A Hardware Algorithm for Computing Reciprocal Square Root

Naofumi Takagi
Department of Information Engineering
Nagoya University
Nagoya 464-8603, Japan
email: ntakagi @nuie.nagoya-u.ac.jp

Abstract

A hardware algorithm for computing the reciprocal
square root which appears frequently in multimedia and
graphics applications is proposed. The reciprocal square
root is computed by iteration of carry-propagation-free ad-
ditions, shifts, and multiplications by one digit. Different
specific versions of the algorithm are possible, depending
on the radix, the redundancy factor of the digit set, and etc.
Each version of the algorithm can be implemented as a se-
quential (folded) circuit or a combinational (unfolded) cir-
cuit, which has a regular array structure suitable for VLSI.

1 Introduction

Reciprocal square root (or inverse square root) appears
frequently in multimedia and graphics applications. Sev-
eral microprocessors, such as MIPS R10000/R12000 [1, 2]
and IBM PowerPC 7407750 [3], as well as graphic engines,
have reciprocal square root instruction in their instruction
set. This instruction is realized by a division (a reciprocal
computation) followed by a square rooting (or vice versa)
using a divide/square-root unit based on digit-recurrence
methods, or by a convergence method such as Newton-
Raphson method using a multiplier. The former realization
is very slow, because its latency is the sum of those of di-
vision and square rooting. On the other hand, by the latter
realization, the instruction occupies the multiplier for more
than ten clock cycles and may decrease the performance of
a system.

The increased significance of multimedia and graphics
applications and the recent advances of VLSI technologies
make it attractive to accelerate reciprocal square root opera-
tion by special hardware. Several methods using table look-
up and multiplication were proposed for this operation, in
the last decade [4, 5, 6, 7].

In this paper, we propose a digit-recurrence algorithm for

0-7695-1150-3/01 $10.00 © 2001 IEEE

94

computing reciprocal square root, which does not require
multiplication. By providing a circuit based on the algo-
rithm, we can release the multiplier from the computation
and, hence, increase the performance of a system, greatly.
It is also nice to avoid intermediate rounding errors between
atomic operations, but only have a bounded error for the fi-
nal result.

For reciprocal square rooting, as square rooting [8], we
can derive digit-recurrence equations of the residual and of
the partial result. However, the recurrence equation of the
residual includes the product of the partial result and the
operand and, therefore, a naive calculation of the j-th resid-
ual requires a j-digit by n-digit multiplication. In the al-
gorithm to be proposed, we keep the product of the partial
result and the operand, as well as the partial result itself,
and derive recurrence equations of residual and of the prod-
uct, so that we can calculate them by addition/subtractions,
shifts, and multiplications by one digit. We select each re-
ciprocal square root digit from a redundant digit set by es-
timating the residual and the product. We perform addi-
tion/subtractions appearing in the calculation of the recur-
rence equations of the residual and of the product without
carry/borrow propagation by representing them in a redun-
dant representation such as the carry-save form.

We can design different specific versions of the algo-
rithm, depending on the radix, the redundancy factor of the
reciprocal square root digit set, the type of representation
of the residual and the product, the digit selection func-
tion, and etc., as digit-recurrence algorithms for division or
square rooting [8). We can implement each version as a se-
quential (folded) circuit or a combinational (unfolded) cir-
cuit, which has a regular array structure suitable for VLSI.

In the rest of this paper, we will first propose a general
algorithm and make implementation consideration in Sec-
tion 2. We will show a radix-2 version of the algorithm and
its sequential implementation in Section 3, and will show
aradix-4 version and its sequential implementation in Sec-
tion 4.

2 General algorithm

We consider computation of the reciprocal square root of
the mantissa part of a floating-point number. We compute
S = X‘%, where i < X < 1. We assume X is represented as
an n-digit r-ary fraction where r = 2°. We intend to obtain
S so that it satisfies

T <XTI=8 <1 (1)
Note that 1 < X~ < 2. We assume that S is represented as
an n + 1-digit r-ary number.

2.1 Algorithm

As digit-recurrence algorithms for division or square
rooting [8], the reciprocal square root digit g; is obtained
step by step. Let S[] be the partial result after j iterations.
Then, S[j] = S[0]+ X/, ¢ir™, where S[0] is the initial
value of the partial result. The recurrence equation of the
partial result is

S[j+11=S[1+qjnr™)
We select gj1 from a redundant digit
set {—a,---,—-1,0,1,---,a}, where 3 < a < r. The final
resultis S = S[n] = S[01+ X7, gir™". The result has to be
computed for n-digit precision. Namely, (1) must hold.

We define a residual (or scaled partial remainder) W[;]
as

Wijl=ri(1 -X-S[jP). 3)

Substituting j + 1 for j in (3), we get W[j + 1] = /(1 —
X -S[j+ 171%). Then, from (2) and (3), we get the recurrence
equation of the residual as

WL+ 11 = rWIjl - 2X - S[jlgje1 — Xg5, v 77" 4)
Since this equation includes the term —-2X - S[jlg;.1, we
need multiplication of an n-digit number X and a j-digit
number S[j] for the calculation. To avoid the multiplica-
tion, we keep X - S[j1.

We define P[j] as X -S[j]. Then, the recurrence equation
of W[jl, (4), is rewritten as

W+ 11 = rW[j1 - 2P[jlgj+1 — Xq§+lr-f—1. (5)
The recurrence equation of P[] is
P[j+ 1] = Pljl1+ Xqjur". 6)

In order to obtain S that satisfies (1), we have to bound
W[;] within a certain range. (1) is rewritten as

S =r"<Xt<(S+rm.

95

Since § = S[jl + Xi_;,, g™ and the minimum and the
maximum reciprocal square root digit values are —a and a,
respectively, it is further rewritten as

SLl-priy <Xt < (Sl +pri),
where p = ;% is the redundancy factor of the reciprocal
square root digit set. Therefore, from (3), we get the bounds
for W[j] as

—2X - S[jlp + Xp’r~ < W[j] < 2X - S[jlp + Xp*r~.(7)

At the beginning of the computation, (7) has to be satis-
fied for j = 0. Hence,

-2X-S[0lp+Xp* < W[0]=1-X-S[0)

< 2X-S[0]p + Xp* ®)
have to be satisfied. Since % < p < 1, we can satisfy (8) by,
for example, letting S[0] = 3 and W[0] = 1 — 2X. When
p =1, wemayalsolet S[0] =1 and W[0]=1-X.

The algorithm for computing the reciprocal square root
consists in performing n iterations of calculation of the re-
currence equations (2), (5), and (6). The general algorithm
is summarized as follows.

Algorithm [RSQRT]
Step 1:

Set the appropriate values to S [0], W[0] and P[0];
Step 2:

forj:=0ton—-1do

{

Select g;4 from {~q,---,-1,0,1,---,a};
S+ 11:=S{jl+ gjmr 7Y .

WLj + 11 := rWijl = QPU1+ Xgjuir 7 Dgjeis
Plj+ 11:= P[j1+ Xqsr 7Y

)

X~% is obtained as S[n). Since S[n] is in the r-ary
signed-digit representation, we have to convert it into or-
dinary (non-redundant) r-ary representation. We can ap-
ply the on-the-fly conversion method [9] to this conver-
sion. When we adopt the on-the-fly conversion, we keep
the non-redundant representation of S[;1, S[;17, and that of
S[j1-r~4, S[j1~, in the computation. Note that X ? is also
obtained as P[n].

We can increase the speed of the implementation with
a small increase in hardware complexity by performing
the addition/subtractions in the recurrence equations for the
residual and for the product without carry/borrow propaga-
tion by the use of a redundant representation. Therefore,
in this paper, we concentrate on this type of implemen-
tations. Namely, we represent the residual W[j], as well
as the product P[], in a redundant representation, such as

the carry-save form, and perform the addition/subtractions
without carry/borrow propagation.

Now, we consider the selection of reciprocal square
root digit, gjs. We have to select gj,; from
{~a,--+,-1,0,1,---,a} so that W[+ 1] satisfies

“2X-S[j+ 1lp+Xp*r -t < W[j+1]
<2X-S[j+ 1p+Xp*r .

gj+1 depends on the shifted residual »W[j], the operand X
and the partial result S [j].

Let the interval of rW[j] where k (= —a,—a+1,---,a)
can be selected as g, be Li[j] < rW[j] < Urlj]. Then,

Li[j1=2X - S[jl(k— p) + X(k — p)*r~i~,, 9)

Urljl = 2X - S[jlk + p) + X(k + p)*r 7. (10)

Note that the lower bound of the interval for k = —a and the
upper bound of the interval for k = a are equal to the lower
bound and the upper bound of rW[], respectively.

The continuity condition of adjacent intervals, i.e.,
Ur-11j1 > Ll j], yields

(2p - DRX-S[1+X2k—-Drh>0, (1D

which is always satisfied. The left-hand side of (11) gives
the overlap between adjacent selection intervals. Using the
overlap, we can select g;,1 by estimates of rW[j], X, and
S

Since X - S[j1= P[j1, (9) and (10) are rewritten as

Lilj1= 2PLj)k - p) + X(k - p)’r 77", (12)

(13)

respectively. Then, we can select g;., by estimates of
rWI[jl, X, and P[j]. Since the second terms of the right-hand
sides of (12) and (13) decrease very rapidly as j increases,
we can make the digit selection function independent of X
except for a few, if any, small j’s.

Let the estimates of rW[;] and P[j] be rW[j] and P{j,
respectively. We obtain W[j] by truncating rW[j] to ¢ frac-
tional bits, and obtain P{j] by truncating P[] to d frac-
tional bits. (Note that not r-ary digits but bits.) The digit
selection function is described by a set of threshold values
{m(PLjDIk = —a+1,—a+2,--+,a). kis selected as g, if
my(P{jD) < rWLj] < min (P

When W[;]is in the carry-save form,

Urljl = 2PLj1k + p) + X(k + p)*r~i~,,

rWijl < rWIjl < rW[j]+ 27,
Therefore,

m(Pj1) > max(Li[j])
P[]

96

and

(me(PLiD -2 +27" < r}grign(uk-llm,
J

ie.,

max(L[j1) < me(P[jD) < (14)

min(Ug-1[j]) =27
Pij] Pij
have to be satisfied. maxp;;(L[j]) denotes the maximum
value of the lower bound of the interval of rW[j] where &
can be selected as g;,, when the estimate of P[j] is Pfj].
my(P[j1) must be a multiple of 2~ that satisfies (14). Note
that the maximum value of #W[] for which k— 1 is selected
as g1 is m(Pij1) — 27",
The minimum overlap required for a feasible digit selec-
tion is
min(Ug-([j]) — max(Le[j)) > 27". (15)
PLj) Pj}
When P[] is in the carry-save form, Pfj] < P[j] <
P[j] + 2%\, Therefore, from (12) and (13), for k > 0,
max(Liljh - < 2P{j1+ 27" Yk~ p) + Xk = pYPr I,
J

2P[jltk— 1+ p)+ X(k = 1+ p)r~I7t,

min(Ug-([j])
P{j)

(16)
Fork <0
max(Lilj - = 2P}k - p) + X(k - p)°r 77",
’?fi,?(UaliD > 2(P[j1+ 27"k — 1 +p)
+X(k = 1+pyro . (17)

These expressions are used to determine the digit selec-
tion function, i.c., the threshold values. Since they depend
on j, a different selection function might result for differ-
ent j. In practical cases, we can get a common sclection
function cxcept for a few, if any, small j’s. This will be
illustrated later, in the cases r = 2 and r = 4.

We can design different specific versions of the algo-
rithm, depending on the radix r, the redundancy factor p
of the reciprocal square root digit set, the type of represen-
tation of the residual and the product (carry-save or signed-
digit), the digit selection function, and etc.

2.2 TImplementation consideration

We can implement each version of the algorithm as a se-
quential (folded) circuit or a combinational (unfolded) cir-
cuit. We can also use pipelining.

First, we consider a circuit for performing one iteration
of Step 2. It consists of the following modules as shown in
Fig. 1. We assume that residual W[j] and the product P[;]
are represented in the carry-save form and that the on-the-
fly conversion is adopted.

S[3]1 W[3l X

OTEC ¥ y
A 4 A 4
CSAP
S[j+11°
S[3+1]1 W[j+1] Pli+1]

Figure 1. Block diagram of a circuit for com-
puting one iteration of Step 2

1. DS: a reciprocal square root digit selector for select-
ing g1 by examining significant bits of »W[;] and
P}

2. MUL1: a multiplier for multiplying (shifted) X by
gj+1 and producing Xg, r~It.

3. CSAW1: carry-save adders for adding 2P[] and the
product of MUL1.

4. MUL2: a multiplier for multiplying the output of
CSAW1 by gj.1.

5. CSAW2: carry-save adders for adding »W{ ;] and the
product of MUL?2 and producing W[;j + 1].

6. CSAP: carry-save adders for adding P[j] and the
product of MUL1 and producing P[j + 1].

7. OTFC: an on-the-fly converter for calculating S[j +
177 and S[j + 11~ which mainly consists of selectors.

When we implement a reciprocal square rooting cir-
cuit as a sequential circuit which performs one iteration of
Step 2 in each clock cycle, it consists of a combinational
circuit part and registers. The combinational circuit part is
the circuit shown in Fig. 1, with a simple additional circuit
for setting initial values to the registers. We need regis-
ters REG-SE and REG-SM, REG-WC and REG-WS, REG-
PC and REG-PS, and REG-X, for storing S[j]~ and S[j]-,
WIjl, P[j], and X, respectively. Since W[j] and P[] are in
the carry-save form, we need two registers for storing them
each. In order to avoid variable (j + 1-digit) shift of X, we
keep Xr~/ in REG-X by 1-digit shifting in each clock cycle.

97

The circuit performs the computation in n + 1 clock cycles.
The cycle time is a constant independent of n. The amount
of hardware is proportional to n. It has a regular structure
with digit-slice feature suitable for VLSI implementation.

Of course, we can construct a sequential circuit which
performs more than one iteration of Step 2 per clock cycle.

When we implement a reciprocal square rooting circuit
as a combinational circuit, it is constructed by connecting
a simple circuit for performing Step 1 and n copies of the
circuit for one iteration of Step 2 discussed above, in serics.
Shifts are implemented by wiring. The delay (logical depth)
of the circuit is proportional to n. The amount of hardware
is proportional to n2. It has a regular 2-dimensional cellular
array structure suitable for VLSI implementation.

3 A radix-2 version

We can design different specific versions of the algo-
rithm. In this section, we show the details of a radix-2 ver-
sion of the algorithm and consider its sequential implemen-
tation.

3.1 Algorithm

Here, we consider the case that the radix r is 2, the re-
ciprocal square root digit setis {—1,0,1} i.e.,a=1,p=1)
and the residual W[;j] and the product P[] is represented in
the carry-save form.

The recurrence equations arc

SH+11 = S[l+gm27,
Wi+11 = 2W[jl - QPLjl+ Xg;:127 Vg1,
Plj+11 = P[jl+Xg;27"

Since p = 1, at the beginning of the computation, we can
let S[0]1 = 1, W[0] = 1 — X, and P[0] = X for all X. Then,
0< W[0] < 3.

To obtain a digit selection function, we get the values of
Li[j1 and U,[j] from (9) and (10).

Ualjl = 0
Lofjl = -2X-S[jl+277'x
Uoljl = 2X-S[j1+277'x
Lijl = 0

Since X > i,S[j]Z l,and j >0,
. 3
< ——
Lo[j] 3
. 1
Uolj1 > 7

These values are independent of P[j1, X, and j. From (14),

-2 <mp<-2"and 0 < my <4 -2 have to be satisfied.

i REG-SE_|] [rReG-x »| | REG-PS |
1
[REG-5M | HEG-PC
otEC J—,MU'_E
— |
[csawi
1 [csap |
| mur2 | | ——

Figure 2. A block diagram of a sequential implementation of the radix-2 version

Therefore, We get mo = —3 and m; = § by letting ¢ = 2,
which are independent of j.

This radix-2 version of the algorithm is summarized
as follows. We assume that the on-the-fly conversion is
adopted. Since —2 < WI[j] < 3, W[;] is represented in a
two’s complement carry-save form with 3-bit integer part
(including the sign bit). Since 0 < P[j] < 2, P[] is rep-
resented in an unsigned carry-save form with 1-bit integer
part. Therefore, we can select g;,.1 by examining the most
significant 6 (carry-save) bits of 2W[;].

Algorithm [RSQRT _R2]
Step 1:

S[01° :=1; S[0]" :=0; W[0] :=1- X, P[0] := X,
Step 2:

forj:=0ton—1do

-1 if W< —3
gpii=q 0 if —z< 2Wjl< 0
1 if $< 2W

(2W[7): truncation of 2W[] to 2 fractional bits.)
Calculate S[j+ 11" and S[j + 117;
(On-the-fly conversion.)
WL+ 11:= 2W[jl — QPLjl1+ Xq;127 g ;i1
(Carry-save additions.)
Plj+ 1] := PLjl1+ Xg;12797Y
(Carry-save addition.)
}

S [n]" is the result.

98

3.2 Sequential implementation

Here, we consider implementation of the radix-2 ver-
sion as a sequential circuit which performs one iteration of
Step 2 in each clock cycle. It consists of several combina-
tional circuit modules and registers as shown in Fig. 2.

The digit selector, DS, is a combination of a 6-bit carry-
propagate adder and simple constant value comparators. A
buffer for driving g¢;, is also required. The on-the-fly con-
verter, OTFC, mainly consists of a pair of 2-to-1 selectors.
MUL1 and MUL2 are multiplexers, which produce O or the
data input itself or its complement according to the value of
gj+1. Each of CSAP and CSAW1 consists of a carry save
adder, and CSAW?2 consists of a 4-2 carry-save adder. Tak-
ing the truncation errors into consideration, we should cal-
culate W[j] and P[j]in 27" precision, where ¢ ~ log, n.

The cycle time is tps + tyurl +icsawt + My +tcsawz +
tioad, Which is about tecpa + lecomp + touf + omux + tFra +
tamux +12FA + tioad- HETE, tecpa» locombs toufs 2MUX, IFA> B2FA>
and 1,44 are delays for a 6-input carry-propagate adder, a 6-
input combinational circuit, a buffer for driving a signal to
about n + c-bit length, a 2-input multiplexer, a full adder,
a 4-2 adder, and register loading, respectively. The cycle
time is slightly longer than that of a radix-2 square rooting
circuit.

4 A radix-4 version

In this section, we show the details of a radix-4 version
of the algorithm and consider its sequential implementation.

4.1 Algorithm

Here, we consider the case that the radix r is 4, the re-
ciprocal square root digit set is {-2,-1,0, 1,2} (i.e., a = 2,
p= %), and the residual W[;] and the product P[] is repre-
sented in the carry-save form.

The recurrence equations are

S+11 = SLl+qmd™,
WLi+11 = 4W[jl- QPLjl+Xgj1477 g1,
Plj+11 = P[j1+Xqjn47"

At the beginning of the computation, we let S[0], W[O0],
and P[0] be as follows. When X < 32, we let § [0] =2,
wI0] = 1 — 4X, and P[0] = 2X. When 2 g<X< 4, we let
S[0] = 2, W[0] = 1 — 2X, and P[0] = 3X When X > 32,
we let S[O] =1, W[O] = 1 — X, and P[0] = X. Although we
may let S[0] = 3, W[0] = 1 — §X, and P[0] = 3X for all X,
we use the above values in order to make it possible to use
a common digit selection function for all j’s.

To obtain a digit selection function, we get the values of

maxpm(Lk[j]) and minPE,.](Uk_l[j]) from (16) and (17).

\

minUD > ~3(PHl+ 29+ 5X 47
Pj] 9

max(L_[jD) =
Plj] 3

min(U_i[j) > —g(P[]J+2‘d”)+ lx 4~
Pij) 3 36
. 4 .. _j
max(Lo[j) = ——P[1]+—X-4’
Pijl 3 9
. . 4 . 1 »
min(Up[j]) = —P[J]+—X-4 1
P{j]
max(L\[jD < -(P[J]+2"“‘)+ X 47
PLj]
10 25
min(U,[;)) = —Pjl+=Xx 47/
Pflj](1LiD 3 {71 36
. 8 o —d+1 4 -Jj
max(Ly[il) < §(P[]]+2)+ §X-’4
P{jl

For j > 1, from (14), the function has to satisfy

10 25 8§ .. 16 __
——P[i1+ 1—4—4X < m_(PijD < —§P[J]—?'2

1
—-P[J]+ X < mo(P[jD <

§P[jJ+ --2“d+ —1—X < m(PfjD <

8 . 16 A
§P[j] -2 +9X my(PLj]) <

99

d_2—r
2 .. 4
-ZP{j]-=--27%-27,
3 (1 3

4 .
—Pij1-2"
3 (] ,

10 .
—Pij1-27".
3 [j]

Since P{j] > X(X~t — 247/) = 274*1 for j > 1, we can

choose
mo(P(jD = —truncs3(P{j1+27%),
mo(P(j) = —truncs(P{jl1+2°%),
mi(PLj) = trunca(Pij1+275),
my(Pj) = truncs3(P{j1+27%)),

by letting d = 6 and ¢ = 4. truncs(-) is the truncation of - to
4 fractional bits.

Next, we consider the digit selection for j = 0. Recall
that when X < 2, then S[0] = 2, W[O] = 1—4x, P[0] = zx,
and 4W[0] = 4 — 16X, that whcn <X< — ,then S[0] =

W[0] = 1 - 2X, P[0] = 3X, and 4W[O] = 4 9X, and that
when X > 3 7. then S[0} = 1, W[0] = 1 - X, P[0] = X, and
4W[0] = 4 — 4X. In any case,

4W[0] > L_,[0], 4WI[0] = m_,(P{O]),
max(Lo[0]) < mo(P{0]) < min(U_,[0]),
Pfo] P[O]

max(L,[0]) < m(P[0]) < min(Uo[O0]),
P[0] P[0}

4W[0] < U1[0], 4W[0] < ma(PO]) - 2™*

hold for the above my(P[j]) with j = 0. Therefore, in any
case, we can use the same digit selection function as for
j = 1. gi is selected from {—1,0, 1].

This radix-4 version of the algorithm is summarized
as follows. We assume that the on-the-fly conversion is
adopted. Since -2 < WI[j] < 2, WI[j] is represented in a
two’s complement carry-save form with 2-bit integer part
(including the sign bit). Since 0 < P[j] < 2, P[j] is rep-
resented in an unsigned carry-save form with 1-bit integer
part. Therefore, we can select gj, by examining the most
significant 8 (carry-save) bits of 2W[j] and the most signif-
icant 7 (carry-save) bits of P[;].

Algorithm [RSQRT_R4]

Step 1:
if X < 2 then do
{SI0I" =2; S[0]” = 1; W[0] = 1 — 4X; P[0] = 2X; }
elseif 3 <X < 2 thendo

{S[0)" = 2; S[0]" = &; [0]=1——X P[0] = 3X;}
else do
{S[0]" =1, S[0]" =0, W[0] =1-X; P[0] = X; }
Step 2:
forj:=0ton-1do
{gjs1:=
-2 if AW < moy(PliH -2

=1 if maPD < 4WI< mo(P[jD~27*
0 if mP[jD< W< m(PLjh-27"
Lif mPD< 4Wljl< m(PijD-27
2 if mPjhs 4WIj<

(4W[j): truncation of 4W[j] to 4 fractional bits.)
(P{j1: truncation of P[] to 6 fractional bits.)
m_((PLj]) = —truncs3(P{j1 +275))
mo(P[j]) = ~trunca(P{j] +27°)
my(Pj]) = trunca(P{j] +27°)
mo(PLj]) = trunca(3(P[j1+27%)
Calculate S[j+ 1} and S[j + 1]~
(On-the-fly conversion.)
WIj + 11 := 4W[jl — QPLjl + Xgj147 D015
(Carry-save additions.)
Plj+ 1] := P[jl1+ Xq;n14777Y
(Carry-save addition.)
}

S[n]” is the result.
4.2 Sequential implementation

Here, we consider implementation of the radix-4 ver-
sion as a sequential circuit which performs one iteration
of Step 2 in each clock cycle. The circuit structure is the
same as that of the sequential implementation of the radix-
2 version shown in Fig. 2, except that DS is fed with most
significant bits of P[] as well.

DS is a combination of an 8-bit carry-propagate adder,
a 7-bit carry-propagate adder and a 15-input combinational
circuit. A buffer for driving g;,, is also required. OTFC
mainly consists of a pair of 2-to-1 selectors. MUL1 and
MUL2 are multiplexers, which produce 0 or the data input
itself or its complement or the double of the data input or its
complement according to the value of g;,. Each of CSAP
and CSAW1 consists of a carry save adder, and CSAW?2
consists of a 4-2 carry-save adder.

The cycle time is again tps + tyuLl + tesawl + ivurz +
tes aw2 + tioaa, Which is about tgcpa + H5comb + toug + lamux +
tra + tamux + topa + tioaa. Here, tacpa, tiscomp, and tapyyx
are delays for an 8-input carry-propagate adder, a 15-input
combinational circuit, and a 4-input multiplexer, respec-
tively. The cycle time is slightly longer than that of a radix-4
square rooting circuit.

5 Conclusion

We have proposed a digit-recurrence algorithm for com-
puting the reciprocal square root which appears frequently
in multimedia and graphics applications. In the proposed
algorithm, in order to remove a large multiplication from
the residual calculation, we keep the product of the partial
result and the operand. The algorithm computes the re-
ciprocal square root by iteration of carry-propagation-free
additions, shifts, and multiplications by one digit. We can
design different specific versions of the algorithm, depend-
ing on the radix, the redundancy factor of the digit set, and

100

etc. We have designed a radix-2 and a radix-4 version and
consider their sequential implementations. The implemen-
tations have a regular structure with bit-slice feature, and
are suitable for VLSI.

Providing a reciprocal square rooting circuit based on
the proposed algorithm, we can perform a reciprocal square
root operation in about the same latency as division or
square rooting, without using a multiplier. Combining a re-
ciprocal square rooting circuit with a divider and a square
rooting circuit based on digit recurrence algorithms to form
a divide/square-root/reciprocal-square-root unit should be a
practical implementation.

References

[1] C. Price: ‘MIPS 1V Instruction Set, revision 3.2, MIPS
Technologies Inc., Sep. 1995.

[2] Silicon Graphics Inc.: ‘MIPS RISC Technology
R 10000 Microprocessor Technical Brief,
www.sgi.com/processors/r 10k/tech info/Tech Brief.html.

[3] International Business Machines Co.: ‘PowerPC 740,
PowerPC 750 RISC Processor User’s Manual,” Feb.
1999,

[4] ‘Fast hardware-based algorithms for elementary func-
tion computations using rectangular multipliers,” IEEE
Trans. Comput., vol. C-43, no. 3, pp. 278-294, Mar.

1994,

[5]1 E. Antelo, T. Lang and J. D. Bruguera: ‘Computation
of vx/d in a very high radix combined division/square-
root unit with scaling and selection by rounding,” IEEE
Trans. Comput., vol. C-47, no. 2, pp. 152-161, Feb.

1998.

[6] N. Takagi: ‘Powering by a table look-up and a multipli-
cation with operand modification,” IEEE Trans. Com-

put., vol. C-47, no. 11, pp. 1216-1222, Nov. 1998.

[7]1 M. D. Ercegovac, T. Lang, J.-M. Muller and A. Tis-
serand: ‘Reciprocation, square root, inverse square
root, and some elementary functions using small multi-
pliers,’ IEEE Trans. Comput., vol. C-49, no. 7, pp. 628—

637, July 2000.

[81 M. D. Ercegovac and T. Lang: Division and Square
Root — Digit-Recurrence Algorithms and Implementa-

tions, Kluwer Academic Publishers, 1994,

[91 M. D. Ercegovac and T. Lang: ‘On-the-fly conversion
of redundant into conventional representations,” IEEE
Trans. Comput., vol. C-36, no. 7, pp. 895-897, July

1987.

