Binary Multiplication Radix-32 and Radix-256

Peter-Michael Seidel, Lee D McFearin, David W Matula

Department of Computer Science and Engineering
Southern Methodist University

Dallas, TX, 75275
{seidel, mcfearin, matula}@seas .smu.edu

Abstract

Multipliers are used at many different places in micro-
processor design. As the non-memory sub-blocks of the
microprocessor with the largest size and delay, multipliers
have a big impact on the cycle time of the microproces-
sor. Targeting deeper pipelines and higher clock frequen-
cies, there is a growing demand for multiplier designs that
can be split into shorter stages. For this purpose, the use of
Booth recoding has been a popular method to cut down the
number of partial products in a multiplier, to reduce the de-
lay of the partial product accumulation and to simplify the
partition of the multiplier into several shorter stages. The
complexity to pre-compute an increasing number of digit
multiples of the multiplicand within the multiplier unit lim-
its the use of Booth recoding mainly to radices 4 and 8.

We propose novel encoding schemes for the implementa-
tion of higher radix multiplication. In particular, we con-
sider multiplication radix-32 and radix-256. In the high-
radix representations each digit of the multiplier is repre-
sented in a secondary radix which is 7 in the case of radix-
32 and which is 11 in the case of radix-256, so that the mul-
tiplier is represented by roughly 2p/5 resp. 3p/8 terms. All
non zero digits of the secondary radix system are a power
of two, simplifying partial product generation. The partial
products depending on multiples of the radices 7 or 11 can
be separately accumulated, with multiplication by the radix
a pre- or post-computation option. These features provide
more flexible multiplier designs that can be implemented in
Shorter pipeline stages. We compare the proposed designs
with multipliers that use traditional Booth recoding.

1 Introduction

Binary multiplication is one of the most frequently used
arithmetic operations in microprocessors. The implemen-
tation of binary multiplication is complex and multipliers

0-7695-1150-3/01 $10.00 © 2001 IEEE

23

are the largest and slowest non-memory sub-blocks in most
processors. For this reason their implementations have a
big impact on the cycle time of the processors. Targeting
higher clock frequencies and therefore deeper pipelines for
these processors creates a growing demand for multiplier
designs that can be split into shorter stages.

We focus in this paper on the generation and reduction of
partial products, which is the first and most costly sub-step
in binary multiplication. Booth recoding [3, 10] is a com-
monly used technique to encode the multiplier by fewer dig-
its, and hence, reduce the number of partial products. Booth
radix-4 reduces the number of partial products from p to
[2£L]. Booth radix-8 reduces this number to [%‘] at the
cost of pre-computing 3 times the multiplicand and routing
two values into each partial product generator. Our prin-
cipal result is the demonstration that the number of partial
products can be reduced to f%”‘%ll] and further to {ﬂ”;”—ll'l
while maintaining the simpler Booth radix-4 properties that
no odd multiple of the multiplicand need be pre-computed
and that each PPG receives only the multiplicand for selec-
tive shift and/or complementation.

We obtain these properties by novel representation
schemes for the implementation of higher radix multiplica-
tion. In particular we are targeting the design of multipliers
radix-32 and radix-256. For these "high-radix’ multipliers
each of the “high-radix’ digits of the p-bit multiplier is rep-
resented in a secondary radix. We will show that each radix-
32 digit can be represented by two radix-7 digits, and that
each radix-256 digit can be represented by three radix-11
digits, hence the multiplier is represented by roughly 2p/5
resp. 3p/8 terms. Moreover, we show that all the non zero
digits in our secondary radix system are a power of two,
which simplifies the implementation of the partial product
generation. The partial products depending on multiples of
the radices 7 or 11 can be separately accumulated, with mul-
tiplication by the radix a pre- or post-computation option.
These features provide more flexible multiplier designs that
can be implemented in shorter pipeline stages.

Section 2 of this paper introduces notation and briefly re-
views conventional multiplier designs and higher radix rep-
resentations. Section 3 describes the foundations of sec-
ondary radix representation schemes. Section 4 introduces
multiplier designs based on the representation schemes
from Section 3 and compares them with multipliers that use
conventional Booth recoding. We conclude in Section 5 and
propose further work.

2 Preliminaries

For a bit-string a = a[p—1:0] = (a[p-1],...,a[0]) =
(@pa,--.,a0) € {0,1}? wedenote by (a) = EZ} ali] -
2* the binary number represented by a.

A p x p-multiplier is a circuit with p inputs a = a[p—1:
0], pinputs b = b[p—1:0] and 2p outputsc = ¢[2p—1:0]
such that {a) - (b) = (c) holds.

2.1 Binary Multiplication

In general binary p X p-multipliers are implemented with
a first step of generating the product in a carry-save repre-
sentation and a second step of compressing the carry-save
representation to a binary representation of the product. We
focus on implementation of the first step. In the simplest
form the product computation is based on the sum:

@ = S (a)-bf]-2

with the partial products: S; = (a) - b[i] - 2°. These partial
products have to be generated and compressed to a carry-
save representation. The generation of the partial products
corresponding to (1) simply consists of logical AND-gates.
Except for optimizing the logical and physical implemen-
tation of the partial product reduction, the main approach
to decrease the delay and size of the partial product reduc-
tion is to decrease the number of partial products in (1) by
representing one of the operands in a higher radix.

M

2.2 Higher Radix Partial Product Generation

Let a p-digit string in radix 8 denote the radix poiyno-
mial

(dp-] ,dp—27 BN d())ﬂ =
dp1 7" +dpaP~* + ...+ do € P[B, D).

Here B > 2 is the radix, D is the digit set with d; € D for
0 < i < p—1, and the radix system P[(, D] denotes the set
of all radix polynomials with radix 3 and digits from D.
For the product A - B of the p-bit integer multiplicand
A = (a) and the p-bit integer multiplier B = (b), let the
multiplier be represented by ap’ = [E£1] digit polynomial

24

P’;g‘:ry # PPG Fanout | Total
Radix Pro d‘; Partial Fanin Primary| PPG
. Products PP's |Fanin
Ga)
2 1 64 1 64 64
4 1 33 1 33 33
8 2 22 2 22 44
16 4 17 4 17 68
32 8 13 8 13 124

Table 1. Complexity of partial product gener-
ation for various Booth recodings (p=64).

in the balanced minimally redundant (Booth digit) system
P2k, {—2k-1 —2k=1 4 1 ... 2%=1}] Each term of the
product

A-B

Z{,—lA'di'Zki

=0

is a higher radix partial product of the form

A-d;- 2% = (-1)*-2°.(A),j €{L,3,...,2" -1}

This allows each higher radix partial product to be created
from a set of 2¥=2 primary partial products (j A) by a con-
ditional shift and/or complement. Five metrics are provided
in Table 1 for comparing the consequences of employing
higher radix Booth recodings on a 64-bit operand. The
number of primary partial products that must be computed
and routed to each partial product generator (PPG) grows
linearly with the base 8 while the number of partial prod-
ucts that must be driven to each PPG decreases inversely
with [g8. A measure of multiplier circuit routing complex-
ity is the total PPG-fanin given by the sum of the number of
primary partial products that must be routed into each PPG.
The necessity of routing each primitive partial product (j A)
to each of the PPG’s causes the total PPG-fanin to grow for
B4

e Radix-4 has a clear advantage in these metrics over the
host radix-2. The reduction by one half in the num-
ber of partial products and total PPG-fanin is obtained
simply by the facility of the PPG units to conditionally
complement and/or perform a one bit shift.

e Moving to radix-8 further reduces the number of par-
tial products by a third while adding the complexity
and delay of a 2-1 add to pre-compute the primitive
value (3A). This tradeoff is more acceptable for higher
precisions in terms of adder complexity, but the rout-
ing of the two primitive values to each PPG increases
the total PPG fanin.

e Moving to radices 16 and 32 only marginally reduces
the number of partial products while greatly increas-
ing the partial product complexity both in number of
primary partial products and total fanin to the PPG’s.

Our contribution here is a new multiplier recoding pro-
cedure that significantly reduces the total PPG-fanin while
maintaining the number of higher radix partial products at a
level between that of Booth recoding with radices 4 and 8.

3 Secondary Radix Operand Conversion

Consider a minimally redundant (Booth) radix polyno-
mial representation B = Y25 d;2¥ for very high &, in
particular 5 < k < 12. The digit ranges expand from
-16 < d; < 16for k = 5 up to —2048 < d; < 2048
for k = 12. To reduce the partial product complexity these
large digit ranges are represented by a two to four digit
number in a secondary radix v where the non-zero digits
d € D for the secondary radix system P[v, D] are exclu-
sively restricted to signed binary powers d = (—1)* - 2™ for
n =0,1,2,.... The possibility of such systems will first be
illustrated by a simple example.

Example 1. Our primary radix is # = 32 with Booth digit
set D = {—16,—15,...,16}. Our secondary radix is v =
7 with a digit set D = {—4, -2, —1,0, 1, 2,4} having only
signed binary power or zero digits. Note from Table 2 that
every digit —16 < d; < 16 of the primary radix system can
be represented as a two digit radix-7 number
di = di,l -7+ di,O’ di,la di,() € {_4’—27_1)(]’1’2’4}'

Our 64 x 64 bit product A - B using a secondary radix
representation for B can be expressed as

AB = (TA)Y, (din32) + (A)-Z:(d,-,osz").(z)

The right hand side of (2) has 26 partial products, achiev-
ing a reduction more than halfway between that of Booth
radix 4 and 8. These 26 partial products are partitioned into
two groups, 13 of which employ the primary partial product
(7A) and 13 of which employ (A) giving a total PPG fanin
of only 26 (table 5). Two options are possible with these
simplified partial products noting that d; ;32! = (—1)%2"
orQforall0<i<12,0<37<1

e Pre-compute (7A). The primary partial product can be
pre-computed by a shift and add (74 = 84— A) while
the d; ; are obtained from a recoder or recoding table.

e Post-compute (7A). The higher order summation can
utilize a 13:2 adder tree compressing Eﬁo A(d;132%)
to a redundant (e.g. carry save) sum z. Then the
post computation can add 8z — z to the low order sum
y= Z}io A(d;032) output from a second 13:2 adder
tree. The value of 82— z+1y is completed by a 6:2 com-

pressor and a 2-1 addition.
O

25

digit radix-32 || b[5i+4: 5i—1] | digits radix-7

0 111111,000000 00
1 000001,000010 01
2 000011,000100 02
3 000101,000110 14
4 000111,001000 04
5 001001,001010 12
6 001011,001100 1
7 001101,001110 10
8 001111,010000 11
9 010001,010010 12
10 010011,010100 24
11 010101,010110 14
12 010111,011000 22
13 011001,011010 21
14 011011,011100 20
15 011101,011110 21
16 011111 22

Table 2. Radix-7 representations and selec-
tion signals for all positive digits radix-32.

Note that the post-computation option of Example 1 uti-
lizes only two more partial products and one additional level
of 3-to-2 adder delay to avoid the complexity of a 2-1 adder
to pre-compute (7A). If multiplier digit recoding is per-
formed in the first cycle of a pipelined multiplier, the post-
computation option allows the product to be fed back as the
multiplicand of a dependent multiply operation entering on
the second cycle. This effectively reduces pipeline stall by
one cycle on dependent multiplications.

The following shows that any primary radix system =
2k with D = {-2%—1 —2k141 .. 2k} can be coupled with
the secondary radix system P[7, {—4,-2,-1,0, 1,2, 4}].

Lemmal The radix system P[7,{—4,-2,-1,0,1,2,4}]
contains a unique radix polynomial Pg of value B for
any integer B. Furthermore if |B| < 1(7¢ — 1), then
Pg = (d¢—1d¢—2 . .. do)7 has at most £ digits.

Proof: Given B let Py be the unique radix 7 polynomial
with digits —3 < d; < 3. Starting from the least digit
dp, replace any digit of magnitude 3 with a carry out of a
unit of the same sign leaving behind a digit of magnitude
4 of the opposite sign. Sequentially, each carry is absorbed
forming a range [—4, 4] in each successive position before
the next carry is rippled out for the magnitude 3 digit values.
The process determines a suitable Pg which must be unique
since the digit set is a non-redundant residue system modulo
7 [7]. Any positive initial value less than or equal to the £
digit number (22 . . . 2)3 will not have a positive carry out to

I val | radix-11 ' val ‘ radix-11 1 val | radix-11 “ val |radix-11 |
0] 000 32| 181 64 | 2G2 9% | 088
1 001 33 180 65| 2G1 97 122
2 002 34 | 181 6 | 2G0O 98 121
3 018 || 35 182 67| 2G1 99 120
4 004 36| 048 68| 2G2 100 | 121
5 101G || 37 184 69 | 148 101 | 122
6 | 02G [[38| 02G 70 | 2G4 102 | 118
7 014 39| IGG || 71| 1IGG || 103] 124
8 | 008 ({40 | 044 72| 08G 104 | 08G
9 012 4 188 73 144 105 | 10G
100 011 42| 042 74| 2G8 106 | 114
11| 010 43 | 041 75 142 107 | 128
12 011 44 040 76 141 108 112
13| 012 45 041 77 140 109 | 111
14| 028 |46 | 042 78 141 110 | 110
15| 014 47| 1G8 79 142 111 111
16 | 00G || 48 | 044 80 | 088 112 | 112
17| 18G || 49 | 18@G 81 144 113 | 108
18| 024 [[50 | 2GG || 82 | 2GG || 114 | 114
19| 018 ||51] 1G4 83 | 12G 115 | 12@
20 | 022 521 048 84 | 084 116 | 11G
21 | 021 53 1G2 85 148 117 | 104
22| 020 54 | 1GT 86 082 118 | 118
23] 021 5 | 1GO 87 081 119 | 102
24| 022 56 | 161 8 | 080 120 101
25| 188 57 | 1G2 89 | 081 121 100
26| 024 58| 2G8 {90 | 082 122] 101
271 01@ [[59]| 1G4 91 128 123] 102
28 | 04G || 60| 04G 92 084 124 | 118
29| 184 |61]| 14G || 93| 14G 125 | 104
30| 028 62| 2G4 [[94 | 11G 126 11G
31 182 63 | 1G8 95 124 127 | 12G
32| 181 ||64| 2G2 || 9 | 088 128 | 114

Table 3. Radix-11 representations for all pos-
itive digits radix-256

position £ + 1 by this process, and it follows that Pp is an £
digit number whenever | B| < (74 — 1).]

Employing radix 7 requires numerous powers 7 to be
computed when the primary radix 3 = 2% has a large .
It is then useful to consider larger radices where all non
zero digits are of the binary power form (—1)°27. Let
Dy = {-29,-29"1,...,-1,0,1,2,4,...,29} be termed
the gth order binary power digit set, with P[2q + 3, D}]
then a binary power radix system. Using theory on com-
plete and unique radix representations developed in [7] the
following can be shown for values 3 < v < 59.

Theorem 2 The binary power radix system P[y, Dy] with
¥ = 2q + 3 contains a unique radix polynomial of
value B for every integer B for any of the radices v =

26

3,5,7,11,13,19, 23,29, 37,47 and 59, and for no other
radix less than 59. O

Proof: Note that Dy is a symmetric complete residue sys-
tem modulo vy = 2¢g+ 3 only for prime «y. Employing a The-
orem from [7], P['y,D;] will contain a unique radix poly-
nomial of value ¢ for every integer ¢ if it contains a radix
polynomial of value i for any ¢ from zero up to the max-
imum digit magnitude 2? divided by the base minus one

(y—1),thatisfor0 <i < 2:+——11 This can be tested in time

linear in Qqu—; by an algorithm described in [7]. Exhaustive
use of this algorithm for each prime 3 < v < 59 can be
employed to confirm the theorem. 0

The three digit numbers of the radix 11 binary power
radix system include all integers B with |B| < 170. Table
3 shows the representations for the range 0 < B < 128.
This provides that the primary radix 256 can be coupled
with the secondary radix 11 using using only the secondary
radix powers 1, 11 and 121.

Observation 3 Let the p-bit integer B = Zf':f)l d; - 2%,
where —2¥=1 < d; < 2¥1, with p = [EE). Ler
P[y, Dy] be a binary power system with vy = 2q + 3 where
d; = Z;’;El di ;- forany —2¥1 < d; < 2871, Then the
p X p bit product A- B is the sum of " - p' partial products.
The partial products can be partitioned into p" sets of p' bi-
nary power terms (3 A)(d;;2%%), each term being zero or a
conditionally complemented and/or shifted partial product
of a single primitive partial product. O

More simply stated the p-bit integer may be partitioned
into p’ high radix digits, each of which is represented by
p" secondary radix binary power digits. Each of the p' - p"
terms needs only a single input primitive partial product to
shift and conditionally complement to obtain the final par-
tial product. This significantly simplifies the PPG’s of a
secondary radix system implementation for a high primary
radix.

It is also possible to use secondary radix systems that
are not "pure” radix systems. For example, the mixed radix
system d; 2 - (5 11) + d; 1 - 11 + d; o with binary power
digits provides a useful foundation for implementing radix -
256 with some advantages over the radix-11 system of Ta-
ble 3. A secondary radix system might also be simply a
weighted system with binary power digits. It can be shown
that the four weights 91, 15, 7 and 1 allow a secondary sys-
tem with binary power digits that covers the integer range
[—2048, 2048]. This secondary system can be coupled with
the primary radix 22 to achieve a 3-fold reduction in partial
products.

The variety of secondary radix systems provides ample
opportunities for new multiplier organizations as we shall
show in the next section.

4 Multiplier Designs

In this section we propose multiplier designs on the basis
of the encoding schemes from the previous section. The
proposed encoding schemes share the following features,
that will be utilized in the designs:

e There are very few digits to be considered in the sec-
ondary radix representations.

e All digits in the secondary radix representation are
powers of two.

e All the multiples of all weights in the secondary radix
system can be computed by simple sums.

If p” denotes the number of digits that are required in the
secondary radix representation of a higher radix digit, then
[(p+1)/k]-p" digits are required to represent the multiplier
(b). Thus, in comparison with binary the number of digits is
reduced by roughly k/p" whichis 5/2,8/3 or 3 in the cases
we consider. Additionally these digits are simple multiples,
and even the multiplication by the weights can be computed
by simple sums. This is not very different from the proper-
ties of Booth recoding radix-8. The main new flexibility for
the implementations is given by the following properties:

¢ Each digit depends on only one odd multiple which
could be 1 and is known at design time.

. Only some of the digits in the secondary radix have to
be weighted by a "hard’ multiple.

e These 'hard’ multiples are computed unconditionally,
they do not depend on the value of the digits in the
secondary radix.

¢ The low order digits do not have to deal with "hard’
multiples.

Based on these properties we suggest two basic architec-
tures for the design of partial product generation and reduc-
tion:

e Architecture I using pre-computed ’hard’ multiples:
the multiplications by the weights of the secondary
representation are computed on the multiplicand (a).
In parallel the multiplier {b) is recoded and the partial
products corresponding to the low order digits (which
do not have to deal with any hard multiples) are gen-
erated and can already be partially reduced. These are
combined with the remaining partial products in a sec-
ond partial product reduction step.

e Architecture II using post-computed "hard’ multiples:
After recoding the multiplier (b) into the digits of the

27

secondary radix system, the multiples of the multipli-
cand {a) by these digits (note that these are only mul-
tiples by powers of two) are generated. The terms
that we get from this selection are accumulated sep-
arately in groups that share the same weights of the
corresponding digits in the secondary radix system.
The carry-save representation of the sum of each of
these groups is then multiplied by the corresponding
weight (note that these multiples can be computed by
simple sums). The results are accumulated to get the
carry-save representation of the product in a final par-
tial product reduction step.

We discuss the implementation of Architectures I and II for
both radix-32 and radix-256 in the following.

4,1 Radix-32 Architecture of the Multiplier

The encoding scheme for the proposed implementations
is based on a radix-32 signed digit representation of the

multiplier:
p—1 ;
Oy=>_, , d-32,

so that the multiplier is represented by p' = [(p + 1)/5]
radix-32 digits d; € {-16,—15,--,16}. Corresponding
to Booth recoding a canonical choice for the digits d; is
computed from the binary representation of b= (b[p—1:0])
by:
d; —16b[5i+4] + 8b[6i+3] + 4b[6i+2]+
+2b[5i+1] + Bb5i] + bBi—1].

As suggested in the previous section each radix-32 digit d;
can be represented by two digits in the secondary radix-7:

di = dip-7 + dip,

where both d;; and d;o are a power of two. The high
order radix-7 digits d;; can only have values from the
set {—2,—1,0,1,2} and the low order radix-7 digits d; o
can only have the values {—4, -2, -1,0,1,2,4} (see Ta-
ble 2). Note that the selection from {—2, —1,0, 1,2} times
the multiplicand (a) compares to the simple sclection for
Booth digits radix-4. For the low order digits d; o addition-
ally 4 x (a) (a shift by 2 bit positions) has to be considered.

Without considering the weight of 7 this gives us two
groups of [(p + 1)/5] partial products, each of which can
be generated very easily. For the group of partial products
generated by the low order digits d; o these are already the
final values for the partial products.

The group of partial products generated by the high order
digits d; ; additionally have to be multiplied by 7. There are
two options where this multiplication could be computed:
On one hand the multiplicand (a) can be multiplied by 7

before the partial product reduction which leads to Archi-
tecture 1. Figure 1¢) depicts a block diagram corresponding
to this implementation radix-32 using the pre-computation
of the 7 X (a) multiple. The multiplication of (a) by 7 is
computed by the following sum:

8- (a) - (a)
{(alp—1:0],00)+ (11,a[p—1:0]) + 1.

7 {a)

On the other hand the group of partial products generated
by the high order digits could be multiplied by 7 after these
partial products already have been compressed to a carry-
save representation which corresponds to Architecture II.
Figure 1¢) depicts a block diagram corresponding to this
implementation radix-32 using the post-computation of the
7z multiple. Also in this case the formula7-z = 8-z —zis
used to compute the 72 multiple, but this time it is not com-
puted using {a), but it is computed using the carry-save rep-
resentation of the sum of the terms that have been generated
by the high order digits. In this way the 2 partial products
from the carry-save representations of the two groups are
extended to 6 partial products, which are then reduced to the
carry-save representation of the product in a final 6:2 reduc-
tion step. Note, that for the implementation of Architecture
11 the input of the multiplicand (a) is required later than the
input of the multiplier (b). With the partitioning suggested
in Figure le) this makes a difference of a whole cycle in
which the second operand is not needed. An operand that
is fed back from a multiplier result only requires one cy-
cle in the partial product generation and reduction for this
proposed partitioning.

4.2 Radix-256 Architecture of the Multiplier

Although there are several choices to represent signed
radix-256 digits from the previous section, we only propose
multiplier designs using fixed radix-11 representations in
some detail. We then briefly discuss alternative choices us-
ing mixed radices and other weighting systems.

The encoding scheme for the proposed implementations
is based on a radix-256 signed digit representation of the

multiplier:
p-
=3,

so that the multiplier is represented by ' = [(p + 1)/8]
radix-256 digits d; € {—128,-127,---,128}. As previ-
ously suggested each radix-256 digit d; can be represented
by three digits in the secondary radix-11:

1 ,
d; - 256°,

di = di2-121+d;; - 114 d;)0,

where each of the digits d; 2, d;; and d; o in the secondary
radix representation is a power of two (see Table 3 where a
digit with the value of 16 is represented by the letter G).

28

The high order radix-11 digits d; 2 can only have values
from the set {—4, —2,—1,0,1, 2,4} and the middle and the
low order radix-11 digits d;, and d;o can only have the
values {—16,—8,-4,-2,-1,0,1,2,4,8,16}. In this case
the partial products corresponding to the high order digits
and the middle digits have to be weighted by 121 and 11
respectively. Again we consider the two options of either
pre-computing these multiples corresponding to Architec-
ture I or post-computing the multiples corresponding to Ar-
chitecture II. The block diagram for the pre-computing ver-
sion is depicted in Figure 1d) and the block diagram for the
post-computing version is depicted in Figure 1f). For the
computation of the hard multiples 121z and 112 we use the
formula 121 = 128 —8 + 1 and 11 = 8 + 2 + 1 in this case,
which can be implemented with the combination of a carry-
save and a carry-propagate adder for Architecture 1. For Ar-
chitecture 11 the post-computation extends the 6 terms from
the three carry-save representations of the three groups to
14 terms, which then have to be reduced to a carry-save
representation in a last step.

Again the main differences between the two architec-
tures is that in Architecture I part of the partial product re-
duction can be started early in parallel to the generation of
the hard multiples for the other partial products. In Archi-
tecture II the second operand is required later than the first
operand. The three parts of the recoding, the first group-
wise partial product reduction step and the second partial
product reduction step suggest a partitioning of Architec-
ture II into three pipeline stages as depicted in Figure 1 by
the two dotted lines. Corresponding to the later delay anal-
ysis the three pipeline stages seem to be balanced in this de-
sign. Such a partitioning reduces the delay that is required
between latches. Because the second operand only has to
go through two of these stages, there is the potential for a
fast feedback of a result for dependent multiplications.

Alternatively to representing the signed radix-256 digits
with the fixed secondary radix-11, one could also choose a
mixed radix representation for the signed digits d; as sug-
gested in the previous section. For example also in the
mixed secondary radix system 55-11-1, where the three dig-
its dj 2, di,1 and d; o have the weights 55, 11 and 1, all dig-
its can be chosen to be either a power of two or zero. It
would be the main advantage of the of this mixed radix sys-
tem that there are several choices of d; 2, d;1 and d; o for
the representation of most d;. This could be used to op-
timize the implementation of the recoder. Moreover, the
digit set for the middle digit could be reduced to the values
{-8,-2,-1,0,1, 2,8} by an appropriate choice of encod-
ings.

There are even more choices for the three weights in
the secondary representation to consider for multiplication
radix-256. Just to mention a few promising candidates:
11-7-1,13-7-1,29-9-1,13-11-1,53-11-1

A[n-1:0] B[n-1:0] input operands

A[n-1:0 B[n-1:0 input operands
a) AbLo [n-1:0) put op b)
’ Booth recoder radix 4 ; Booth
)) recoder
. - radix 8
selection logic j
T D) .

partial product reduction selection logic

(n+1)/2:2 i
/ pattial product reduction
(n+1)/3:2
\T_r/ product in N s
carry-save ¥l_v_'_/ product in

PC[2n-1:0] PS[2n-1:0] representation

carry-save

PC[2n-1:0] PS[2n-1:0] representation

C) Aln-1:0] B}[:]-I:O] input operands d) Aln-1:0] B[nJ—I:O] input operands

recoder for [1 r—;i
E 1x digits L [\ recoder for
/ recoder |
Tx for i

recoder recoder
7x digits

selection logic for

partial product
reduction
(n+1)/5:4

partial product

_ reduction
N (n+1)/8 :4//
/

selection selection
v logic logic
L — — | s s s 1 e e T I
partial product reduction | artial prod ducti
n+1)/S +2 2] pattial product reduction
: (n+1) P S [— 2((n-1)/8) +2 :2 =
AN .

N - T product in
product in carry-save
carry-save) . . :

PC[2n-1:0] PS[2n-1:0] representation PC[2n-1:0] PS[2n-1:0] representation
B[n-1:0] input operand
. B[n-1:0] input operand | .
2 b D — T ——
- recoder recoder recoder
recoder recoder for for
for for 121xdigits igits 1x digits
Tx digits 1x digits
- S [D R D P PR P PR D R PR PR R PR P PP PPRE

.. e Aln-1:0] B input operand
Aln-1:0] | input operand [— - - S
1 selection logidY selection logi% selection logiq
selection logic |Yselection logic1) S T T S S e S W N N
L [[
[—lv e L T == L partial product| | partial product| | partial productJ
| partial product| | partial product| reduction reduction reduction
reduction reduction (n-1)/8 :2 (n-1)/8:2/ (n+1)/8 :
\n+1)/5 : (n+1)/5 :;/ v -

7x . T
computadion! == || chmpaton Tt Tt

partial p rog 1.12ct reduction partial product rcduction)
: product in ~— 14:2
carry-save T~ — product in
PC[2n-1:0] PS[2n-1:0] representation carry-save

PC[2n-1:0] PS[2n-1:0] representation

Figure 1. Block diagrams of partial product generation and reduction for multiplier designs using: a)
conventional Booth recoding radix-4; b) conventional Booth recoding radix-8; ¢) radix-32 encoding
with pre-computation of 7z; d) radix-256 encoding with pre-computation of 11z and 121z; e) radix-32
encoding with post-computation of 7z; f) radix-256 encoding with post-computation of 11z and 121z.

29

p=24 bit p=32 bit p=53 bit p= 64 bit p=113 bit

9 8 9 3) 3 9 5 9 8

BlE el S |88 |e| S |B|8|e| S ||[B|Elc|lE B |5 2]t

S 5} ° = i g g = = o] S kS| 5 8 o = & 53 B k|

8. 8‘ % o= 8. o 2] =} 8. 8‘ Q =] o <) o o 8. 8‘ 3 o

sl=ls| 8 /Si=ls! 8 al=l3] 8lal=|31 8 (2|l=|3) 8

< 1& |8 2 ST ~ 1 & B| 2 2 1& 18 E <& |3 2

sl 5| B lsls|5| B |s|s|5| 28 ||s|s|5|23 |s]|s|s|2

3] o = > o 3]) > o o 5 =N 3] 3 =) > 3] o =) >

I - I N I I - - - - I - O - - -

design # | % | S < * | % |5] ® | % |8] * | % |8] #* [|5]
a) Booth radix-4 1 1 1 | 13LL 1 1 1 (14LL || 1 1 1 |16LLJ|| 1 1 1 | 17LL 1 1 1 | 19LL
b) Booth radix-8 2 |2 1 J9LL || 2 | 2 1 {10LL || 2 | 2 1 (13LLJ|| 2 | 2 | 1 |13LL|l 2 2 1 | 16LL
c) radix-32 pre 2 (2|1 |9LL 212 1 [10LL | 2 | 2 1 [12LLJ} 2 { 2 | 1 J12LL || 2 2 1 | 15LL
d) radix-256 pre 2 2 1 9LL 2 2 1 |1ILL || 2 2 1 |12LL} 2 2 1 [13LL || 2 2 1 | I5LL
€) radix-32 post 2 1 1 J12LL || 2 1 1 [13LL || 2 1 1 [15LL|| 2 1 1 [16LL || 2 1 1 | 18LL
fradix-256post || 3 | 2 1 y9LL || 3 | 2 1 | 9LL || 3 2 1 | 9LL 312 1 [9LL || 3 | 2 1 [11LL

Table 4. Latencies, cycle times and throughput for the multiplier designs.

and 77 — 11 — 1, all allow secondary digits that are a power
of two and that are smaller than or equal to 16. There are
some differences in the properties of these encodings for the
multiplier implementations. One advantage of the systems
using 7 or 9 as one of their weights is that these multiples
can be computed by a sum of 2 terms instead of a sum of 3
terms. For Architecture II this would reduce the reduction
in the third stage from a 14 : 2 reduction to a 12 : 2 reduc-
tion, which is a significant change regarding the delay of the
corresponding adder tree.

4.3 Delay Analysis and Comparison

In this section we analyze the delays of the proposed
designs and compare the implementations with the partial
product generation and reduction using conventional Booth
recoding radix-4 and radix-8. In the delay analysis we
mainly look at the implementation at gate level and count
the delay on the critical paths of the implementations in
logic levels.

We assume that a full adder has a delay of 2 logic levels
and a 4-to-2 adder is implemented with a delay of 3 logic
levels using an optimized version as described in [6, 14].
We assume the selection of the partial products to have a
delay of 2 logic levels, which is mainly one logic level to
select the absolute (shifted) values of the partial products
and one logic level to conditionally complement it.

The recoding hardware is assumed to have a delay of 2
logic levels for Booth recoding radix-4 [1, 2, 9, 13], to have
a delay of 3 logic levels for Booth recoding radix-8 [1, 2], to
have a delay of 4 logic levels for our radix-32 encodings and

to have a delay of 6 logic levels for our radix-256 encodings.

We assume the carry propagate addition of 64 bit numbers
to be implemented in 8 logic levels. Based on these basic
delay assumptions we suggest the partitionings of the im-
plementations into pipeline stages as shown in Figure 1a)-f)

30

by the dotted lines. Tables 4 then summarizes the latency
from both the input of the first and the second operand in
pipeline stages and the number of logic levels that are re-
quired between latches in a pipeline stage for each design.

For implementations using conventional Booth recoding
[3, 10] radix-4 the partial product generation and reduction
is usually not partitioned, but the implementation is sup-
posed to fit into one pipeline stage (see Figure la). For
large operand sizes this can increase the delay of a pipeline
stage between latches to up to 19 logic levels(LL) like for
p = 113. Also the area of the implementation might be-
come very large with the wire lengths causing additional
delay. The fanout for the selection logic for this implemen-
tation is about n/2.

For implementations using conventional Booth recoding
radix-8 the implementation is split into two pipeline stages
as depicted in Figure 1b) by the dotted line [1, 2, 8, 11].
The hard multiple has to be computed on the multiplicand
and must be known for the partial product reduction. The
delay is reduced in comparison to Booth radix-4 by elimi-
nating the recoding from the second cycle and by reducing
the number of partial products to roughly n/3 providing a
smaller and faster partial product reduction. The gate delay
analysis suggests that the delay between latches is reduced
by 3 — 4 logic levels depending on the operand size. Be-
cause either the multiplicand or 3x the multiplicand could
occur in each partial product the maximum fanout in this
implementation is about n/3.

In contrast to the designs using Booth recoding radix-8,
the proposed designs for Architecture I reduce some partial
products in parallel to the computation of the hard multiples
during the first stage. This decreases the number of partial
products that have to be reduced in the second stage. The
amount of work which can be completed in the first stage
depends on the delay of the digit recoder for the low or-
der digits. The partitioning of the implementation into two

PPC Total | Fanout

Radix ||Primary| Partial Fanin PPG | Primary

PP's (jA)|Products Fanin|PP's (jA)
32pre 2 26 1 26 13
32post 1 26 1 26 26
256pre 3 24 1 24 8
256post 1 24 1 24 24
4096pre 4 22 1 22 6
4096post 1 22 1 | 22 22

Table 5. Complexity of partial product gener-
ation for proposed designs (p=64).

stages should be chosen so that the delay that is required in
the first and the second stage is balanced. To balance the
delays of these two stages, part of the reduction in the first
stage could be shifted to the second stage. Our delay analy-
sis suggested that in many cases a 4:2 reduction step should
be computed at the beginning of the second stage in paral-
lel with the generation of the partial products for the higher
digits as depicted in Figure 1¢)-d). In some of the designs
exchanging this 4:2 compression to a 3:2 compression and
the shifting of the 3:2 compression step to the first stage is
feasible and has been used to balance the designs.

The delay analysis from Table 4 suggests that when only
looking at gate level the proposed designs have shorter
pipeline stages than the designs that use Booth recoding
radix-8 by about 1 — 2 logic levels.

Additionally the block sizes of the partial product re-
ductions are reduced by separating the generations for the
groups that have a different weight in the secondary radix.
Since the input for the partial product generation (selection
logic) is a single, different multiple of the multiplicand for
each of the digit groups, each of these multiples only has
a fanout of n/k, which is the maximum fanout of the im-
plementation for Architecture I. Comparing with the max-
imum fanout of n/3 for Booth radix-8, our radix-32 im-
plementation has a maximum fanout of only n/5 and our
radix-256 implementation has a maximum fanout of only
n/8. For the smaller group-wise partial product reductions
the connection lengths for these inputs are reduced allowing
implementations that have less wire delay or lower power
consumption. Table 5 gives an overview of the number of
primary partial products, the number of partial products, the
PPG fanin, the total PPG fanin and the maximum fanout for
primary PPG’s for our proposed designs for p = 64. A
comparison with Table 1 shows the differences to multipli-
ers using conventional Booth recoding.

The main difference of the proposed designs is that in
Architecture II, the multiplicand is required one stage later
than the multiplier as an input. With the partitionings sug-
gested in Figures 1e)-f), the latency of dependent multipli-

cations in the proposed radix-32 design compares with the
latency of Booth recoding radix-4 and the latency of the pro-
posed radix-256 design compares with the latency of Booth
recoding radix-8 in this way.

The delay analysis for our radix-32 implementation in-
dicates slightly faster pipeline stages that when using Booth
recoding radix-4, also the size of the partial product reduc-
tion is smaller and the maximum fanout is reduced fromn /2
to 2n/5. In this case the pipeline stages of our design are
not very balanced, and there is much more time available in
the first stage than is needed for the recoding implementa-
tion. This implementation would suggest a partitioning into
three stages: 1/2 stage for recoding, a full stage for the first
partial product reduction and 1/2 stage for the second partial
product reduction.

The proposed radix-256 implementation can nicely be
partitioned into three balanced pipeline stages. The de-
lay analysis for the stages of this implementation are much
shorter than for Booth recoding radix-8. Still the latency for
the second operand is two stages. In this case the maximum
fanout is about 3n/8. In the last stage 14 partial products
must be reduced when using the fixed radix-11 for the sec-
ondary radix representation. When choosing some of the al-
ternative weights for the secondary number system that we
previously suggested for radix-256, these 14 terms could be
reduced to 12.

Often a difference of one partial product can significantly
change the delay of adder tree reduction [5, 12]. Because
the proposed designs provide some flexibility to shift parts
of the reductions from one stage to another, optimizations

- based on the boundaries for the number of partial products

31

for a given delay can be utilized. Additionally the alterna-
tive choices for the radix-256 and radix-4096 representation
suggested in this section provide even more flexibility.

5 Conclusions and Further Work

We propose implementations for high-radix multiplica-
tion of radix-32, radix-256 and also point out options for
multiplication radix-4096. The multiplier designs are tar-
geting the implementation in deeper pipelines with shorter
pipeline stages and smaller fanout. The basis for our im-
plementations is the introduction of novel representation
schemes for the recoding of the multiplier. We represent
each conventional ’high radix’ Booth digit in a secondary
radix system with digits that are powers of 2.

This proposed encoding scheme significantly reduces
the number of hard multiples typically required for higher
radix multiplication using conventional Booth recoding. It
permits the implementation of radix-32 multiplication with
only one hard multiple calculation; radix-256 multiplication
with two hard multiples; and radix-4096 with three hard
multiples. Furthermore, the partial products depending on

these hard multiples are known in advance reducing the fan-
out requirements for these multiples and providing greater
design flexibility to tailor the multiplier to the specific im-
plementation constraints.

We demonstrated several designs of different radices
where the hard multiples were calculated in parallel to the
recoding (pre-computation) as typically done today, or cal-
culated in redundant form (post-computation) after the par-
tial product reduction creating a new paradigm.

Each design demonstrated a different balance of work
and may be practical depending on the time budget of each
pipeline stage. The radix-256 post-computation multiplier
did particularly well under our implementation constraints
of balanced pipeline stages. They allow for a smaller cy-
cle time than conventional Booth recoding radix-8, and still
maintain the two cycle feedback latency for one operand.

Our designs also reduce the maximum fanout of p-bit
multiplication to p/5 for radix-32 and p/8 for radix-256.
Note that this fanout for Booth recoding radix-4 is p/2 and
for Booth recoding radix-8 is p/3.

Further investigation for base and digit selection of the
secondary radix is continuing in our lab. Various bases are
possible and may provide an easier calculation of the hard
multiples. Additionally, redundancy in the binary power
digit set of the secondary radix can improve the recoding
logic and provide fewer shifting alternatives for the shifting
multiplexors. It would also be of interest to compare the de-
sign from [4] using half radix-4 and half radix-8 digits with
our radix-32 system. Our design avoids the necessity of
pre-computing 3z along with the higher PPG fanin, while
requiring a more complex recoder. Optimizing a recoder
design for our secondary radix systems is a goal that would
allow a better comparison of these mixed radix systems.

References

[1]1 H. Al-Twaijry. Area and Performance Optimized CMOS

Multipliers. PhD thesis, Stanford University, August 1997.

G. Bewick. Fast Multiplication: Algorithms and Implemen-

tation. PhD thesis, Stanford University, March 1994.

A. Booth. A signed binary multiplication technique. Quart.

Journ. Mech. and Applied Math., 4(2):236-240, 1951.

J. Clouser, M. Matson, R. Badeau, R. Dupcak, S. Samu-

drala, R. Allmon, and N. Fairbanks. A 600-MHz superscalar

floating-point processor. [EEE Journal of Solid-state cir-

cuits, 32(7):1026-1029, 1999.

L. Dadda. Some schemes for parallel multipliers. Alta Fre-

quenza, 34:349-356, 1965.

D. Galhi and A. Chan. Four-to-two adder cell for paral-

lel multiplication. U.S. patent 4901270, Intel Corporation,

1990.

[7] D.Matula. Basic digit sets for radix representations. Journal
of the ACM, 29(4):1131-1143, 1982.

[2]
(3]

(4]

[3]

(6]

32

(8]

9

—

[10]

(11]

(12]

(13}

[14]

S. Oberman. Floating point division and square root algo-
rithms and implementation in the AMD-K7™™ micropro-
cessor. Proceedings of the 14th Inil. Symposium on Com-
puter Arithmetic, 14:106-115, 1999.

W. Paul and P.-M. Seidel. On the Complexity of Booth Re-
coding. Proceedings of the 3rd Conference on Real Numbers
and Computers(RNC3), pages 199-218, 1998.

L. Rubinfeld. A proof of the modified Booth’s algorithm
for multiplication. IEEE Transactions on Computers, pages
1014-1015, October 1975.

E. Schwarz, R. Averill, and L. Sigal. A radix-8 CMOS S$/390
multiplier. Proceedings of the 13th Intl. Symposium on Com-
puter Arithmetic, 13:2-9, 1997.

C. Wallace. A suggestion for parallel multipliers. /EEE
Trans. Electron. Comput., EC-13:14-17, 1964.

W.-C. Yeh and C.-W. Jen. High-speed booth encoded paral-
lel multiplier design. IEEE Transactions on Computers, Spe-
cial Issue on Computer Arithmetic, 49(7):692-701, 2000.
R. Yu and G. Zyner. 167 MHz Radix-4 floating point mul-
tiplier. Proceedings 12th Symposium on Computer Arith-
metic, 12:149-154, 1995.

