Faithful Powering Computation Using Table Look-Up
and a Fused Accumulation Tree*

J. A. Pifieiro?, J. D. Bruguera®, J. M. Muller¥
§ Department of Electrical and Computer Engineering

Univ. Santiago de Compostela, Spain.
9§ CNRS, Project CNRS/ENSL/INRIA/ARENAIRE

LIP, Ecole Normale Superieure de Lyon, France.

e-mail: alex,bruguera@dec.usc.es, jmmuller@ens-lyon.fr

Abstract

A method for the calculation of faithfully rounded single-
precision floating-point powering (X?) is proposed in this
paper. This method employs table look-up and a second-
degree minimax approximation, which allows the employ-
ment of reduced size tables to store the coefficients from
the polynomial approximation. A specialized squaring unit
and a fused accumulation tree carry out with the com-
putation of the quadratic polynomial. Both unfolded and
pipelined architectures are presented, and the results of a
pre-layout synthesis performed using CMOS 0.35 pm tech-
nology are shown, achieving a 50% area reduction from lin-
ear approximation methods, and with improved speed over
other second-degree approximation based algorithms. The
pipelined architecture has a latency of three cycles and a
throughput of one result per cycle.

1. Introduction

Powering (XP) is a very interesting function for applica-
tions such as computer 3D graphics and digital image and
signal processing. It can also be a very efficient way to
compute other important functions. The reciprocal (X 1),
the square root (X1/2), the inverse square root (X ~1/2),
the reciprocal square (X ~2), the cube (X?®), the reciprocal
cube (X ~3), and others, are just specific cases of the pow-
ering function, with the fixed parameter p taking different
values. These functions are important for several applica-
tions [S1[16].

For very low precision calculations, it is possible to em-
ploy direct table look-up, but its high memory require-
ments make it an inefficient method for single—precision

*This work was supported by the Secretaria Xeral de Investigacion e
Desenvolvemento de Galicia (Spain), under contract PGIDT99PX120602B

0-7695-1150-3/01 $10.00 © 2001 IEEE

40

floating-point format. Polynomial and rational approxima-
tions [8] could be another way to implement powering, and
also iterative algorithms, such as linear convergence meth-
ods (digit-recurrence algorithms [4]), and quadratic conver-
gence methods (multiplicative-based [5] Newton-Raphson
and Goldschmidt algorithms). However, one of the most
efficient methods for computing powering function, in a
single—precision floating—point format, are table—driven al-
gorithms [8][19], which are halfway between direct table
look-up and polynomial and rational approximations. The
use of the polynomial approximation allows the table size
to be to significantly reduced, and the table look-up allows
the reduction of the degree of the polynomial employed to
compute the function approximation.

Among the previous more important table-based meth-
ods it is possible to find two main groups: first—order
approximation algorithms and second—order interpolation
methods. The first~order algorithms can be bipartite ap-
proximations [3]1[10], which store a borrow-save represen-
tation of the function values in two tables, using an adder
to perform a later assimilation, or piecewise linear approxi-
mations [18], which employ a multiplier, reducing thus the
size of the required look-up tables. The second-order in-
terpolation methods [6][2] propose architectures with a la-
tency of 2 cycles, with the main advantage of the smaller ta-
bles employed, at the expense of more combinational logic
than other methods. No one of these algorithms employs
a minimax approximation, which allows a more important
reduction on the table size.

Table 1 summarizes the hardware requirements for all
these methods for single—precision floating—point computa-
tion. A more detailed description can be found in [9], and
general considerations regarding exactly rounded function
approximation with look—up tables and k—degree polyno-
mials can be found in [12].

The method we propose here consists of using a second-

[Method] Table size (bits) | Multiplier (bits) | Adder (bits) | Others |
[Direct | 2°™ x 3m f - | - | - |
Bipartite tables (27™ x 3m) + (2™ x m) - — RB Booth
SBTM (27 x 3m) + (2™ x m) - 3m -
Piecewise linear approx. 25™/% x (3m/2 + 3m) 3m/2 x 3m/2 3m -
Linear operand modif. [18] 257/ x 3m 3m x 3m - [RBBooth)
2™%_degree interp. [6] 2™ X (3m+2m+m+m+6) | 20of (3m x 3m) 2 of 3m -
2™%_degree interp. [2] 2™ x (3m + 2m + 3) 2 of (3m x 3m) 5 of 3m -

Table 1. Comparison of different table—driven methods to obtain n = 3m-bit accuracy

degree minimax approximation to faithfully compute X? as
C2X2 + C1 X2 + Cy, where X is the lower part of X, for
a single—precision floating—point format. The three coeffi-
cients, Co, C1 and Cs, are obtained by using the computer
algebra system Maple [20], minimizing their wordlengths
for the required precision. These coefficients are stored in
look-up tables, and selected by X3, the m-bit upper part
of X, and then the quadratic function is evaluated. When
this most m significant bits of the operand are employed
to address the tables, an accuracy over n=3m bits is ob-
tained, which allows a reduction on the table size to about
2™ x {(m — 1) + (2m — 1) + 3m} (depending on p; about
12K bits when m=8). The evaluation of the quadratic func-
tion is done using a fused accumulation tree with less size
and about the same delay as a n-bit by r-bit standard mul-
tiplier. Besides, a small specialized squaring unit, which
benefits from some mathematical properties to significantly
reduce its size and delay over a standard squaring unit, and a
carry-save (CS) to signed—digit (SD) radix 4 recoding unit,
carry out with the computation of X2. There is no restric-
tion in our method to the value of parameter p, which can
be either integer or non—integer, positive or negative, and
the output results are guaranteed to be faithfully rounded
to the nearest. The speed of first order approximations is
achieved, employing tables slightly smaller than the tables
of second degree interpolation methods.

2. Faithful Powering Computation

In this section we propose a method for the faith-
fully rounded computation of powering function (X?), in
a single—precision floating—point format, by means of a
second-degree minimax approximation with table look-up,
a specialized squaring unit and a fused accumulation tree.
Faithful rounding to the nearest means that the returned
value is guaranteed to be one of the two floating-point num-
bers that surround the exact value, which in most cases is
the exactly rounded result.

41

2.1. Method

With IEEE single—precision floating—point format, a
floating point number M is represented using a sign bit s,
an 8-bit biased exponent e,,, and a 24-bit significand X.
If M is a normalized number, it represents the following
value:

M = (=1) X (14 fo) x 217,

where X=1+ f;, 1 < X < 2, and f; is the fractional part
of the normalized number (the 23 stored bits).

Our method deals only with the powering of the signifi-
cand, XP, since the sign and exponent treatment is straight-
forward, and can be done in parallel:

MP [(=1)*" x (X) x 2¢m~127)p
(_1)3,,.17 x (X)p x 2(em—127)-p

For p={1/2, —1/2}, we guarantee faithfully rounded re-
sults for input operands in the interval 1 < X < 4, and for
p={1/3,—1/3}, input operands in the interval 1 < X < 8
are allowed. This suffices to guarantee faithful results in the
full single—precision range.

Second—order minimax approximation

Our method for computing X? is based on a minimax ap-
proximation (which is known to be the optimal polynomial
approximation) of the function. We take advantange of its
high accuracy to significantly reduce the wordlenghts of the
coefficients to employ. The n-bit binary input significand,
X, is split into an upper part X; and a lower part X5, as in
the piecewise linear approximation:

Xy
X2

lz1z2...2m)
[Zmy1...zg) X 27T

An approximation to X? in the range X; < X < X +
2~™ can be performed evaluating the expression

XP o Cy+ C1 X5 +02X22 (€]

Ait 15

L= | |
8
- T]
Specialized
Squaring Unit LOOK-UP LOOK-UP LOOK-UP
TABLE (nmmung] TABLE TABLE
{BIN to SD)
Recoding Ca C, Co
(C8 to SD)

I

Figure 1. Pipelined unit scheme (X —'/2 computation; m = 8)

where the coefficients Cy, C1 and C, are obtained employ-
ing the computer algebra system Maple [20], which per-
forms minimax approximations using Remes algorithm.

The values of these coefficients depend only on the value
of X, the m most significant bits of X, and on the param-
eter p. Therefore, Cp, C; and C; can be stored in look-up
tables of 2™ input values.

A diagram block of our method is shown in Figure 1, for
the specific case of p=—1/2, the inverse square root com-
putation, with a pipelined architecture.

Example

We wish to implement function 1/4/2 between 1 and
2, and the coefficients of a degree-2 approximation will be
stored in a table with 8 address bits. At address ¢ in the ta-
ble, we will find the coefficients of the approximation for
the interval {1 +4/256, 1 + (¢ + 1)/256}. Let us see how
to compute coefficients for ¢ = 37. The Maple input line

> minimax(l/sqrt (1+37/256+x),x=0..1/256,
[2,0],1,"erx’);

asks for the minimax approximation in that domain (vari-

42

able z represents X5, the low-order bits of the input value).
We get the approximation

> 0.93472998018 + (— 0.40834453917 +
ot 0.26644775593 x) x

The error of this approximation is 3.60739 x 10~9. If
we round the order-1 coefficient to 14 bits and the order-2
coefficient to 6 bits, we find the new approximation error
with the input commands

> CO0 := .9347299801784;
> Cl := round(2°15* (~.40834453917))/2"15;
> C2 := round(2°7*.26644775593)/2"7;

> infnorm(l/sqrt (1+37/256+x)-C0-Cl*x-

C2*x"2,x=0..1/256);

The new error is 5.58 x 10~8, which is much larger than
the initial error. Now, we can compute the best approxi-
mation polynomial among the polynomials with the 14-bit
number C1 as order-1 coefficient as follows. We need to
approximate

1

1+ 37/256 + z

~Clxz

computecoeffts := proc(cc, p, qQ)
local errmax, i, poll, j, weight, C1, pol2, C2, p0, CO, err;
errmax:=0;
for i from 0 to 255 do
poll := minimax(1/sqrt(1 + 1/256*i + x), x=0.
17256, [2, 0}, 1, ’err’);
=0
weight := 1;
while abs(coeff(poll, x)) < weight do
weight := S*weight; j:=j + 1
od;
C1 :=27(-j-p+1)y*round(coeff(poll, x)*2°(j+p-1));
pol2 := minimax(
Vsqrt(1 + 1/256*i + sqri(X)) - C1*sqrt(X),
X =(0)2.. (1/256)2,[1,0], 1, ’err’);
j=0;
weight := 1;
while abs(coeff(pol2, X)) < weight do
weight := .5*weight; j:=j +1
od;
C2 := 2°(-j-q+1)*round(coeff(pol2, X)*2"(j+q-1));
pO := minimax(1/sqrt(1+1/256*i+x)-C1*x-C2*¥x"2,
x=0..1/256, [0, 0], 1, "err’);
CO0 := round(2"(cc+1)*(tcoeff(p0)))/2"(cc+1);
err := infnorm(1/sqrt(1+1/256*i+x)-C0-C1*x-
C2*x"2, x=0..1/256);
if errmax < err then errmax:=err fi;
od;
errmax
end

Figure 2. Maple program implementing our
method (inverse square root computation)

by a polynomial of the form C} + Cjz?. By defining X =
z2 this is equivalent to approximating

! _C1xVX
\/1+37/256 + VX

by the degree-1 polynomial C§ + C4X. So we type

> minimax (1/sqrt (1+37/256+sqrt (X))~
Cl*sqrt(X), X = (0)"2..(1/256)"2,
(1,0]1,1,"erxr’);

After rounding to 6 bits the newly obtained coefficient
C} (which give a number CY/), we get a slightly better ap-
proximation error, namely 5.01 x 1078, We now have to
compute a new order-zero coefficient to get the best poly-
nomial among the polynomials whose order-1 coefficient is
C'1 and whose order-2 coefficient is C/. This is done as
follows:

> minimax (1/sqrt (1+37/256+x) -Cl*x~
C2second*x"2,x=0..1/256,[0,01,1,"’exr");

The new coefficient is Cj = 0.934730008279251. The er-
ror of this final approximation is 2.7740073 x 10~8, which
is less than 225,

43

-17 -18 -19 -20 -21 -22 -23 -24 -28 -26 -27 -28

2 22 22 22 22 2 2

-28 -30 -31 -32

2 2 2 2 o

»

0 (x| x [x X) (x X lx x x x
@ xxx@xxxx
x x) (x X X x X X
x X x (X)X (X] x x x x

@ xg_:}@xxxx...
level 1 @ 1x x x x
® X x x
/ x x
x

x x X) (X x x) (%) (X
x) lx x x| |x||x
x x| x| x| ®
level 2 xlexJ
sum X X X X X X X X X X X X
carry XX XX XXX XXX(®X
|
-17 -18 -19 -20 -21 -22 -23 -24 -28 -26 -27 -28 -20 -30 -31 -32
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 oo

Figure 3. Specialized squaring unit operation
(when m = 8)

The method presented here can be easily generalized. It
allows to get small order 1 and 2 coefficients (or higher
order coefficients for polynomials of degree greater than
2), which result in smaller and faster multipliers, and also
smaller tables. Figure 2 shows a Maple program which im-
plements our method.

Specialized squaring unit

The calculation of X2 is necessary for the evaluation of the
quadratic function. Rather than having a multiplier to com-
pute the square, some strategies can be used to significantly
reduce the area and delay of the unit which performs this
calculation [7]: re-arranging the partial product matrix and
considering the leading zeros of Xs.

e Since z;z; = z;x;, the partial product matrix is sym-
metric with respect to the anti-diagonal, which allows
the reduction on the number of partial products to be
accumulated by using the identities z;z; + z;z; =
2z;x; and x;z; = z;. Thus, the original matrix can
be replaced by an equivalent matrix consisting of the
partial products on the anti-diagonal, plus the partial
products above it shifted one position to the left.

e To further reduce the size and delay of the equiva-
lent matrix, it is also important to notice that X, =
[Zm+1---Zn] X 27™, and therefore X, has m lead-
ing zeros. This means that X7 will have at least 2m
leading zeros. If we truncate the partial products accu-
mulation tree at position 2-2™~12_ which means that
the wordlength of X2 will be 12 bits, and add a 1 on

————
e e m—]
——> 2
Gep 1 <l:> C.x,
K meuns—]
——
a)
&)]
a D
a —
8pp . > C,x,
| ¢ m—)
1Q b)
11111111 @)
C) CD
| ! | | | | ! |
20 25 210 2]5 z—ﬂ zﬁ zm 2!5

Figure 4. Partial products to be accumulated
(when m = 8)

an empty position with weight 272™~11 the maxi-
mum error on its computation has been proved to be
bounded by

Z part prod j < 3-272m-11
j>am+12

The only dependence on p is through the value of m.

The matrix of partial products to be accumulated in the
squaring unit is shown in Figure 3. The partial prod-
ucts on the right of the dashed vertical line are not ac-
cumulated, so only two levels of adders (the first one,
with 3:2 CSA; the second one, with 4:2 CSA), plus an
initial and stage (z;; = z; - T;), are required to gener-
ate the carry—save (CS) representation of X3.

As X2 is going to be employed as a multiplier, it is possi-
ble to avoid the final assimilation by using a CS to SD radix
4 recoding to generate its SD representation. X3 in SD
radix 4 representation is employed for the partial-products
generation in the accumulation tree.

Fused accumulation tree

Apart from the squaring evaluation, the other main problem
to be overcome is the computation of the expression (1),
once the values of Cy, C; and C; have been obtained
through table look-up, and X2 has been calculated in paral-
lel using the specialized squaring unit.

We propose to employ an unified tree to accumulate the
partial products both of C; X5 and of Cy X2, plus the coef-
ficient Cp [17]. Considering the number of leading zeros of
X5 (m leading zeros) and of X3 (2mn leading zeros), and
employing SD radix 4 representation to reduce the number
of partial products to be accumulated, the resulting tree has
significantly less size and almost the same delay as a stan-
dard (3m x 3m)-bit multiplier.

Let’s consider, for instance, the inverse square root func-
tion (X~1/2, i.e. p=—1/2, Figure 1). For this function, it

44

will be seen that m=8, and therefore X2 has 15 significant
bits. X2 has 16 leading zeros, and a wordlength of 12 bits.
Employing SD radix 4 recoding, these wordlengths lead to
a generation of 8 partial products to compute C; X5 and 6
partial products to compute Cy X2. The number of products
to be accumulated is therefore 15 (8 + 6 + 1; the last one is
the coefficient Cy), and so 3 levels of 4:2 CSA adders, plus
a final assimilation, will be needed.

The delay of the critical path for our fused accumulation
tree is

tfused_accum = tpp_gen +3- t4.2 csA+ tCLA,

while the delay of a standard (24 x 24)-bit multiplier is
about

bt = tpp_gen +iz2054 + 2142 csA +itcra

Therefore, the fused accumulation tree we propose is
only 0.5 ¢, slower than a standard multiplier, with signifi-
cantly less area, because of the reduced wordlengths of our
C, and C; coefficients.

Figure 4 shows the arrangement of the matrix of partial
products to be accumulated, and gives an idea of the effect
of reducing the wordlengths of these two coefficients on the
total area of the accumulation tree (Cs affects to 6 partial
products, while C; is involved in the generation of 8). The
circles at the beginnig of each word mean a complement of
the sign bit.

2.2. Error computation

The total error of the output result can be expressed as
the accumulation of the error of the result before rounding,
€interm» and the rounding error, €,oun4:

— —r
€total = Einterm + €round < 2

where r depends on the function to compute. AS €roynd <
271 (we perform rounding to the nearest), there is a
bound on the error for the intermediate result of €;zerm <
271 to guarantee faithfully rounded final results. We per-
form the rounding to the nearest by adding a 1 in position
2771: C}{=Cy +27"~1, and then truncating the intermedi-
ate result at position 277,

The error of the intermediate result comes from two
sources, the error of the second order minimax approxi-
mation, €gpproz, and the error due to the finite arithmetic
employed to compute the quadratic approximating function,
€comput-

€interm = €approz + Ecomput,
The term €gpproz can be obtained as a result of the pro-

gram shown in Figure 2, and already takes into account the
finite wordlength of the coefficients C§, Cy and Cs.

| Function [€interm | M | €squaring | €approz | Look-Up Table size |
VX X7 [<27 [7] <1.50-27% [1.23-2725 [27 x (26 + 14 +6) = 5.75Kb
VXX 7 [<278 | <1.14-27% [1.36-272° | 28 x (26 + 14 +7) = 11.75Kb
XX D [<27 | 8] <1.50-27% [0.93-27% | 2 x (27+15+7) = 12.25Kb
X3 <2779 | <113-27% [099-27%® | 29 x (25+17+7) = 24.5Kb
JXT(X° 5 | <2 B[9 | <1.13-27% [1.23.2777 | 29 x (29 + 13 +6) = 24Kb
/X3(X % | <277 |10] <1.18-27% [124278 | 270 x (29+ 14 +7) = 50Kb

Table 2. Summary of design parameters for some functions

Thus, the error of the computation comes only from the
error due to the finite precision computation performed by
the specialized squaring unit (€squaring)s

_ —2m—11
€comput = €squaring < |C2lmaz -3-2

Summarizing, to guarantee faithfully rounded results,

the following bound is set:

_ —2m-11 —r—1
Einterm = €approz + |C2|maa: -3-2 <2

For each function, there is a minimum value of m which
allows the achievement of faithful rounding. Once m is set,
the minimax approximation for the specific function is com-
puted using Maple, minimizing the wordlengths of the co-
efficients C; and C, within the bound set for the error in
the intermediate result. For some functions it is necessary
to employ an extended wordlength for X2 (two more bits,
which means that one more partial product for Co X% is re-
quired) so that the error from the squaring is decreased to
allow a smaller value of m. We will denote this as X3*.
The specialized squaring unit resulting from this extension
is 0.5 t#, slower than the one previously proposed. Table 2
shows a summary of the parameters to employ for imple-
menting some interesting functions with our method.

2.3. Architecture

Our method to faithfully compute the powering function
X7 in a single-precision floating—point format can be im-
plemented by either an unfolded architecture or a pipelined
architecture with a latency of three cycles and a throughput
of one result per cycle. Figure 1 shows the pipelined unit
scheme for the specific case of inverse square root compu-
tation (p=—1/2; m=8). It has the same structure as the un-
folded unit, with strategically inserted registers. The place-
ment and number of registers has as goals both to reduce
their area cost and to allow the design of a unit with a high
operation frequency.

In the first stage of this unit, the tables are addressed us-
ing the operand X to look-up the values of coefficients Cj,
C1 and Cs. In parallel, the computation of X22 in carry-save
form is performed, and then recoded to signed-digit radix 4

45

to be stored in a register. A binary to SD radix 4 recoding
of X is also performed in parallel with the table look-ups.
The total table size is 28 x (26 + 14 + 7) = 11.75K bits =
1.5K B (for a second—degree Taylor approximation, coeffi-
cients of wordlengths 29, 19 and 11 would be required to
guarantee faithfully rounded results).

The second stage is the accumulation tree stage, begin-
ning with the partial products generation (both of Cy X2
and of C; X»), and then performing the accumulation of all
these products plus the coefficient Cj. The reduction on
the coefficients wordlength allows an important reduction
on the area of the accumulation tree.

The last stage of this pipelined architecture consists of a
carry-lookahead adder (CLA) that performs the final assim-
ilation from carry—save to binary representation of the result
XP_ which is guaranteed to be faithfully rounded.

The critical path for the unfolded unit contains the spe-
cialized squaring unit, the CS ro SD recoding unit and the
fused accumulation tree, SO

tunfolded = taquaring + trecodin_q + tfuaed_acc + treg

Dividing the scheme into three stages, the total number
of registers to be employed is very low, and the cycle time
(and so the operation frequency) comes only from the accu-
mulation stage, without including the final assimilation:

tpipelined = tpp_gen +3-t4.2 csa+ treg

Implementation results

The unfolded and pipelined architectures proposed have
been synthesized using Synopsys Design Analyzer com-
piler tool, employing a CMOS 0.35 um technology standard
cell library from AMS [1], following a VHDL-based design
flow [14][15]. A more complete and detailed analysis can
be found in [9].

Table 3 shows the area and delay results for each indi-
vidual component of the architecture, and also the total area
and delay of the unfolded architecture. There are four main
paths in this architecture, corresponding to the three look-
up tables and the squaring unit, all of them connected to the

Component Area (mm?) | Delay (ns)
X3 squaring 0.096 2.02
recoding CS to SD 0.092 1.35
recoding BIN to SD 0.017 0.33
registers 0.011 0.70
Table C» 0.151 3.00
Table C 0.307 3.00
Table Cp 0.401 3.50
Fused Accum. Tree 0.791 7.08
TOTAL Tables & extra 1.075 4.07

| TOTAL | 1.87 | 11.2]

Table 3. Area and delay of circuit components
(unfolded unit)

fused accumulation tree. The critical path is the one con-
taining the squaring unit and the CS to SD recoding, with
a delay of about 11.2 ns. The total area is about 1.9 mm?,
with about the same contribution from the tables and from
the fused accumulation tree.

Table 4 shows the area and delay for each stage of
the pipelined architecture. A cycle time of about 5 ns is
achieved, set by the delay of the second stage.

It is possible to design architectures for the computation
of any two different functions (X?* or X??) by only du-
plicating the table size and inserting multiplexers to select
between the corresponding coefficients. The extra hardware
inserted does not lead to an increase in the circuit delay, be-
cause the critical path is the one containing the specialized
squaring and CS to SD recoding units. Only minor modifi-
cations on the accumulation tree are required.

3. Comparison

In this section we perform a comparison between our
method and some previous table—driven algorithms.

The method presented in [12] computes exactly rounded
function approximations (reciprocal, square root, logarithm
and exponential), by using table look-up and a polyno-
mial approximation: a k—degree Chebyshev interpolation.
The effects of providing exactly rounded results (€sp101 <
0.5ulp) is to significantly increase the size of the tables em-
ployed (the tables are almost double-sized). This method
could be employed to provide faithful results (€iptar <
lulp), but for k=2, the tables to employ are still slightly
bigger than our tables, due to the fact that we have per-
formed a minimax approximation, which is more accurate
than a Chebyshev interpolation. Besides, the hardware we
employ for the computation of the quadratic function (1), a
specialized squaring unit and a fused accumulation tree, is
optimized for obtaining a better speed/area tradeoff.

46

Pipeline stage | Area (mm?) | Delay (ns)
First stage 1.108 4.2
Second stage 0.654 4.8
Third stage 0.171 3.7
] TOTAL | 1.93 | 4.8 |

Table 4. Area and delay of pipelined unit
stages

Table 5 shows a comparison of the main features of our
unfolded and pipelined units with some of the more ef-
ficient previous table—driven methods which provide a fi-
nal error less than 1 ulp: on one hand, the most efficient
linear approximation algorithm, the linear approximation
with operand modification [18], and on the other hand, two
second-degree interpolation methods [6][2]. A more de-
tailed comparison, and an exhaustive description of any of
them, can be found in [9]. To allow a fair comparison,
we have synthesized the architectures implementing these
methods by means of the same synthesis CAD tool em-
ployed for our units. The standard cell library employed has
also been the same one, a 0.35 pm technology from AMS.
However, we have to remark that the results shown on the
table are just pre-layout synthesis results.

These results show that our architectures require slightly
less area than the second-degree interpolation methods (~
2.2 mm?), but the operation frequency achieved is signifi-
cantly higher: the time needed to complete one operation is
11.2 ns, while for the second-degree interpolation is above
25 ns. This reduction in size comes from employing the
minimax approximation, which allows the use of smaller
tables, since the coefficients C; and Cs have a reduced
wordlength. Other important feature shown in the table is
that the cycle time of our architectures is the same as the lin-
ear approximation with operand modification one (~ 11.2
ns), but the total area has been reduced from 4.3 mm? to
about 1.9 mm?2. We also show the time needed to complete
10 operations, to emphasize the advantage of pipelining our
unfolded design, which allows the achievement of a high
operation frequency.

We have also performed an structural comparison with
some specific units which employ a low precision approxi-
mation as a seed and then a modified Newton-Raphson iter-
ation for the computation of the reciprocal [11] and the in-
verse square root [13] functions. The results of this compar-
ison, which show the achievement of higher operation fre-
quencies with less area, and a detailed description of these
units, can also be found in [9]. :

Scheme latency | throughput | cycle t.(ns) | area (mm?) | time/op.(ns) | time/10 op.(ns)
Unfolded unit 1 1 11.2 1.87 11.2 112
Pipelined unit 3 1 4.8 1.93 142 58

Linear operand modif. [18] 1 1 11.2 4.28 11.2 112
Second—degree interp. [6] 2 2 13.4 2.15 26.8 268
Second—-degree interp. [2] 2 1 12.6 2.80 252 139

Table 5. Architecture features comparison (faithfully rounded results)

4. Conclusion

A new method for the calculation of faithfully rounded
single-precision floating-point format powering (X?) has
been presented. This method, which can be adapted to
compute any elementary function, performs this calculation
by using a second degree minimax approximation, which
allows the achievement of minimum wordlengths for the
polynomial coefficients. Three look-up tables addressed by
the m-bit word X; are employed to store these coefficients,
a specialized squaring unit with low area cost and delay per-
forms the calculation of X2, and the quadratic approxima-
tion is computed using a fused accumulation tree, with sig-
nificantly less area and about the same delay as a standard
(24 x 24)-bit multiplier.

Both an unfolded and a pipelined architecture have been
proposed. Pre-layout synthesis results have been obtained
employing Synopsys tools combined with a CMOS 0.35
pm standard cell library, showing a cycle time of 11.2
ns for our unfolded architecture, and about 4.8 ns for our
pipelined architecture, whose latency is three cycles and
whose throughput is one result per cycle.

Comparison results show that our method combines the
main advantage of linear approximations, the speed, and the
main advantage of the second-degree approximations, the
reduced size of the circuit, also taking advantage of the high
accuracy of the minimax approximation employed.

The common employment of an initial low—precision ap-
proximation (seed) and a later Newton—Raphson iteration is
due to the huge size of the look-up tables employed in tra-
ditional table-driven methods, which make designers prefer
this solution to save a great amount of area. The reduction
in the table size of our method makes it suitable to directly
compute X? in single-precision format, with no later iter-
ation, which usually leads to a reduced latency and/or an
improved operation frequency.

References

[1] AMS. 0.35 pm CMOS Standard Cell Databook, 2000.

[2] J. Cao and B. Wei. High-performance hardware for function
generation. In Proc. 13th Symp. Computer Arithmetic, pages
184-188, 1997.

47

[3] D. DasSarma and D. W. Matula. Faithful bipartite rom re-
ciprocal tables. In Proc. 12th Symp. Computer Arithmetic,
pages 17-28, 1995.

M. D. Ercegovac and T. Lang. Division and Square Root:
Digit Recurrence Algorithms and Implementations. Kluwer
Academic Publishers, 1994.

M. J. Flynn. On division by functional iteration. IEEE Trans.
On Computers, 19:702-706, 1970.

V. K. Jain, S. A. Wadecar, and L. Lin. A universal nonlinear
component and its application to WSI. IEEFE Transactions
On Components, Hybrids and Manufacturing Technology,
16(7):656-664, 1993.

T. Jayarshee and D. Basu. On binary multiplication using the
quarter square algorithm. In Spring Joint Computer Confer-
ence, pages 957-960, 1974.

J. M. Muller. Elementary Functions. Algorithms and Imple-
mentation. Birkhauser, 1997.

J. A. Pifieiro, J. D. Bruguera, and J. M. Muller. Powering by
Table look-up using a 2nd-degree minimax approximation,
2000. Internal report, at http://www.ac.usc.es.

M. I. Schulte and J. E. Stine. Symmetric bipartite tables
for accurate function approximation. In Proc. 13th Symp.
Computer Arithmetic (ARITH13), pages 175-183, 1997.

M. J. Schulte, I. E. Stine, and K. E. Wires. High-speed re-
ciprocal approximations. In Proc. 31st Asilomar Conference
On Signals, Circuits and Systems, pages 1178-1182, 1998.
M. J. Schulte and E. E. Swartzlander. Exact rounding of
certain elementary functions. In Proc. IEEE 11th Int. Symp.
Computer Arithmetic (ARITH11), pages 138-145, 1993.

M. I. Schulte and K. E. Wires. High-speed inverse square
roots. In Proc. 14th Symp. Computer Arithmetic (ARITH14),
pages 124-131, April 1999.

S. Sjoholm and L. Lindh. VHDL for designers. Prentice
Hall, cop., 1997.

M. J. S. Smith. Application-Specific Integrated Circuits. Ad-
dison Wesley, 1997.

P. Soderquist and M. Leeser. Area and performance trade-
offs in floating point divide and square root implementa-
tions. ACM Computer Surveys, pages 518-564, 1996.

E. E. Swartzlander. Merged arithmetic. IEEE Transactions
On Computers, 29:946-950, 1980.

N. Takagi. Powering by a table look-up and a multiplica-
tion with operand modification. [EEE Trans. Computers,
47(11):1216-1222, 1998.

P. T. P. Tang. Table-lookup algorithms for elementary func-
tions and their error analysis. Argonne Nat. Lab. Rep., MCS-
P194-1190, January 1991.

Waterloo Maple Inc. Maple V Programming Guide, 1998.

(4]

[51

(6]

{71

[8]
9

(10]

[11]

(12]

[13]

[14]
[15]

{16]

(17]

[18]

[19]

[20]

