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Abstract

In this paper, the potential of reducing power dissipation in a
digital system using the Logarithmic Number System (LNS) is
investigated. To provide a quantitative measure of power savings,
the equivalence of an LNS to a linear fixed-point system is initially
explored. The bit assertion activity of an LNS encoded signal
is studied for both uniform and correlated Gaussian inputs. It
is shown that LNS reduces the average bit assertion probability
by more than 50%, in certain cases, over an equivalent linear
representation.  Finally, the impact of LNS on the hardware
architecture and, by means of that, to power dissipation, is
discussed. It is found that the average number of logic transitions
is reduced by several times, for certain arithmetic operations and
word lengths, thus compensating the power-dissipation overhead
due to the unavoidable linear-to-logarithmic and logarithmic-to-
linear conversion.

1 Introduction

Power dissipation minimization is sought at all levels of
design abstraction, ranging from system-level software-hardware
partitioning down to technology-related issues. A wide variety
of design techniques have been proposed [1], aiming to reduce
the clock frequency, the total switching capacitance, the supply
voltage, and the average activity in a clock period. The
successful selection of the number system and the proper design
of arithmetic circuits has been proposed as a power dissipation
minimization technique {2). For example, Ramprasad et al. report
that the sign-magnitude representation demonstrates minimal
activity, among the various number representations (unsigned,
two’s complement, one’s complement) [3].

A variety of LNS processors have been reported [4, 5],
demonstrating the feasibility of LNS-based systems. The main
drawback in LNS processing is the complexity of logarithmic
addition and, in particular, of logarithmic subtraction. The
hardware implementation of such operations relies on memory
look-up tables and several techniques that reduce their size
have been proposed [5]. Furthermore, different approaches to
mitigating the logarithmic subtraction complexity problem have
been suggested, such as the redundant LNS by Amold er al. 6]
and the co-transformations by Amold er al. [7].

Most of the previous works on LNS, generally, do not consider
the impact of logarithmic arithmetic on power dissipation.
However, Sullivan [8] reports that an LNS-based DSP can
dissipate 29% less power than a linear DSP of comparable
dynamic range and SNR. The application of LNS processing to
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a hearing-aid instrument is described by Morley er al. [9]. More
recently, Sacha and Irwin studied the impact of LNS on QRDRLS
adaptive filtering in terms of switched capacitance and numerical
accuracy [10].

In this paper, it is shown that the adoption of the LNS [11]
can lead to substantial power dissipation savings, since it both
reduces the average bit activity and it simplifies certain arithmetic
operations, directly cutting the corresponding power dissipation.
An introduced probabilistic analysis shows that reduced bit
activity should be expected in the most significant part of
an LNS word, a theoretical result found to be in agreement
with experimental results. Moreover, this paper shows that
complicated LNS operations require less power than complicated
fixed-point operations, i.e., LNS addition/subtraction is less
power demanding than fixed-point multiplication. As a result,
combined operations such as multiplication-addition, are shown
to be efficiently implemented in LNS. A preliminary version of
some of the results presented in this paper are included in [12].

2 Linear/LNS Equivalence

The LNS representation maps a real number, X, to a triplet, as

Xﬁ(z,s,x:logb[Xl), (b
where b is the base of the logarithm, z is the zero flag, and s is the
sign of X. A zero flag is required, because log, | X| is not finite at
X = 0. Similarly, since the logarithm of a negative number is not
areal number, the sign information of X is separately stored in the
sign bit s. Logarithm z = log,, | X| is encoded as a binary number
(two’s complement or sign-magnitude), expressed as ¢ = I.F,
where I is the integral and F' is the fractional part.

LNS has been considered as an extreme case of floating-
point arithmetic [13]. However, floating-point arithmetic is not a
common choice for power-constraint systems; instead fixed-point
arithmetic is preferred due to its simplicity. Hence, in this paper
that focuses on power dissipation aspects, LNS is compared to an
n-bit linear fixed-point representation and it is shown to provide
substantial improvement in terms of power dissipation. There are
two main issues in a finite word length number system, namely
the range of the representable numbers and the precision of the
representation [13].

Let £ and ! be integers which denote the word length of the
integral and fractional part I and F, respectively. Let (k,I,b)-
LNS denote an LNS of integral and fractional word lengths k
and [, respectively, and of logarithm base b. The problem of
equivalence between a (k,!,b)-LNS and an n-bit linear fixed-
point system is formulated here as the computation of k and !



50 that the two representations satisfy a suitably defined criterion,
for a particular base b.

Several quantities have been used for investigating the
equivalence between representations, including the relative step
size, the Average Relative Representational Error (ARRE), and
the Signal-to-Noise ratio. Koren [13] suggests the use of the
relative step size, €, to compare LNS precision with floating-
point precision. Let s be defined as

Ti41 — Xy
€rss = ——,

@
where {z;} is the sequence of reprelsentable numbers. Assuming
an integer linear system with a word length n, it holds that
Tiy1 = x; + 1; hence (2) gives

€Erss,fxp = ! (3)
where fxp denotes a fixed-point system. The relative step size for
an (k, 1, b)-LNS is

bTi+r bz; bz;+2"l — bEi

bzi b= =0 -1 @
It can be noted that, while exs,ixp depends on the corresponding
representable value z;, €rs,ins does not. In order to overcome
the particular difference and be able to compare the precision
of the two representations, the notion of average relative step
size is used and the following two restrictions are posed: the
two representations should a) cover equivalent data ranges and b)
should exhibit equal average representational error. The average
relative step size, €aye, is dcﬁngd as
ZAT} erss(A)
€Cave = ==X A—A"“: ) (5)
~ — Amax - Amin +1
where Amin and Amax define the range of representable numbers.

-1

€rss,LNS =

Due to definitions (2) and (5), the average relative step size for
the fixed-point case, is

2" -1
1 1
€ave,lin = o1 2_1 i

_ @)ty
~ T on 1

on 1 ©
where -y is the Euler gamma constant, lin refers to a linear system,
and function % is defined through

W) = ),

where ['(z) is the Euler gamma function.

@)

In the case of the LNS, as €ql,Lns iS constant over the range,
due to (4), it occurs that
®

In the following, the maximum number representable in each
number system is computed and utilized to compare the ranges of
the representations. The maximum number representable by an
n-bit linear integer is 2" — 1; therefore the corresponding upper
bound is

2—1
€ave,Lns = b — 1.

Amax =2" = 1. ©
The maximum number representable by (k, !, b)-LNS encoding
(1), is

k_o—!
Apax =677 (10)
Therefore, according to the equivalence criteria posed earlier, an
LNS is equivalent to an n-bit linear fixed-point representation,
when the following restrictions are simultaneously satisfied:
ALNS  ylin
“<4imax max

an
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Table I: Correspondence of n, k, [, and n.q for various b.
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Figure 1: Relative error for 10-bit fixed-point

€ave,LNS < €avelin. (12)
Hence, from (6) and (8)-(10), it follows that
kol
D N e (13)
2" ")+
21 < ¥+
= ST 4
which, when solved for minimal values of k and [, give
] = [- log, log, (1 + w—(;;)_—’zl)} (15
k = [-Iog2 (logb(2" -1)+ 2_1)-] . (16)

The above analysis is summarized in the following theorem.

Theorem 1 A (k,1,b)-LNS covers a range at least as long as an
n-bit fixed-point system with an average representational error
equal or smaller to that of the fixed-point system, when | and k
are given by (15) and (16), respectively.

Values of k and [ that correspond to various values of n for various
values of b, can be seen in Table I. In case that the input signal
is normalized in the interval (—1,+1), the fixed-point length n,
corresponds to a fractional step 27". The LNS integral word
length can be obtained by solving

-(2*-27") <log, 27" an
for minimal %, which is equivalent to the range
specification (11). The relative representational error, €, of
a number of real value A encoded in a number system with a
representation of value Ais defined as
1A - 4]
R — (18)
Notice that A # A due to the finite length of the digital words.
Fig. I depicts the absolute values of relative errors in a 100-point
random Gaussian sequence for 10-bit linear and I = 5-bit LNS,

€rel =
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Table li: Values of [ and k experimentally derived for b = 1.4, to
provide a particular SNR.

computed by Theorem 1. It can be seen that LNS performance is
better.

While the word lengths k& and ! computed via (15) and
(16) meet the posed equivalence specifications (11) and (12),
LNS offers a larger range than the equivalent fixed-point
representation. Let ney denote the word length of a fixed-point
system which can cover the range offered by an LNS defined
through (15) and (16), or, equivalently, let ne; be the smallest
integer which satisfies

QM
From (19) it follows that
ney = [ (2" = 27") log, b] 20)
It should be stressed that, when ne, > n, the precision of the
particular fixed-point system is better than that of the LNS derived
by (15) and (16). Equation (20) reveals that the particular LNS,
while meeting the precision of an n-bit linear representation, in
fact, covers the range provided by an ne,-bit linear system.

Koren [13} compares LNS to a floating-point representation
using the Average Representation Relative Error (ARRE).
However, this approach is not applicable for comparison to
a fixed-point representation, as fixed-point ARRE does not
converge, due to the discontinuity at zero.

Another possible LNS-to-linear equivalence measure, common
in signal processing applications [8], is the signal-to-noise ratio,
SNR, defined as

N (19)

SNR = 10log,, 2 @n

where Figna and Phise are the pow&m(;f the signal and the
representation truncation noise. Table II shows those (k, [, b)-
LNS representations that are experimentally found to offer better
SNR than the corresponding n-bit fixed-point system, for a 1000-
point Gaussian sample of standard deviation ¢. It is noted that
the word lengths k and ! depend on the standard deviation a.
Table II demonstrates that for a particular n, computed as n =
[log,(3a)], the value of I varies by a bit, depending on o of the
input.

3 Power Dissipation and LNS Encoding
3.1 Uniform Input

Let po—1(2) be the bit assertion probabilities, i.e., the probability
of the ith bit transition from 0 to 1. Assuming that data are
temporaly independent, it holds that

Poi (i) = po(i)pi(3) = (1= (), @)
where po(z) and p;(2) are the probabilities of the ith bit being
0 or 1, respectively. Due to the assumption of uniform data
distribution, it holds that po(z) p1(7) 1/2, which, due
to (22), gives po—1(2) 1/4.Therefore, all bits in the linear
fixed-point representation exhibit a constant probability po_,; (),
i=0,1,...,n—1
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However, the probabilities of bit assertions in LNS words,
P63 (4), are not constant, in contrast to the probabilities po—, 1 (4);
they depend on the significance of the sth bit. To evaluate the
probabilities p§] (4), the following experiment is performed. For
all possible values of X in a m-bit system, the corresponding
[log, X | values in a (k,!,b)-LNS format are derived and
probabilities p; (i) for each bit are computed. Then, pgNS (i) is
obtained by (22).

The actual assertion probabilities for the bits in an LNS word,
P53 (4), are depicted in Fig. 2. It can be seen that p§5 (4) for
the more significant bits is substantially lower than pg™3 () for
the less significant bits. Also, it can be seen that p5N3 (i) depends
on b. This behavior, which is due to the inherent data compression
property of the logarithm function, reduces the average activity in

the entire word. Average activity savings percentage, Save iS

k+i—1
=@_é
n <
=0

where p§X¥(i) = 1/4 fori = 0,1,...,2 — 1, n denotes
the length of the fixed-point system, and the word lengths k
and ! are computed via Theorem 1. Savings percentage Save i$
demonstrated in Fig. 3(a) for various values of n and b, and it is
found to be more than 15% in certain cases.

Save péﬁi(i)) 100%, (23)

However, as implied by the definition (20) of neq, the linear
system, which provides a range exceeding that of an LNS defined
via Theorem |, requires n.q bits. If the reduced (in this case)
precision of (k, I, b)-LNS compared t0 neq-bit fixed-point system,
is acceptable for a particular application, S... can be used to
describe the relative efficiency of LNS, instead of (23), where

) g NS .

( Teq ; Po—1 2))
Savings percentage Sy, is demonstrated in Fig. 3(b) for various
values of n and b. Savings are found to exceed 50% in some
cases. Notice that Fig. 3 reveals that, for a particular word length
n, the proper selection of logarithm base b can significantly affect
the average activity. Therefore, the choice of b is important in

designing a low-power LNS-based system. Notice that truncation
has been used in the conversion to LNS.

Sive = 100%.

(24)

3.2 Correlated Gaussian Input

To demonstrate the impact of the compression property of the
logarithm on the switching activity of the signal, initially, the
distribution of the difference of consecutive logarithmic images
of linear samples, taken from a correlated Gaussian process, is
studied. This approach does not attempt to derive bit activity from
word-level statistics. However, it demonstrates the compression
properties of the logarithm, which qualitatively explains the
observed reduced activity of the most-significant part of an LNS
word. Subsequently, an experimental evaluation of the bit activity
is offered.

Assume that two successive inputs to an LNS-based system are
the LNS representations of two random variables, z and y, which
follow a bi-variate joint Gaussian distribution with zero mean,
p = pr = py = 0, equal standard deviation, 0 = g, = oy,
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Figure 2: Activities against bit significance i, in an LNS word, for » = 8 (a) and n = 12 (b) and various values of the base b. The
horizontal dashed line is the activity of the corresponding n-bit fixed-point system.
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Figure 3: Percentage of average activity reduction due to the use of LNS, compared to n-bit (a) and to n c4-bit (b) linear fixed-point

system, for various bases b of the logarithm.

and a correlation factor p. The corresponding probability-density
function f(z, y; p, o) is given by
exp(~ o tese)
f I’ ; b a - ./ b
(x,y3p,0) = Ymoris gt

where p, —1 < p < 1, is the correlation factor and o is
the common standard deviation. Landman and Rabaey exploit
this particular distribution in the derivation of the Dual Bit Type
method for modeling activity [14].

25

The objective of the analysis which follows is to derive
the distribution of the logarithms of the consecutive input data
modeled by the couple (x,y) to be used in the derivation of the
probability-density function of the random variable log, || —
log, |y|. As an intermediate step to the derivation of the
distribution followed by the logarithmic data, the distribution
of the absolute value of a Gaussian random variable with
probability-density function fus(z, y; p, o) is required:

fdbs(zypva) f(zyp’a)+f( zy,p,a)+

f( T, =Y p, U) + f(—Z, ~Yp, U): (26)
where each term of the sum corresponds to a quadrant in the zy-
plane. By algebraic manipulations, (26) gives

1+ exv(r—g-"—f_zp’-; 25)

fuh5(1'7.713ﬂ>‘7) = z24y2—2 2 ’ (27)
Xp(%?)”vl—l’z“z
when z, y > 0 and fus(z,y;p,0) 0, otherwise. The

probability-density function fiog(w, v; p, o) of the distribution of
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the random variables w and v, obtained as

w = log,|z| (28)
v = log,lyl, 29

is computed from (27) as
flog(wvayav b) = fabs(ﬂ'?l,yl;/),a') (30

[ (z1,90)]
where 21 = b", y1 = b, and J(z, y) denotes the Jacobian of the

transformations (28) and (29) [15], given as

Sw  Jw 1
I(x,y) = Si §y = ooloa?h @D
Finally, from (27)-(31), it follows that
bty (1 +exp(—_L;)'aﬂ ) log” b
fiog(w, v; p,0,b) = xp(bzw;(blzup u,w+u 2) \/——

(32)
The probability-density function fiog,ain(210g; p, b) of the random
variable 2105 = log, |z| — log, |y| is obtained by integrating (32)
[15], as

+o0
flog,diﬂ'(zlog; P> b): / flOS (.l', T — Zlog; P, 0, b)dz: (33)

26" (14+6%%) /T~ p% logh .
Tom (1404 4027 (2 —4p2)) ol
Equation (34) reveals that fiog,ainr(2; p,b) does not depend on
o. For comparison, the probability-density function of the
difference, z, of two Gaussian random variables z and y, i.e.,
z z — y, is obtained by integrating (25), resembling the
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Figure 4: As o increases, fjnear difi(2; p,0) becomes wider,
while fi.g gitt (Shown as dashed line) is not altered.
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derivation of (34) from (33) to give .
exp(7———7
frincar, aite(2; p, 0) = %&%’%4 35)
The probability-density functions defined by (34) and (35) are
plotted in Fig. 4, where it can be seen that, as ¢ increases,
flincar,giit becomes wider, while fiog airr is not affected. From a
bit-activity point of view, this behavior indicates that reduced bit
activity should be expected in the most significant part of an LNS
word. However, there exists an implicit dependence between the
standard deviation o of the input Gaussian distribution and the
distribution of the actual logarithmic differences. The implicit
dependence emerges through the word lengths required and
the representation equivalence assumptions. The actual values
occurring in the system, comprise an I-bit fractional part, and
they can be modeled by multiplying the logarithmic difference
values, 205, by 2'. In case the input word length n is defined
as n = [log,(30)], and the fractional word length ! depends
on n as defined by Theorem 1, the distribution of the logarithmic
differences, considering the I-bit fractional part, also depends on
o. To model the effect of the number of fractional bits, I, a new
random variable ¢ = 2'.21Og is formed, with a probability-density
function given by

1
Siog,aitru (g5, p, 1) = Z_lflng.diﬂ(%; p,b) (36)
211 par (1 +62 0) VI=p% logh
T R (AT e (2—4p7)
The probability-density ~functions  fiog,airtein(g; b, p, 1) and

fiincar,aiti(2; p, @) are plotted in Fig. 5, where the areas of
probability o = 0.9 are indicated. It is shown that the logarithmic
difference g generally spans a more narrow interval than the linear
difference; in other words, the logarithmic samples are generally
“closer;” hence less activity in the most-significant bits of the
logarithmic word is anticipated. The experiments described in
the following paragraphs justify this theoretical conclusion.

Activity measurements are performed by generating a random
sample, which follows a distribution with density function
f(zx,y; p,0) of (25) and subsequently applying it to an LNS
encoder. The LNS representation is composed of the sign bit
and the value of the logarithm in two’s complement format. The
integral and the fractional word lengths k and [, are derived as
dictated by Theorem 1. The bit assertion probability per bit
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Figure 6: Probability po—,; of a 0 to 1 transition per bit
position, for two’s complement encoding (dotted line) and
LNS encoding for various values of b. The input is an anti-
correlated (p = -0.99) zero-mean Gaussian signal.

position pg_1, for two’s complement encoding and for base-b
LNS encoding are depicted in Fig. 6. Fig. 6 shows the signal
activity per bit position, for a zero-mean Gaussian anti-correlated
(p = —0.99) input signal, with ¢ = 1500, and word length
n = 14. The applicability of the Dual Bit Type method [14] to
model the activity depicted in Fig. 6 is apparent. The bit assertion
activity, assuming the same signal encoded in LNS and various
bases b, is also shown in Fig. 6. Fig. 6 reveals that significant
activity reduction is possible despite the fact that the sign-bit
activity is identical in both cases, and the word length of the LNS
representation is slightly increased.

Activity savings for n = 14, b = 2, and various values of
the correlation factor p, versus the standard deviation of the input
distribution o, are depicted in Fig. 7(a). Fig. 7(a) reveals that
for very anti-correlated signals, significant savings in activity are
achieved. However, the situation is reversed for correlated signals.
The experiment is repeated for a b = 1.5 LNS and the results are
depicted in Fig. 7(b). It can be seen that the signal activity is
reduced, when compared to the base b = 2 case. The experiment
is repeated for 16-bit data, as shown in Fig. 8. The impact of the
logarithm base b selection on bit assertion activity, is depicted in
Fig. 9. Fig. 9 reveals that for base values approaching unity, the
savings percentage increases. Therefore, there is an optimal value
for b, which minimizes signal activity. Finally, by relaxing the
error specification and comparing the activity of an LNS signal to
the activity of an neq-bit two’s complement signal, as defined by
(20), the savings depicted in Fig. 10 are achieved.
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Figure 7: Signal activity savings for n = 14, versus standard deviation o, for various values of correlation p and two values of the
base b, b = 2in (a)and b = 1.5 in (b).
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Figure 8: Savings plots for zero-mean Gaussian input pair, data word length n = 16, versus standard deviation o for several degrees
of correlation p, and various logarithmic bases b, b = 1.1 (a) and b = 2 (b).
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Figure 9: Impact of base b on the activity of an anti-correlated
signal, for which p = —0.99 versus 0. A zero-mean Gaussian

input is assumed, of word length n = 14.

4 Power Dissipation and LNS Hardware

Let z and y be the (k,{, b)-LNS images of the linear quantities
X and Y. The LNS transforms the basic arithmetic operations.
Specifically, n-bit multiplication and division are reduced to
(k + 1)-bit addition and subtraction, respectively, while the
computation of roots and powers is reduced to simple division
and multiplication by a constant, respectively. It is noted that
Theorem 1 is used to derive [ and k. The neq model is not adopted,
since it does not guarantee that the equivalence criteria are met.
In addition, since neq > 7, an neg-bit system is more complex
than an n-bit one, hence the use of Theorem 1 favors the linear
representation.

Reduction in multiplication complexity is quantified in the
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bits | Adder | Multiplicr | Divider Multiplicr Division
times down | times down
16 90 573 3757 6.37 41.74
32 182 3874 7293 21.29 40.07

Table lI: Average number of transitions [16], exploited to
compute the reduction due to LNS. A Wallace/Dadda multiplier
is assumed, and a SRT Radix-4 divider.

following. Assume that an n-bit carry-save array multiplier,
which has a complexity of n* — n 1-bit full adders (FAs), is
replaced by an n-bit adder, which, assuming k + ! = n, has
a complexity of n FAs, for a ripple-carry implementation [13].
Therefore, the adoption of LNS reduces area complexity by a
factor r¢, , re, = (n? — n)/n = n — 1,which grows linearly
with word length n.

To clearly demonstrate the performance improvement for
multiplication/division on power dissipation, the average
number of logic transitions reported for ripple-carry addition,
Wallace/Dadda multiplication, and radix-4 SRT division reported
by Callaway and Swartzlander [16] are exploited. The average
numbers of transitions are shown in Table III, for various word
lengths n. Due to the reduction of multiplication and division
to addition/subtraction, the average transition count drops several
times per operation, as shown in Table III. However, addition and
subtraction are complicated in LNS, since they require a table
look-up operation for the evaluation of the function log,(1 %
b¥Y77). A table look-up operation requires a ROM of 2" X n bits,
a size which can inhibit LNS utilization for large values of n.
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Figure 10: LNS activity savings in comparison to an n.q-bit system, forn = 14 and b = 2 (a)and b = 1.1 (b).

n LNS (mW/MHz) Fixed-point
(bits) Base b | Addition | Subtraction | Average | Multiplication
8 1.5 0.99 0.99 0.99 2.02
2 0.90 0.89 0.89
2.5 0.98 0.98 0.98
10 1.5 1.14 1.16 1.15 2.64
2 1.18 118 1.18
2.5 1.09 1.11 1.10
12 15 1.49 1.52 1.50 335
2 1.58 1.58 1.58
25 1.46 1.49 1.48
14 L5 238 2.46 242 4.13
2 2.62 2.61 2.62
2.5 2.26 2.36 2.31

Table IV: Estimation of power dissipated in LNS subtraction-
addition, in comparison to n x n-bit fixed-point multiplication,
for various fixed-point word lengths, n, and bases b.

Due to the importance of multiplication-addition operations
in DSP applications, it is of interest to compare the cost of
their linear and LNS implementation. From the hardware
architecture viewpoint, the LNS multiplier is both functionally
and structurally identical to a fixed-point adder. Hence, the
problem of comparing the amount of power dissipated by
a combined multiplication-addition operation, is transformed
to comparing the power dissipation figures of the LNS
adder/subtractor and a corresponding fixed-point multiplier.

The power dissipation of an LNS addition/subtraction is

Piot = Peomp + Paadress + PLur + Padd, (38)
where Peomp is the power dissipated at an initial comparison
to determine the larger of the two operands, Paqdress is the
power dissipated for address generation, FLuT is the power
dissipated for Look-Up Table (LUT) access, and P44 is the
power dissipated for the final addition. As the number of LUTs
increases, and correspondingly the term FLyt decreases, the
address generation circuitry dissipates more power, i.e., Paddress
increases. A quantitative power dissipation comparison is offered
in Table IV. The power dissipation data in Table IV refer
to a 0.7um CMOS technology, operating at a supply voltage
of 5V. The power dissipation figures are obtained by adding the
power dissipation terms of (38). Each term corresponds to an
adder/subtractor or a LUT. The address generation consists of
several parallel subtractions, to provide addressing to a particular
LUT. The dissipation of the building blocks is taken from the
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Figure 11: The organization of an LNS adder/subtractor

memory, composed of N small LUTs.

technology datasheets [17]. The estimation procedure reveals
that an average of 70% of power is dissipated for LUT access,
20% for address generation, and 10% for for initial comparison
and the post-LUT addition. Notice that the LNS adder/subtractor
is not implemented using a single LUT, but, instead using an
assortment of small independent LUTs, as depicted in Fig. 11.
A digest of techniques for the design of low-power ROMs is
offered by de Angel and Swartzlander [18]. The breakdown of
the LUT required to store the addition/subtraction function values
is motivated by the shape of the addition and the subtraction
function. As the value of the argument increases, fewer bits
are required to represent the stored value. This observation is
particularly important for LNS subtraction, which is very steep
near zero, thus requiring a larger word length. At the cost of
introducing hardware complexity overhead for the generation of
the addresses to the small LUTSs, the architecture of Fig. 11
is derived, in which each LUT corresponds to a region of the
approximation interval where the function values are of equal
word length. To further reduce memory size, it is noted that the
most significant bit can be omitted, since it is always asserted.
This approach, based on LUT breakdown, is similar to the
memory compression scheme employed by Taylor et al. [5].

Finally, complexity overhead is imposed by the linear-to-
logarithmic and logarithmic-to-linear conversion. However, as
the number of operations grows, the conversion overhead remains
constant; therefore its contribution to the overall power budget
can be compensated by a sufficient number of operations. Assume
that the processing of an input sample requires /N multiplication-



l n I Pror = Py (mW/MHz) I Nimin |

8 1.53 3
10 242 4
12 5.70 7

Table V: Values of N,;, for various linear word lengths n.

additions. Let the power dissipation of the linear, P, and
logarithmic system, Py, be given by
P = N(P2"+ Py (39)
Pog = P+ N(Pp® + Pok) + Pay, (40)
where P and Py, is the power dissipated for forward and
inverse conversion, and Pi", Plii. Pi% and P.% denote the
power dissipated for linear multiplication, linear addition, LNS
multiplication, and LNS addition, respectively. The number Nmin
of multiplication/addition operations required to compensate the
conversion overhead, can be obtained from (39) and (40) as
N (B4 Pl) > Pt N (PS54 PSE) + Pa = @1)

Pioe + Py

Pl + Pl — PX* ~ Pl
Due to the structural identification of linear addition and
logarithmic multiplication, Pl = P8 (42) is reduced to

Noin = [(Poc+ Po) / (P = P5)] . 43)
Example values of Nmin for various word lengths are shown in
Table V, assuming Pi® and P;&g values taken from Table IV. A
straightforward implementation of the converters is assumed, as
a ROM LUT. Table V demonstrates that an LNS system becomes
preferable after a moderate number of multiply-add operations.

Nmin 42)

5 Conclusions

The impact of LNS onto power dissipation of a processing system
has been investigated. The discussion is based on proposed
conditions of equivalence between LNS and fixed-point systems.
It has been shown that LNS can lead to significant average
bit activity reduction for linear input data of both uniform and
correlated Gaussian distribution, in certain cases, such as anti-
correlated Gaussian data. It has been found that the efficiency
of the LNS representation is dominated by the choice of word
lengths k& and [, and—the often neglected—logarithm base b.
Furthermore the impact of LNS onto the power dissipated in
various arithmetic operations has been discussed from a hardware
architecture viewpoint, in comparison to the fixed-point case. It is
revealed that, given a sufficiently large computational complexity,
power savings are achieved even when conversion overhead is
taken into consideration.
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