest parent of 2 is
the closest parent of the 3’s complement of 5, and one of
these closest parents is an even parent. a

Thus the number of RN-hard pxp bit fractions falls
between 2772 and 277!, with exactly 27> RN-hard frac-
tions having an even numerator. This result does not rule
out large quotient intervals without an RN-hard fraction,
but the empirically computed distributions suggest con-
siderable uniformity. The distribution by denominator
value is guaranteed by the following result (see [MMOO]).

Lemma 6: For every odd denominator 27" < d <27 — 1,
there is an RN-hard pxp bit fraction 1 < 5 < 2. O

Computationally the Euclidean GCD algorithm can
be used to determine the continued fraction for any irre-
ducible endpoint 1< 575 <2 or irreducible midpoint

123

< 55 < 2. Thus the pxp bit RD-hard and RN-hard frac-
tions can be found exhaustively employing some 27~+0(
GCD computations. They may be generated in quotient
order or randomly for testing. Exhaustive determination
of all RD-hard and RN-hard fractions for single precision
(p=24) is quite tractable but is too time consuming for
double precision (p=53). For each hard to round pxp bit
fraction discovered, certain symmetries in the QD-plots
can be employed to find other hard to round pxp bit frac-
tions.

This is practically useful when hard-to-round frac-
tions are generated by a GCD computation on-the-fly for
testing a division operation. Deriving a number of hard-
to-round fractions from each GCD computation may
avoid having the GCD time significantly dominate the di-
vision test time.

Symmetries in RD-hard and RN-hard QD-plots

There are three symmetries between RD-hard pxp bit
fractions that serve to characterize and guarantee spatial
distribution for RD-hard quotient points in the QD-plot.
These symmetries are termed diagonal, sibling, and 3’s
complement, where the latter is dependent on the first two.

Diagonal Symmetry of RD-hard Fractions
This symmetry pairs off all RD-hard fractions about
the main diagonal of the QD-plot.

Observation 7: Let % adjacent to 557 be RD-hard. Then
2 is adjacent to zir, and is also RD-hard, with 22
termed a diagonal RD-hard pair. ]

For the diagonal RD-hard pair ilﬂ in the QD-plot,
first note that the points (2,H , J) and (ZP‘" i) are precisely
symmetric across the main diagonal. Since the plotted (%,

j) is close to (= 5+ J)» and (%, 7) is close to (5,{—1 i), the
RD-hard diagonal pair will appear symmetric for suffi-
ciently large p. This symmetry across the main diagonal
is clearly visible in the RD-hard QD-plots for p=7 and 13
in Figure 2.

Theorem 2 guaranteed that for every odd numerator
2F7L + 1< 1 <2P -1, there is an RD-hard child 2 adja-

cent to 5. From Observation 7 2= is then also RD hard,

and we obtain the following guarantee of RD-hard frac-
tions by denominator value.



Observation 8: For every odd denominator
277! +1<d <27 -1, there is an RD-hard fraction 2 for
some 1 < 5 <2, m]

Sibling Symmetry of RD-hard Fractions

This symmetry pairs off the odd and even children
when they are both RD-hard as in the example of Figure
4. The sibling RD-hard pair % < % have nearly equal
quotient values and denominators summing to 3x277".
Thus the plotted points (% ,d"), and (% ,d”), appear sym-
metric across the vertical axis d = 2 27~ for sufficiently
large p, as evident in Figure 2.

Each sibling RD-hard pair identifies an ordered triple
%: < 5 < ;— where the binary expansions yield round
and sticky bit pairs 11, 00, 01, respectively. All three in-
finitely precise quotients fall within an interval of width
4 —Z1=-2 < 52r. The latter bound is obtained
since d’=3x2F"' —4” implies d”d’>2%"', Thus the
three distinct pxp bit quotients for such a triple fall in a
tiny sliver of width just 3 parts in 27 of one ulp. These
triples associated with sibling RD-hard pairs provide
seemingly challenging examples for division algorithms
suitable for inclusion in test suites. For odd precisions,
such as p = 53 for IEEE double precision, we shall show
an efficient procedure for generating a large set of these
triples widely distributed by denominator and quotient
value in the next section.

3’s Complement Symmetry of RD-hard Fractions
This symmetry pairs off an RD-hard 4 with its 3’s
complement % =3 - 4.

Observation 9: Let "7' be RD-hard with n” odd. Then the

3’s complement Z- = 247 has n” even and is RD-hard,

with ’37', Z-, forming a 3’s complement RD-hard pair. O

With "7' adjacent to 57, it is straightforward to show
27 is adjacent to 222~ justifying Observation 9. Since
'37’ and ”7" have the same denominator with quotient values
equidistant from g = % there is precise symmetry about
the line g =  for such pairs.

Note that the 3’s complement symmetry follows from
the other two symmetries. Let each member of a sibling
RD-hard pair be associated with a diagonal RD-hard frac-
tion, and the two such associated fractions together then
form a 3’s complement RD-hard pair. The stronger result
is that the 3’s complement pair exhibits precise symmetry.
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The distribution and symmetries of the set of all pxp
bit RD-hard fractions is best described by dividing the
QD-plot range into 9 regions as illustrated in Figure 5.

Regions 4, 5, and 6 fall below and to the left of the
hyperbola traced by the curve %:3 as x goes from 2" con-
tinuously to 27, All RD-hard fractions with odd numera-
tors occur in the regions 4, 5, and 6. Region 6 exhibits the
precise 3’s complement symmetry for all its member
points, and region 4 exhibits the sibling symmetry about
d=3 277! for all its member points (refer to Figure 2 for
particular examples of these regions for p=7, 13). Only
the odd valued numerator fractions of region 4 yield 3’s
complement RD-hard fractions in region 8, with no sym-
metric pair about d = 2 27~! in region 8. The same obser-
vation applies between regions 2 and 6. These observa-
tions further imply that the number of RD-hard fractions
in regions 4 and 6 are the same, with half as many each in
regions 2 and 8.

2 Region
8
’
Region ~ Region
7 1
7 _Rggiorl A Region Region
6 N - -9 2
® ®
Region Region
5 . 3
A
.
LAY 6
Region
1 4
1

26 d 7
Figure 5: Symmetric Regions of the QD-plot

Within each of the regions 1,3,5,7,9 defined by the re-
flected hyperbolas, there is diagonal symmetry. Regions
1,5,9 have symmetry about the principal diagonal, and re-
gions 3,7,9 about the cross diagonal. Symmetric reflection
between 1,3,5, and 7 is more complex depending on the
numerator parity of the RD-hard fractions. An odd numer-
ator point in region 5 is reflected to even numerator points
in both regions 3 and 7. An even numerator point in re-
gion 5 is reflected about the cross diagonal to another



even numerator point in region 1. The number of RD-hard
fractions in regions 3 and 7 are equal and the number in
region 5 is the sum of the numbers in regions 1 and 3.

For an RD-hard sibling pair 42, 48 in Figure 5’ re-
gion 4, we trace the symmetries to identify a six tuple —‘%
-0 5 119 5 109, LS 5 LS of associated RD-hard
fractions that must be present as a regionally distributed
subset of RD-hard fractions. Except for a couple of spe-
cial cases, an RD-hard fraction in any of regions 1,3,5,7.9
can be traced by the symmetries to reveal subsets of four

or six RD-hard fractions.

3’s Complement Symmetry of RN-hard Fractions
The single symmetry readily apparent for RN-hard
fractions is the 3’s complement form.

Observation 10: Let 1 < 4 <2 be RN-hard with n odd.
Then the 3’s complement '37' = 3—“'[11' is RN-hard, with
I % forming a 3’s complement RN-hard pair. O
The RN-hard 3’s complement pairs have precise symme-
try about the horizontal line ¢ = 3.

For the region 6 of the QD-plot of Figure 5, all RN-
hard associated points will exhibit this symmetry as can
be seen in Figure 3 for p=13. Further results are needed
to better understand the RN-hard distribution throughout
the QD-plot.

4 Efficient Generation of Hard to Round
Fractions

The QD-plot for RD-hard fractions has features
which can be exploited for efficient generation of repre-
sentative hard to round fractions. The diagonal extending
from the origin with g proportional to d spans the full
range of g and the full range of d.

Lemma 11: For any odd precision p =5, and any odd
k<(WZ-120D2  let =27 +k)?®  and
dy =271 + k2T — 1. Then

(i) 2 is RD-hard and the odd child of 557,

(ii) 4422 is RD-hard and the even child of %57

Proof: Since I(dy +2) * dy — 277" * nil = 1, 2+ is adjacent
to 2. Since d; > 277, % is a child of 4%2  Further-
more, since k is odd, ;—i is the odd child of 22, The even
child follows from sibling symmetry. O

2pt
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Referring back to Figure 2 with p = 7, the sibling RD-

hard pair &L, 138 corresponds to k = 1 and the pair 42t, 14§

700 121 87 105

corresponds to k = 3. Generalizing the formula to even k
and including RD-hard fractions that can be determined
by the available symmetries leads to a test suite contain-
ing some 1.414 x 27"Y2 RD-hard fractions distributed
virtually linearly on the main diagonal and 2~ RD-
hard fractions distributed virtually linearly on the orthogo-
nal diagonal. These fractions may be computed by simple
increments of the numerators and denominators.

When computing these cases on the main diagonal
serially with an addition algorithm, roughly the first 40%
of the fractions generated on the diagonal (until they inter-
sect the hyperbola n =gd =2”) contain RD-hard frac-
tions with alternating odd and even numerators. The re-
mainder of the diagonal contains fractions with only even
numerators. Figure 6 describes an algorithm for generat-
ing these fractions for any p = 5 and all k.

#define VPRINT(n, d) if (n evenor n < 2F) print 5

/* INITIALIZATION */
if (p is odd) even = 0; else even = 1;

n=2P"1 4 2prireen)2 4 | 4 oyen,
dl — 2p—1 + 2(p—1+even)/2 -1 dz —
— 2(p+l+even)l2

2p—1 +2(p—1+even)/2 + l;

+ 1+ even;
— —~1+even)/2,
dinc - 2(17 v ’

Nine
Rine_inc = 2+ 2Xeven;
stop = 27;

/* COMPUTATION */
while (d, < stop) {

/* RD-hard: Main Diagonal */
VPRINT(n,d,); VPRINT(n,d,);

/* RD-hard: 3’s Comp Symmetry: Cross Diagonal */
VPRINT(d, *3—n,d,); VPRINT(d; * 3 - n.d,);

/* Add RN-hard Calculation Here */

Rinc = Pinc + ninc_in(;
n=n+ny;
dy =d\ +dipc;
}
Figure 6: Calculation of the Diagonal RD-hard Fractions

dy =dy+ dine;

In [MMO1], we showed a relationship between RD-
hard fractions and RN-hard fractions with the same de-
nominators. Through this relationship and RN-hard 3’s
complement symmetry, a similar number of RN-hard frac-



tions can concurrently be generated via simple additions.
Figure 7 shows the additional steps needed to generate the
RN-hard fractions. These steps should be placed where
indicated in Figure 6.

/* Calculate RN-hard Numerators */

if (nisodd)
ditn ., _ dotn,
ml =22 m2=22
else
ml=2d,-%; m2=2d,-3%;

}

/* Print RN-hard Fractions */
VPRINT(rnl,d,); VPRINT(m2,d,);

/* RN-hard: 3’s Complement Symmetry */
VPRINT(d, *3—-rnl,d,); VPRINT(d, *3—rn2,d,),
Figure 7: Calculation of RN-hard Fractions

Using the steps of Figures 6 and 7, we generated
330,917,692 RD-hard test cases and 168,902,564 RN-
hard test cases for double precision p=53 in 5 minutes us-
ing a 90MHz Pentium processor.

A different set of initial conditions in Figure 6 will
generate another well distributed set of test cases along
different diagonals in the QD-plot. The initial conditions
in Figure 8 along with the algorithms in Figures 6 and 7
generate at least .75x2(P*"2 RD-hard fractions and at
least . 75x27*12 RN-hard fractions for odd p > 7 or even
p210. .

{* INITIALIZATION */
if (p is odd) even=0; else even = 1;

n= 2p—L + 2p—3—even + 2(p—1—even)/2 + 2(p—7—even*3)/2,
dl — 2p—1 + 2(p—3—even)/2 _ 1;

d2 — 2p—1 + 2(p—3—even)/2 + 2p—3—even + 1,
— 2(p+1—even)/2 + 2(pv5—even*3)/2

Rinc
Rine_ine = 2 — even;
stop = 27;

Figure 8: Alternate Test Case Generation

di .= 2(p—l—even)/2.
n )

Using these initial conditions along with the algo-
rithms of Figures 6 and 7, we generated an additional
150,994,994 RD-hard test cases and an additional
138,736,028 RN-hard test cases for double precision
p=53 in 2.5 minutes using a 90MHz Pentium,

The difficulty of rounding a hard to round fraction is

determined by its denominator since it has a distance of
- from an endpoint or a distance of - from a mid-
point. For each odd d, 27241 <d<2P 1, there is one
even numerator RD-hard fraction and sometimes also an
odd numerator RD-hard fraction. It is well known that
within the range [1,2) the hardest to round fraction for
round to nearest has a denominator of 2 — 1 and is adja-
cent to f in the Q,,, series. In a previous paper [MMOO0],
we showed the second hardest to round fraction for round
to nearest has a denominator of 27 — 3 and is adjacent to %
in the 0, series, while the third has a denominator of
27 —5 and is adjacent to either Z or 2, and so on. A simi-
lar statement can be proved for directed rounding.

Observation 13: For directed rounding, the hardest to
round fraction has a denominator of 2” — 1 and is adjacent
to 2=}, the representable p bit endpoint which is a child
of % . The second hardest to round fraction has a denomi-
nator of 2” —3 and is adjacent to £=2, the p bit endpoint
which is a child of %; and the third has a denominator of
27 —5 and is adjacent to the p bit endpoint which is a

child of either £ or £, etc. ]

We previously outlined an algorithm for directly calculat-
ing these RN-hard fractions in order of difficulty for

- round to nearestfMMOO]. This algorithm accepted a pre-
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cision p and a rank n, and returned the even numerator
and the denominator of the n™ hardest to round fraction.
The algorithm was then placed in a loop to generate the
entire set of fractions ordered by rounding difficulty. Any
hard to round fraction with an odd numerator will tie in
difficulty to a hard to round fraction with an even numera-
tor. This odd numerator fraction may be calculated using
the 3’s complement symmetry.

A modified version of this algorithm is provided in
Figure 9 which produces the n* hardest fraction for di-
rected rounding This algorithm uses the GCD algorithm
to find the necessary non-closest parent and requires 7us
to calculate a 24 or 53 bit fraction on a 500 MHz Pentium
II1.
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. 2 ..
fori=3 1027, iis odd {
ne _ 2P—i
= non_closest_parent (57=)
if ng is odd [AG99]
NpRH = 2 —itng
else
npry = (27 =) X 2—ﬂs. . . [CG99]
The next hard to round fraction is 222, (npgry 18
even; check for 3’s complement)
. } . . HW79
Figure 9: Calculation of the n™ Hardest Fraction for t ]
Directed Rounding
Table 10 shows the 10 hardest to round fractions for [IEEE]
directed rounding with precisions of 24, 53, and 64 bits.
[IM99]
Table 10 Hardest to Round Fractions For Standard Precisions
Directed Rounding
[IMOO0]
Rank p=24 p=53 p=64
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[MMO0]
Conclusions
We have shown that the class of division cases which MMo1]
are most sensitive to rounding error can be enumerated for
both directed rounding and round to nearest. The cost of
exhaustive enumeration is one pxp bit GCD computation Pa99
pXxp [
per case. When plotting these division test cases on a
2-dimensional quotient vs divisor graph, various symme- 5593
tries and linear progressions become evident. By exploit- 85931
ing these symmetries and linear progressions, large repre-
sentative subsets of hard to round fractions may be effi- [Ta89]

ciently determined via simple additions.
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