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Abstract

An IEEE compliant, 1 GHz Sparc64-V Floating-Point
Unit (FPU) with reliability-accessibility-serviceability
(RAS) features and partial support for denormal operands
and results is presented. The FPU has two functional
units, each with an adder (FADD) and a multiplier
(FMUL). Additionally, one of the functional units contains
a graphics unit (VIS). Two floating-point instructions can
be scheduled out of order each cycle, one to each
Sfunctional unit. A peak performance of 4 GFLOP is
achieved by scheduling two floating-point multiply add
(FMA) instructions each cycle. The FADD unit is fully
pipelined and can execute an addition, subtraction,
conversion, or compare instruction every cycle. The
FMUL unit executes pipelined multiply instructions.
Divide and square-root instructions are executed with
multiple iterations through the multiplier pipeline. The VIS
unit is also pipelined and executes SIMD fixed-point
graphics instructions. The adder and multiplier have
latencies of 3 and 4 cycles respectively. Novel techniques
are presented in the adder and multiplier implementations
to reduce area and cycle nme. The FPU provides RAS
support for enhanced server reliability by using selective
parity error detection. The FPU has been implemented in
0.15u, 6-layer metal CMOS technology.

1. Introduction

The HAL Sparc64 V (Sparc64-V) microprocessor
targeted for large-scale SMP systems is SPARC V9 [1]
compatible with the Visual Instruction Set (VIS2.0)
extensions [2]. The SPARC64-V processor is an eight
issue superscalar out-of-order chip with 1 GHz clock cycle
in 0.15 micron 6-layer metal CMOS technology.

The Sparc64-V Floating-point Unit (FPU) has two
identical floating-point functional units, one graphics
(VIS) unit and one Reservation Station (FRS). Every
cycle, two FPU/VIS instructions can be issued to the 16-
entry FRS. The FRS can schedule two FPU instructions or
one FPU and one VIS instruction per cycle. Each FPU has
an Add unit (FADD) and a Multiplier unit (FMUL). The
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FADD unit is fully pipelined and can execute one
Addition, Subtract, Conversion, Compare, or Move
instruction every cycle. The FMUL unit implements
Multiply, Divide, and Square-root instructions. The
Multiply instruction is fully pipelined, but the Divide and
Square-root instructions are not pipelined. The FMUL unit
sends a done signal to the Scheduler after the
Divide/Square-root instruction is completed so new
instruction can be scheduled. The VIS unit is fully
pipelined and implements all the VIS2.0 instructions.

Sparc64-V  supports two additional non-SPARC
instructions, unfused-FMADD (WFMADD) and unfused-
FMSUB (uFMSUB). Unlike fused multiply-add where
rounding is performed only once after the add operations,
rounding is done twice for these unfused instructions
(multiply, round, add/subtract, round). The rounding after
the multiply operation enables us to generate a result that
is compliant with IEEE-754 rounding and detect
exceptions precisely. If multiply operation generates an
exception, the add/subtract operation is not executed and
the exception state of the multiply operation is forwarded
to the trap handler. These instructions need three
operands; srcl and src2 go the FMUL unit, src3 goes to
the FADD unit. The FMUL result is forwarded to the
FADD unit via an internal FMA bus as shown in Figure 1.
The add operation is performed on the multiply result and
src3. New instructions (add, subtract, conversion,
compare, and move) are not scheduled to the FADD unit
during this cycle. The architecture supports the issue and
execution of two uFMADD/uFMSUB (two FMUL and
two FADD/FSUB) every cycle for a peak execution rate
of 4 GFLOPS.

The block diagram of floating-point unit 15 shown in
Figure 1. The FRS has six read ports, three for Funit-A
and three for Funit-B. The three sources are needed for
uFMADD/uFMSUB and PDIST (VIS) instructions. The
FADD/FMUL (referred to as Funit-A) results are
distributed on FPA result bus and FADD/FMUL/VIS
(referred to as Funit-B) results are distributed on FPB
result bus. Since the result bus wire lengths are long and
back-to-back instruction execution is important for
performance, one-half cycle is reserved for result
distribution. For example, if the ADD instruction latency



is three cycles, the ADD operation is done in two-and-half
cycle and the last half cycle is used for result distribution.
This allows for the dependent instruction to start execution
in the fourth cycle. The FADD unit and FMUL unit
implementation details are explained in their respective
sections.
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Figure 1: FPU block dilagram

The VIS unit implements a subset of the VIS2.0
instructions that access the floating-point register file.
Other VIS2.0 instructions are implemented in the Integer
unit. VIS2.0 supports all the standard fixed-point graphics
instructions (logical, alignment, arithmetic, compare, etc).
All VIS instructions are SIMD type with 8-bit, 16-bit or
32-bit operands. The VIS unit gets operands from the
FMUL unit and sends the result back to the FMUL unit.
This decouples the VIS unit from the source and result
distribution paths, ensuring that the FPA and FPB result
bus distribution latency for FADD and FMUL units is
unaffected. The data distribution from FMUL unit to VIS
unit takes one-half cycle and the result distribution from
VIS unit to FMUL unit takes another one-half cycle. So
the minimum latency for a VIS instruction is two cycles,
of which, only one-half cycle is allocated for execution as
outlined in Figure 2.
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Figure 2. VIS pipeline for AND instruction

The FPU supports both single precision and double
precision operations and conforms to the IEEE-754
standard. The latencies for single and double precision are

the same for all instructions except for divide and square-
root. The latencies of the important floating-point
instructions are shown in Table 1. The Divide and Square-
root instructions have a throughput less than their latencies
because the new instruction can be started after the last
iteration of the Divide/Square-root passes through the
multiplier array. Since the instructions have different
latencies, it is the scheduler’s responsibility to avoid
collisions on the result buses.

Table 1. Instruction latencles

Instruction(s) Latency | Throughput
FADD/FSUB 3 1
FMUL 4 1
FDIVs 16 13
FDIVd 19 16
FSQRTS 22 19
FSQRTd 27 24
uFMADD/uFMSUB 7 1

Denormal operand and result handling/generation often
require extra hardware and impact either cycle time or
latency. A subset of denormal operations can be handled
by manipulating only the exponent. Sparc64-V is able to
support these operations with the addition of a minimal
amount of hardware. Any denormal operation that
involves mantissa normalization and rounding is not
supported because handling them will not only require
significant extra hardware but can affect the cycle time of
the operation. Denormal operations in Sparc64-V are
explained in detail in the denormal operations section.

In silicon, charged particles are generated by cosmic
rays or alpha particles from radioactive decay of the chip
materials. A high concentration of these charged particles
can cause a temporary, localized circuit failure. This soft
error behavior can be identified and fixed most of the
time. Until recently, soft error detection and repair,
referred to as RAS  (Reliability, Accessibility,
Serviceability), was featured only in mainframes because
of the associated area and cycle time costs. The Sparc64-V
microprocessor supports some select RAS features to
achieve a target error rate of 240 fit (failure per 10° hours).
This is achieved by protecting the major datapaths and
arrays either with parity or ECC (Error Correcting Code).
If an error is detected, the instruction is re-scheduled and
soft error correction is attempted on the re-execution. All
unresolved soft errors are logged into software accessible
registers. In the floating-point unit, appropriate choices
were made to support RAS without compromising the
performance (latency and clock cycle), keeping the
hardware cost to a minimum. The details of the RAS
implementation are explained in the RAS section.



2. Addition unit

The overall structure of the floating-point adder unit is
based on dual concurrent pipelines each requiring a shift
in only one direction [3,4]. This is illustrated in Figure 1,
the addition unit block diagram.

The Path 1 pipeline is used for effective subtraction
operations with exponent difference of 0 or 1. Path 2 is
used for effective addition and effective subtraction
operations with exponent difference greater than 1. The
approach described in [3] requires a rounding step in Path
1 for exponent difference of one because of a potential
guard bit. However, by considering the MSB of the
mantissa, we can avoid this rounding step in Path 1. By
requiring the mantissa of the operand with the larger
cxponent to be less than 1.5, we have a minuend in the
range [1, 1.5), and a one bit right shifted subtrahend in the
range [0.5, 1), yielding a result that falls in the range (0,
1). This always requires a one bit left shift to normalize

the result to the range [1, 2). The possible guard bit would
be shifted to the LSB position removing the requirement
for a rounding stage. The new selection criteria for Path 1
and Path 2 are described in Table 2.

Path 2 operations generally require a right shift and a
rounding step. Addition and subtraction with an exponent
difference larger than one require alignment of the smaller
operand mantissa using a right shifter. Subtraction with
exponent difference of 1 requires a single bit right shift of
the mantissa of the smaller operand. Since the subtraction
here is limited to a minuend in the range [1.5, 2) and a
subtrahend in the range [0, 1), the result falls in the range
(0.5, 2). No post-addition right shift is needed and the
potential single bit left shift is handled during the first
stage of the result selection.

2.1. Path 1
An exponent difference of zero or one can be predicted
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Table 2. Path selection

Path 1 Path 2
Subtraction with exponent | Subtraction with exponent
difference of 0 difference greater than 1
Subtraction with exponent | Subtraction with exponent
difference of 1 and difference of 1 and
Mantissa of larger Mantissa of larger
exponent less than 1.5 exponent greater than or
equal to 1.5

Addition

using the two least significant exponent bits of each
operand [4]. This prediction is used to resolve the
exponent precedence early in Path 1 so that the mantissa
alignment and leading zero prediction [5,6] can both be
completed in pipe stage 1.

In order to avoid a negative mantissa result that
requires post-addition conversion from sign-magnitude
format, the smaller mantissa should always be subtracted
from the larger mantissa. For exponent difference of one,
the above prediction can be used to indicate the
precedence. For an exponent difference of zero, a full
mantissa compare is done to determine the larger
mantissa, and the mantissas are swapped accordingly.

Operands with an exponent difference of zero or one
can generate a mantissa result that contains one or more
leading zeros. The algorithm used to predict the leading
zeros vector assumes that the smaller mantissa (B =
bes...bo) is being subtracted from the larger (A = ag...a0)
and implements the twos complement subtraction by
inverting B. This precedence is guaranteed as above by
using the difference by one prediction and the operand
comparison result.

z,=((a,®b))+(a,, -b,,));i=1t063 (1)

The above prediction algorithm, which does not use a
full carry chain, goarantees that the prediction vector (Z =
Zs...Z1) has, at most, one too few leading zeros. This error
is corrected in pipe stage 3 with a one bit left shift of the
result.

In pipe stage two, the leading zeros in the prediction
vector are counted (LZC) and encoded. In parallel, the
mantissa subtraction is computed. The post-subtraction
left shift is implemented as a series of muxes driven by the
decoded LZC result.

The final step for Path 1 is leading zero error
correction, which is handled in pipe stage three. Since
only normalized results are supported in Sparc64-V, the
leading zero prediction error can be detected by looking at
the MSB (hidden bit) of the normalized result. If the MSB
is zero, there was a prediction error, and a one bit left shift
is required to complete the normalization. This result is
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sent for final selection between the two paths and driven
onto the result bus.

2.2. Path 2

The pre-normalization right shift magnitude is
determined from the exponent difference for both addition
and subtraction operations in Path 2. Before the
precedence of the operands is known, exponent
subtractions of A — B and B — A are both performed. The
low order results of the exponent subtraction are used to
partially right shift both mantissas by 0, 1, 2 or 3. After the
exponent subtraction is completed, the partially shifted
mantissa of the smaller operand is selected. To avoid post-
addition sign magnitude conversion for subtraction, the
mantissa with the smaller exponent is swapped into the
subtrahend position.

In pipe stage two of Path 2, the full result of the
exponent subtraction is used tc complete the right shift of
the mantissa of the smaller operand. As data is right
shifted out of the mantissa, the rounding information is
computed in paralle] (LSB+1, LSB, guard, round, sticky
bit).

For proper IEEE-754 rounding [7], A+B, A+B+1 and
A+B+2 are required. This can be achieved using only two.
adders to generate A+B and A+B+2; A+B+1 can be
derived from these two results [3]. A Carry Save Adder
(CSA) stage is inserted prior to the A+B+2 adder to add a
1 at the LSB+1 positions for single and double precision
operations, bit 41 and bit 12 respectively. This row of
CSA’s is used in lieu of a flagged adder (as described in
[4]) that would require a split carry chain to support
insertion of rounding bits at different bit positions.
Without a split carry chain, the topology of the adder can
be simplified, leading to a faster adder design. Table 3
illustrates the selection of addition results with rounding
and normalization based on the overflow bit (MSB + 1),
round up bit and LSB. The round up bit indicates the
conditional increment of the pre-normalized result to
perform IEEE-754 rounding for all rounding modes, and is
computed based on the rounding mode, sign, guard, round
and sticky bits.

Path 2 subtraction results fall in the range (0.5, 2)
which will require a one bit left shift for normalization
when the result 1s less than 1. In the case of a left shift, the
rounding position will change from the LSB to the guard
bit. The two possible rounding positions can be handled
using two fill bits at the LSB+1 and LSB positions,
combined with A+B and A+B+2 results. For instance,
when the LSB and guard bit are both one, a round up will
carry through and be reflected by the selection of A+B+2
on the upper bits, zeroing out the LSB bit(s) in the
process. Table 4 illustrates in more detail how the fill bits
are combined with A+B and A+B+2 to generate the final
result.



Table 3. Path 2 addition result selection

Overflow | Round UpBit | LSB | Result (Double Precision) Result (Single Precision)
1 1 - A+B+2[64:12] A+ B +2[64:41]
1 0 - A +B[64:12] A+B[64:41])
0 1 1 A+B+2[63:12], A+BJ[11] A+B+2[63:41], A+B[40]
0 1 0 A+B[63:12], A+B[11] A+B[63:41], A+B[40]
0 0 - A+B[63:11] A+B[63:40]
Table 4. Path 2 subtraction result selection
Round Up | MSB | LSB | Guard | Result (Double Precision) | Result (Single Precision)
0 0 - - A + B[62:10] A + B[62:39]
1 0 0 0 A + B[62:12], 01 A + B[62:41],01
1 0 0 1 A + B[62:12], 10 A + B[62:41], 10
1 0 1 0 A+ B[62:12], 11 A + B[62:41], 11
1 0 1 1 A+ B +2[62:12], 00 A+ B + 2[62:41], 00
0 1 - - A+ B[63:11] A + B[63:40]
1 1 0 0 A+ B[63:12],0 A +B[63:41],0
1 1 0 1 A+ B[63:12], 1 A +B[63:41], 1
1 1 1 0 A+ B[63:12], 1 A+ B[63:41], 1
1 1 1 1 A+ B +2[63:12], 0 A+ B +2[63:41],0

The rounding algorithm used here supports all four
1EEE-754 rounding modes. The rounded result selection
mentioned above is implemented in pipe stage three
followed by selection between the Path 1 and Path 2
results. The remainder of pipe stage three is used for result
selection and distribution on the result bus.

2.3. Conversion operations

Overlapped on top of the framework for addition and
subtraction are the ancillary floating-point instructions
including floating-point to integer, integer to floating-
point and floating-point to floating-point conversions.

Single to double precision floating-point and integer to
floating-point conversions are handled in Pathl. For
single to double precision conversions, the left shifter is
used for normalization if the incoming operand is
denormal. Integer to floating-point conversions may
require rounding after the normalization (left) shift to
account for the extra bits of precision in the integer
operand. Since subtraction does not require a rounding
step in Pathl, an extra cycle is used to round the floating-
point result.

Double to single precision floating-point and floating-
point to integer conversions are handled in Path2 since
single precision conversions require rounding and
floating-point to integer conversions use a right shift to
align the fixed-point result based on the floating-point
exponent.
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3. Multiplier unit

The Multiplier Unit (FMUL) has a four-stage pipeline,
which performs floating-point multiplication, division, and
square-root instructions. Fixed point SIMD graphics
multiply instructions (VIS2.0) are also performed in the
FMUL unit. Floating-point multiply instructions are fully
pipelined and require three and a half pipe stages (the last
half stage is for result distribution). The division and
square-root instructions are not pipelined and use multiple
iterations through the multiplier array. New instructions
cannot be scheduled to the FMUL unit until a
division/square-root instruction completes.

The mantissa datapath of the multiplier pipeline is
shown in Figure 4. The mantissa array is 60x60 to support
division and square-root operations for correct IEEE-754
rounding. The multiplier array is also used to support four
8x16 signed SIMD graphics multiply operations.

Pipe stage 1 of the multiplier pipeline implements the
operand alignment function as well as the Booth recoding
of the multiplier. For 60-bit operands, both radix-4 and
radix-8 Booth recoding require four levels of 4t02 CSA.
Radix-4 is chosen over radix-8 recoding to avoid the extra
delay in generating the partial products for Booth recode
values of +3 and -3. Radix-4 modified Booth recoding [8]
generates 31 partial products in 2’s complement form to
handle negative numbers that need to be sign extended.
This sign extension is achieved by adding two extra bits
[9], resulting in a 63-bit long partial product vector to



which the Booth sign is added, as shown in equations 2
and 3.

PP,=P,P,P,P, P, P, ......... P, P, .
Pbs
and fori=1to 30
PP, =1P, P, Py Py......... P, P, 3)
P

The Booth sign, Py, is O for Booth recode values of 0,
1, or 2, and P, is 1 for Booth recode values of -1 and -2.
For unsigned multiplicand, P; is 0 for Booth recode values
of 0, 1, and 2, and P, is 1 for Booth recode values of -1
and -2. For signed multiplicand, P, is Psq for Booth recode

values of 0, 1, and 2, and P, = i’; for Booth recode values

of -1 and -2.

In the pipe stage 2, the partial products are reduced
using the Wallace tree technique [10] with 4to2 Carry-
Save Adders (CSA). Thirty-two summands are formed by
combining thirty-one partial products with the addend
used for computing the residual for the division and
square-root iterations. Each 4t02 CSA row reduces the
number of summands by a factor of two. Four levels of
4t02 CSA rows are thus required to compress thirty-two
summands to two terms (sum and carry) in redundant
form.

In a conventional implementation of a Wallace tree, the
outputs of the first three levels of CSA rows need
alignment shifts of 8, 16, and 32 bits. Such a staggered
array suffers long interconnect delays and increased width
of the array. To reduce these problems, the multiplier
array is folded as shown in Figure S. »

The multiplicand is routed diagonally and the partial
products are aligned such that no shifting is required for
the redundant sum and carry outputs of the CSA. Since the
critical path is through the multiplier for partial product
generation, the shifting on the multiplicand does not affect
timing. After the partial products are generated, the critical
path is through the CSA rows, and by not shifting the sum
and carry outputs, wire delay is minimized. This is an
improvement over other implementations, such as [11],
where the sum and carry outputs, rather than the
multiplicand, are shifted for proper alignment. The outputs
from column bsg are used by the CSAs of column bsg. The
routing of the wires from column bsg to column bsy is
avoided by duplicating column’s, bsg..bs,, in the lower half
of the array. The array is also structured to facilitate the
non-redundant result and sticky generation by grouping
the upper (result) bits together and the lower (sticky) bits
together. This grouping avoids the potential 64-bit shift of
the final CSA outputs.
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Figure 4. Multiplier unit

In pipe stage 3, the sum and carry vectors in redundant
form are added using a group carry look-ahead adder with
carry select to obtain the non-redundant sum. The carry-
out from the low-order 60 bits is generated by special
circuitry that provides the carry-in bit for the adder for the
result selection. The sticky bit is generated in parallel to
the generation of the carry-out, directly from redundant
sum and carry bits, similar to the technique used in [11] as
shown in equation 4.
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s;and c; are the sum and carry bits of the redundant sum
and carry vectors. The propagate signal, p;, and the kill
signal, k;, from the 60-bit carry-out logic are used to
generate the vector z;. The sticky bit is the logical OR of
the z; vector. Several rounding algorithms for IEEE
multipliers exist in the literature [11,12]. The rounding
algorithm implemented here can be described with
reference to Figure 4. Sums with assumed overflow and
non-overflow are generated with and without carry-in.
Rounding is then performed by two levels of selection,
first selection is based on the carry-in bit from the carry-
out logic, and the second selection is based on the
overflow bit, round bit, sticky bit, and the rounding mode.
The selection of the rounded result is similar to the one
used in the addition unit, illustrated in Table 3.

In pipe stage 4, the mantissa and exponent paths are
properly aligned and merged, and the final result is driven
onto the result bus. Partial support for handling denormal
operands is provided by the multiplier hardware and is
detailed in section 4.

3.1. Division and square-root

The division and square root operations are performed
by iterating on the multiplier, and are not pipelined. The
scheduler does not dispatch any multiply/division/square

root/VIS instructions to the FMUL unit executing
division/square root operation until the current
division/square-root  instruction completes. The

division/square-root instruction sends a done signal to the
scheduler 6 cycles before it is ready to drive the result on
the result bus. The divider preempts the distribution bus in
the 6™ cycle after asserting done signal and drives the
result distribution bus with the division/square-root result.
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The division and square root instructions are
implemented using the iterative Goldschmidt convergence
algorithm [13,14]. Both operands, A and B, are
normalized floating-point numbers with their mantissas in
the range [1, 2) and a normalized value of A/B is produced
in the range [1, 2) for division, and a normalized value of
VB in the range [1, 2) is produced by square root. For
division, the seed value is an initial approximation of 1/B,
obtained by indexing the leading 7 bits of B (excluding the
implicit bit) into a 7-bits-in, 10-bits-out look-up table. Let
F, be the result from the seed table. The iteration
equations are shown in equations S and 6:

Q=LA RJ, G, =[B- Rl ©)

F = l2- G;J , Qi = ]_Ql Fi_l .G =[Gy FJ ,

fori=1, 2, and 3. (©)
For square-root, the seed value is an initial

approximation of 1/ \/E or 1/y2B, obtained by indexing
into one of two separate lookup tables, one for the even
exponent, and the other for the odd exponent of B. Each
table has 128 entries, each entry being 9 bits wide. Let Fy
be the result from the seed table. The iteration equations
are shown in equations 7 and 8:

Q =1B: Fol,Gi=[(B: F Fol @)
F=l% (3-G)l,Qu=lQ- Rl G =[G B) El,

fori=1,2,and 3 (3)

The lookup tables for division and square root are
implemented to minimize their sizes for optimal double
precision operations and to allow the table access to occur
in one cycle. Bipartite seed table implementation for the
same initial accuracy was investigated to be slower than
the present single lookup table access. Four 10-bit tables
and a 14-bit adder would be required to reduce the number
of iterations through the multiplier by one. The area
penalty for such an implementation far exceeded the
potential improvement in latencies.

The seed values are always chosen to be less than the
corresponding infinitely precise values, minimizing the
maximum relative error in the interval [1,2) [15]. In the
division and square-root iterations, each multiplication is
60 by 60 bits, where || and [ ] represent round down and
round up values of the 120-bit multiplication result to 60
bits, where the round wup is approximated by
unconditionally adding a one in LSB (bit 60). Each of the
intermediate products is rounded to a higher internal
precision (60 bits) to account for the accumulated
rounding errors in the intermediate iterations. The iterative
refinement factors, 2 — Gyand ¥2- (3 — Gj) are implemented
by complementing G; and adding the constants (1 for
division and 3/2 for square root) in the unused slots of the



Table 5. Single precision division pipeline

Cycle 1234|567 |8|9]|10]|11]12|13|14]|15] 16
Initial Seed Fo
N Iteration G] Gl G[
Q| Q| Q
2" Iteration G |G |G,
Q[ Q| Q
3" teration Q| Q[ Qs
Residual and Result C | C | C|Res
CSA rows. With the design parameters stated above, Q; Correctness of the division and square-root

has enough bits of accuracy to yield the correctly rounded
single precision result. For double precision operations, Q4
needs to be computed to yield the correctly rounded result.
The iterations through the multiplier array use only the
first three stages of the multiplier pipeline. The fourth
stage is only used for the final IEEE rounding and result
distribution.

Rounding is performed after the final iteration of the
convergence algorithm on the 120-bit raw result Q (Q; for
single precision, Q, for double precision) to produce the
IEEE compliant result. The rounding algorithm used is
similar to the methods used in [16,17]. The residual is first
computed as C = A — Q. * B for division, and C = B — Q.2
for square root in one pass through the multiplier pipe,
where Q. is obtained by rounding up Q to 2 ulp (25 bits
for single precision, and 54 bits for double precision). The
correct result is then selected from trunc(Q), trunc(Q + V2
ulp), and trunc(Q + 1 ulp), where trunc(x) is the round-
down value of x to 24 bits for single precision and 53 bits
for double precision, and ulp = 22 for single precision,
and ulp = 23 for double precision. The above three
results are generated for the multiplier rounding and thus
there is no extra penalty for division and square root
rounding. The selection of the appropriate result is based
on the round bit and LSB of Q, the residual C (there are
three cases C>0, C=0, C<0), the sign of the expected
result, and the rounding mode.

Single and double precision division have latencies of
16 and 19 cycles respectively, and single and double
precision square root have latencies of 22 and 27 cycles
respectively. The throughputs are three cycles shorter than
the latency because a subsequent operation can enter the
multiply pipe once the last iteration of the division or
square root has moved to pipe stage 2. The latency of
single precision division iterating on the multiplier
pipeline is explained in Table 5. There is one cycle bubble
in the pipeline between computation of Qs and the
computation of residual C to generate the three possible
results for subsequent selection for rounding. The latencies
of double precision division and single and double
precision square root can be explained similarly.

implementations has been verified by deriving the upper
bound on the maximum error. The two sources of error are
the approximation error due to the algorithm itself, and the
computational error due to finite table values and finite
multiplier size. These errors are computed and
accumulated over the required number of iterations. The
initial table size and the seed values, size of the multiplier,
and the intermediate directed rounding guarantee that the
120-bit raw result, Q, satisfies the bound, q - Y2 ulp < Q <
qforq=1,and q- % ulp < Q < q for q < 1 for division,
and q ~ Y% ulp + ulp2 < Q < q for square-root, where ulp =
2% for single precision, and ulp = 2 for double
precision, and q is the infinitely precise result. This bound
is sufficient to yield correctly rounded result in all
rounding modes.

For special operands such as Zero, QNAN, SNAN,
Infinity etc., the division and square-root operations do not
iterate through the multiplier. Results for these cases are
generated by special control logic in the first pass through
the multiplier. This early exit feature allows the latency of
division and square-root operations to be only 10 cycles
for special operands.

4. Denormal operations

In general, floating-point operations will encounter
denormal operands and operands that will result in
denormal results. Generating IEEE-754 compliant results
for denormal operands and results often requires the
determination of lcading zeros, adjustment to mantissas
(shifting) and exponent, and special rounding. Overall,
timing and area are adversely affected when denormal
operations are fully supported in hardware. However, by
introducing a minimal amount of hardware to compare the
value of the exponents, we can provide support for a large
subset of the denormal operations.

Consider the case of floating-point multiplication. If
both operands are denormal, the result is guaranteed to
underflow beyond the dynamic range irrespective of the
number of leading zeros in the mantissa bits. If one of the
operands is a denormal, and the resulting exponent (esrcl
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Table 6. Denormal handling

. 1 Denormal Operand, 2 Denormal
Instruction(s) 1 Normal Operand Operands Result Denormal
FADD{s,d}, FSUB{s,d} Unfinished_FPop Unfinished trap | Unfinished_FPop, if eres < 1
Unfinished_FPop, if . Unfinished_FPop, if
Handled in
FMUL(s,d} -25 < (esrcl + esrc2 - 126) (sp) hardware -25 <eres < 1 (sp)
-54 < (esrcl + esrc2 - 1022) (dp) -54 < eres < 1 (dp)
Normal/Denormal:
Unfinished_FPop, if
(esrcl —esrc2 — 1) < 128 (sp)
(esrcl —esrc2 — 1) < 1024 (dp) Unfinished Unfinished_FPop, if
FDIV{s,d} FPo -25 <eres < 1 (sp)
Denormal/Normal: P -54 <eres < 1 (dp)
Unfinished_FPop, if
-25 < (esrcl - esrc2 + 126) (sp)
-54 < (esrel - esrc2 + 1022) (dp)
Unfinished_FPop
FSQRT{s.d) for positive operand

+ esrc2 — bias) is less than -25 for single precision or —-54
for double precision, the result is guaranteed to underflow
beyond the dynamic range in the given precision,
irrespective of the number of leading zeros in mantissa
bits of the denormal operand. The two cases where the
rounding will produce the smallest denormal number are
rounding to positive infinity and the result is positive, and
rounding to negative infinity and the result is negative. All
other rounding modes produce zero as a result. Such
extreme underflow cases are efficiently handled by
hardware. All other cascs that are not handled by hardware
arc conservatively trapped as unfinished_FPop. Table 6
shows how denormals are handled for different operations,
where the biased exponents of the source operands, and
the result are denoted by esrcl, esrc2, and eres. The
instructions with denormal operands/results are trapped by
setting unfinished_FPop exception. The software emulates
the trapping instruction and generates the correct results
and flags.

5. RAS

The Floating-Point Unit supports RAS features without
sacrificing significant area or performance. Data buses are
parity protected on the word boundary (32-bits) instead of
byte (8-bits) to reduce the number of parity bits distributed
and stored. Since parity generation of 32-bits takes five
levels of logic to implement, the parity distribution is done
one cycle after the data is distributed. Soft errors in static
circuits are recoverable most of the time. They cannot be
recovered if the soft error propagates into a storage
element such as a latch or a flip-flop. Since the soft errors
are usually low swing, the propagation is two to three
times slower than normal delay. Unless the soft error
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occurs on a gate very close to the storage gate, they are
recoverable. Soft errors in dynamic circuits and storage
elements such as latches are non-recoverable and their
error rates are shown in Table 7. By providing RAS
protection for dynamic circuits and all registers that hold
state for more than one cycle, most of the soft errors can
be detected.

Table 7. Circult component soft error rates

Circuit Type Soft Error Rate (fit)
Latch 0.00052
Dynamic circuit 0.0013

The FRS registers holds data for more than one cycle
S0 it is parity protected. The parity is written to the FRS
one cycle after the data is written. Similarly, the parity is
read one cycle after the data is read. When the FRS is
read, the parity is checked and errors, if any, are logged.

The parity prediction algorithms for the arithmetic
functions are expensive both in terms of area and speed.
Since 80% of the FADD unit uses dynamic circuits that
need to be protected, a different approach is used. By
implementing a dual-rail domino design, the true and
complement signals at the last cone of logic can be
XORed. An error is indicated if the XOR output is zero.
This approach is used to detect errors on some of the
major blocks (align, compare, add) of the FADD unit.
Eighty percent of the domino logic is covered in this
manner. An example of dual-rail domino with error check
is shown in Figure 6. The example shows a dual-rail
domino AND gate, but this concept can be generally
applied to any dual-rail domino gate. In the case of an
adder, the final carry and carry-complement can be



XORed as long as carry and carry-complement logic are
independent.

=y

I

I [»-]

D=

@]
)

|>l

Figure 6. Dual-rall domino error detection

parity_in A; A, A, Ao
1 bit shift 0
R; R, Ry Ro
Example:
parity_in =1
parity_out A= A3AA A= 1100

R =R3R3R{R, = 1000
parity_out =0

Figure 7. Parlty prediction for 1 bit left shift function

In general, multiplier arrays are protected with residue
checking because residue arithmetic takes less area.
However, residue generation timing is more critical than
the critical timing of the array itself. So for Sparc64-V, the
multiplier array (pipe stages ! and 2) is designed with
static logic and RAS protection is not provided. For the
next two pipe stages of the FMUL unit, single rail
dynamic circuits are used and RAS protection is provided
by parity prediction approach. The parity prediction lags
the data by one-half cycle. Parity prediction was used
because dual-rail domino was not used in these pipe stages
(except adder) and there are registers that hold data for
more than one cycle to support divide and square-root
operations. An example of parity prediction for a 1 bit left
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shift operation is shown in Figure 7. The example
illustrates how the parity value is affected when a zero is
left shifted into the given input (A).

The VIS unit is implemented with static logic so no
RAS protection is provided. The FPU RAS error reporting
is synchronized with the floating-point exception
reporting.

6. Summary

We have presented the framework for a reliable, high
performance IEEE-754 compliant Floating Point Unit with
support for VIS instructions. Novel techniques presented
in the Floating Point Add algorithm eliminate rounding in
Path 1 thereby reducing area and enabling us to meet our
1GHz timing goal. Enhancements to the addition
algorithm also result in eliminating the need for post
addition data conversion in both paths. Use of the addition
and addition + 2 results yield efficient rounding for add,
subtract and multiply instructions. The multiplier folding
technique presented results in a well-balanced Wallace
tree, minimizing area and wire delay. The bypass path in
the multiplier for divide and square-root iterations reduces
the latency of these instructions by 3 and 5 cycles,
respectively. RAS features provided in the floating-point
unit make the soft errors failures due to alpha particles
detectable and to some extend correctable. Partial support
for denormals and early exit feature for special operands
in the case of divide and square-root operations add to the
overall performance of the FPU at minimal hardware cost
and no impact to cycle time.

Table 8 highlights the salient features of the technology
used and some relevant statistics gathered from the
completed design. Figure 8 shows the routed layout of the
Floating Point Unit.

Table 8. FPU design characteristics

Methodology Full Custom
Process 0.15u, 6 layer Metal CMOS
Transistor Count 1.9 Million
Transistor Density 87 KT/mm®
FPU Footprint 9.1 x 2.4 mm’
Cycle Time Ins @ 1.5V, 85 °C
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