A Design of Radix-2 On-line Division Using LSA Organization

Alexandre F. Tenca,
Electrical and Computer Engr.
Oregon State University
Oregon, USA
tenca@ece.orst.edu

Abstract

This paper presents the application of the Linear Se-
quential Array (LSA) organization to on-line division.
The LSA method was originally developed for conven-
tional digit-recurrence algorithms, but in this paper we
apply it to the on-line division algorithm. The result-
ing architecture is a modular and fast pipelined struc-
ture which, due to a constant fan-out, make the crit-
ical path delay, and consequently the clock cycle time,
less sensitive to operand’s precision. Such approach is
particularly suitable for FPGA implementation for its
modularity and reduced fanout. The basics of on-line
division is presented, followed by the derivation of data
dependencies and architecture according to the LSA de-
sign methodology. Ezxperimental data is provided for
both the LSA on-line divider design and standard on-
line design, using 0.5um CMOS ASIC and FPGA tech-
nologies.

1 Introduction

On-line arithmetic is attractive in many digital sig-
nal applications [7, 9, 1], in particular in implement-
ing recursive filters and composite operations such as
rotation factors [3]. On-line operations are particu-
larly suitable to be used with A/D and D/A convert-
ers, which usually generate most-significant (MS) bits
first. The most-significant-digit-first (MSDF) opera-
tion mode of all on-line arithmetic operators allows
the design of highly concurrent networks of sequential
modules.

The advantages of on-line over conventional arith-
metic improves with longer precision. However, long
precision increases the fan-out of some signals and, con-
sequently, the cycle time. Moreover, a long-precision
implementation may require several chips which, due to
a significant off-chip connection delay, leads to further
performance degradation. The key objective of this pa-

0-7695-1150-3/01 $10.00 © 2001 IEEE

266

Syed Ubaid Hussaini
CME Department
University of Appl. Sci.
Offenburg, Germany
ubaid_hussaini@yahoo.com

per is to present a LSA organization [5] for radix-2 on-
line division that solves the performance degradation
problems caused by high signal fan-out and off-chip de-
lays.

The application of this technique to on-line multi-
plication was done in [8]. In this paper we apply the
technique to on-line division, for which the broadcast
problem is even more severe than that for on-line mul-
tiplication. We obtain a fast and scalable design alter-
native.

" The LSA organization follows the same design ap-
proach of systolic designs [4]. The work shown in [5]
describes a conversion method from full-precision digit-
recurrence arithmetic algorithm to a linear sequential
array organization. The application of this approach to
digit-recurrence division algorithm was presented in [6].
This paper presents the application of this technique
to radix-2 on-line division, and compares the result-
ing implementation with the standard on-line division
algorithm implementation [10, 11].

The next section presents an overview of radix-2 on-
line division algorithm and the following section briefly
describes major concepts for the LSA organization and
the conversion method that is applied to on-line divi-
sion. Section 4 describes the design of LSA modules
for on-line division. Section 5 and 6 present simulation
results and performance measurements and Section 7
includes final remarks and summary of this work.

2 On-line Division Overview

Algorithms for on-line division were presented in
(2, 10, 12, 13, 11]. On-line division processes the
operand digits serially. The quotient digits are gen-
erated at the same rate as the operand digits are re-
ceived, and the first output digit is produced & clock
cycles after the input of the first operands’ digit. The
on-line delay & varies from one on-line operation to an-
other and depends on the number system, digit radix,
and operand’s value. A radix-2 on-line division unit to

compute = % implements the following recurrence
equation:
Wil =

2(W[j — 1] - gj—1D[j -~ 1]) + nj427* -
dj+4Q[j - 1]2_4 (1)

with the following conventions for the digit vectors:

J+6 j+6
N[j]=>_n27%, Dljl=) di27",
i=0 i=0
W)=Y w2’ and Q] =) _¢:2”"
i=0 i=0
where
W] =240 — 1] +nja27" = dj1aQli ~ 127 (2)
and
Alj] = |(N[j] - QIID[)2’| < Dlj] ()

are different forms of scaled residuals. The initial con-
dition is W[0] = N[0]. The digit set for all vectors is
{-1,0,1}. This type of signed digit is also called sbit
in this work. It is worth to mention the on-line form
for the operands, using N as an example:

N[j] = N[j — 1] + ;452709 (4)

The on-line delay for division was analyzed in [2, 11].
For radix 2, the on-line delay was calculated as 4 clock
cycles. The bounds on the residual is given as |A[j]]| <
D[j] - &, with an estimate of the W (W) truncated at
the third fractional bit position (¢ = 3).

The quotient digit is produced by the selection func-
tion:

1 ifW>1/4
g =S8el(W)=3{ 0 if —1/4<W<1/4 (5
-1 fW<-1/4

Some conditions must be imposed to the input
operands, such as: (i) 1/2 < D < 1, {(ii) N < D,
since it is desirable that @ < 1.

The format of Eq. 1 is not adequate for implemen-
tation since g;—; must be appended to Q[j — 1] in the
same clock cycle for computation, and g;_—; is gener-
ated from data available at the beginning of the clock
cycle. The same problem does not happen to dji4,
which is an input value. A better form for the recur-
rence equation is:

Wi 2(W[j — 1] = gj-1D[j]) + ;442" —
di+aQj — 227" (6)

which can be derived from Eq. 1 and the on-line form
of digit vectors (Eq. 4).

267

2.1 Standard Implementation

The standard implementation of an on-line division
algorithm uses full precision append registers (for D[j]
and Q[j — 2]), sbit-by-vector multipliers, full-precision
adders (redundant adders), and a residual register, as
shown in Figure 1. The divisor (d) and quotient (g)
digits are broadcast to all bit positions of the append
registers (APRs) and all bit positions of the sbit-by-
vector multiplier (SBVM). These are the signals with
the highest fan-out problem. For division, this problem
is exacerbated by the fact that the quotient digit must
be generated internally and then broadcasted to APR
and SBVM components. This signal is in the critical
path of the standard on-line division implementation.

4 Diva
‘ v
| Append Reg. | ||| | Append Reg. |
D[j] Qfj-2l
Sbit-by-vector
X f multiplier
T 1 1.
| Redundant Adder
q -1
+ Selection

Figure 1. Standard on-line division implemen-
tation

3 Conversion to LSA organization

In this section, the basic concepts of the LSA orga-
nization are described and the methodology presented
in [5] is applied to the on-line division algorithm.

3.1 The LSA organization

The LSA conversion algorithm is used to create a
modular architecture. Modules are composed of sub-
modules (or substages) as shown in Figure 2. Each
module works on different algorithm steps, computing
a unique set of weighted bits of the scaled residual.

Assume that a particular module (reference module)
is working on step j, the modules that are working on
step j+14, ¢ > 0, are upstream to the module working on
step j. The modules that are working on steps j — i,
i > 0 are downstream to the reference module. The
LSA theory [5] shows that the reference module may
receive as much information as necessary from any up-
stream module (not shown in the Figure) by creating a
delay buffer to make the data reach the reference mod-
ule at the proper time. A module may also depend on
downstream data, but only from its immediate down-
stream neighbor, as shown in Figure 2. Modulo 0 works
with the most-significant digits.

Each LSA module has two substages. Substage 1
computes the most-significant (MS) bits of the bit
group allocated to the module. Due to the redundant
representation of the residual W, these MS bits can be
computed using only (1) the pipelined input data bits
and (2) data generated and stored by the module it-
self. Substage 2 of the LSA module then generates and
stores the least-significant (LS) bits of the module’s bit
group. These LS bits cannot be computed without data
from step j —1 that is generated by the first substage of
its neighboring downstream module. Thus, substage 1
passes its results to substage 2 of its neighboring up-
stream module so that its substage 2 may complete
the algorithm step in the current cycle. When both
substages have finished computing the group of bits
assigned to the module, a new cycle begins.

d——5 sa

token ——tf . LSA
Module

Modale
1

LsA
Module
M-1

il

il

el

Feel]

Selection = different from the other modules

91

_-I data bits
5 1

=

LSA Module i LSA Module i+1
Substage 1: Substage 1:
A Compute data at 2| Computedataat | _{

H step j | step j-1

(most sig. bits) (most sig. bits)
ese o——-l —I

Substage 2: Substage 2:
Compute data at || Computedataat | | _
step step j-1
(least sig. bits) (least sig. bits)

Figure 2. LSA modular organization (adapted
from [4] and [8])

3.2 Conversion Method

Conversion to a LSA scheme is based on matrices,
data vectors, and dependency functions. The depen-
dency functions are obtained from the input/output de-
pendency for the redundant adders used to implement
the recurrence in Equation (6). In this work we con-
sider Carry-Save (CS) adders. Let the input operands
to each CS adder be represented by the notation a, b,
¢, and d where (a,b) corresponds to the CS represen-
tation of the shifted residual W{j — 1], ¢ corresponds
to d;+4Q27*, and d corresponds to gj-1D. If the re-
sult W(j] is represented by (WS, WC), corresponding
to the sum and carry bits, we have the following de-
pendencies for each bit position b of the output vectors
generated by the 4-input CS adder (Figure 3):

WSy = g(as,ab41,b6,b541,Cp,C541,dp) (N

WCy = h(ap+1,8p+2,b541,b642, Cot1,Co42,dbt1)

where g and A are boolean functions. .

ay by ¢y dp apei by CpuiHpes Aba2 iz Chia

[I [11

FAl I I FA2 J FA3
*, . i I
-... !
*, H
~, FA4 l I FAS]
%, I .,--‘: I I
% wsb:': WC,

Figure 3. Section of CS adder that shows gen-
eration of WS and WC at bit position b

Figure 3 shows the dependency of a bit output posi-
tion with respect to input signals coming to a 4-input
CS adder. From the Figure it is clear that the calcula-
tion of the bit position b of the vector WS (WSs) de-
pends on adders FA1, FA2 and FA4. Therefore, WS,
can be calculated by knowing all the external inputs
coming into these adders, which are as, by, ¢y, db, aps1,
by+1, and ¢p41. Similarly the calculation of the bit posi-
tion b of the vector WC' (W C}) depends on the adders
FA2, FA3, and FA5 only. Therefore, W}, is calculated
from all the inputs coming into these FAs, which are
@p+1, byt1, Cor1, Aoty Qbr2, boi2, and cpyo.

We will use this dependency information in the ar-
chitecture derivation later on.

The generation of the residual (Eq. 6) requires the
addition of n;4, but it happens only in one particular
bit position of the adder. This position is allocated

at the leftmost module of the LSA organization (MS)
which will then require a special design to handle this
extra sbit. The MS LSA module will also interface
with the selection function. Both types of modules are
presented in Section 4.

Vectors D and @ are easily obtained from the input
sbits (dj+4) and the quotient sbits (g;—1), respectively,
by the use of Append Registers (as shown in Figure 1).
These registers include on-the-fly conversion to trans-
form the signed-digit representation to two’s comple-
ment representation [14, 8] since CS adders are used
to generate the residual. Given that different modules
are going to work on different bit slices of these vectors,
the partitioning of APRs to each LSA module does not
require any special design; we just split them over the
modules.

The sbit-by-vector multiplier (SBVM) to obtain
gj—1Dj] and d;+4Q[j — 2] is implemented into a LSA
module by breaking the full precision multiplier into
smaller parts which are allocated to each LSA module
(same as APR). The design of the Append Register and
the SBVM components was presented in [8]. There are
some issues involved in the allocation of specific bits of
Q@ and D to a particular module which will be discussed
in Section 4.

The generation of the residual W is the major design
problem, and to solve it we first define the data vectors
and dependency functions involved in the residual gen-
eration, and then apply the LSA conversion algorithm.
The data vectors for conversion of the radix-2 on-line
division algorithm are defined as: v' = —d;;4Q274,
v?=—2¢; 1D, v® = WS, and v* = WC. The residual
vector W is represented in CS form by two vectors, sum
(WS) and carry (WC). The LSA conversion method is
used over the data vectors according to CS adder data
dependency functions shown in (Eq. 7) and the recur-
rence equation for on-line division (Eq. 6):

v[4] w(Sel(v®[4],v*[j])) — msbits only
v*[j] 2(Sel(v®[j],v*[5])) - msbits only

'UE 4] 9(”; [.7.’1]1“1}+1 [j—l],vZ [j"l]7vl?+1 [5-1],
'Ug+1 [7-1], ”§+2 [s-1], ”§+1 (-1))
“g bl = h(v;-f-l [s-1], ”l}+2 [7-1], ”g-n (-1], ”t?+2 [7-1],

Ub3+2 [7-1], U§+3 [5-1], v§+2 [-1])

where the step number is represented by 7, or j —1, be-
tween brackets. Subscripts represent the bit position.
Observe that v3[j] depends on v}, [j — 1] which corre-
sponds to a left shift of the previous residual, as shown
in Equation 6. There are other inputs used to generate
v3[j] which are obtained from the adder structure, as
shown in Figure 3. The dependency of v! and v? on
the MS bits of W (v® and v*) will impact only the most

269

significant module. For the conversion algorithm that
follows this equation is not going to be used.

The conversion algorithm works on three two-
dimension matrices S; (for substage 1), Sy (for sub-
stage 2), and S3 (for latch count). Each matrix has
4 rows (corresponding to the number of data vectors
in the data path) and as many columns as needed to
represent data dependencies. Considering that the bit
position being analyzed is b, the matrix has one col-
umn for each bit position (b+1%), ¢ > 0. The conversion
algorithm has 7 steps. We summarize the discussion
presented in [5] with some simplifications applicable to
the on-line algorithm as follows [8}:

o Step 1: Satisfy the downstream input dependen-
cies: set bits that are required to generate bit b.
mark Slgpy; = 1if vf [j] = f(of,,;[i - 1)) for
k,k € {1,2,3,4} and i > 0.

Step 2: Mark dependencies on substage 1 by bits
upstream from the initial latched bits: for each row
of S1, mark with a 1 all the positions to the left of
the rightmost 1 in the row.

Step 3: Satisfy the downstream input dependencies
of marked bits in Si: similar to step 1 however
considering now the bits already marked on S1.
mark S2p+ivn = 1if vf 5] = f(vfy 0l ~ 1)),
for k, k' € {1,2,3,4}, h >0, and ¢ > 0.

Step 4: For bits that are marked on both S, and
Sa, unmark the bits in Sy and mark the bits in S3.
The bits generated by substage 1 are defined.

Step 5: Specify latches for remaining bits that de-
pend on downstream bits generated in substage I:
for k, k' € {1,2,3,4},h > 0,L > ¢ > b, where L
is the index of furthest marked column from b of
combined S1 and S2

if S1x . =0 and S24/ . = 0 then {

. S2% =1,

. mark S3g o4n = 1if (¥ [j] = f(k,,[i~1])
and S].k,c+h =1 }

Step 6: Mark latches for all bits in substage 2: if
S2k,i =1 then 53],,,' =1.

Step 7: Satisfy the upstream input dependencies.
This step is not required for the on-line division
algorithm.

The application of the conversion algorithm based
on the previously defined data vectors and data depen-
dency functions results in the following three matrices:

oeli 811 1)

S1

[
[
oroa
cooco
oocoo
cooco
cococo
O
Uy
SRy

and Sz = [

-
Ry
[Py

[T
—

LX)

These matrices provide a template for the LSA on-
line division module that is presented in the next sec-
tion. Substage 1 computes the MS bits while substage
2 computes the LS bits of the residual represented in
CS form. Matrix S1 indicates that the generation of
v3[j] and v} [_7] requires the bits b+ 1 and b+ 2 of v!,
v?, v® and v*, plus bit b+ 3 of v3. Matrix S2 shows
that other bits at position b+ 3 to b+ 5 are required
to generate the output of substage 2, which will be
used by substage 1 in the next clock cycle. They show
that each module must handle groups of 5 bits (result
similar to LSA on-line multiplication [8]).

Matrix S3 has 2 zeros in the last two rows (S3(3,1)
and S3(4,1)). This information indicates that the MS
bits of the sum and carry representation of the residual
do not need to be saved in registers. In fact, as it will
be shown in the next section, these bits are computed
by substage 1 of the downstream neighbor. A snap-
shot of the data used/generated by a reference module
and part of a downstream module in the LSA on-line
divider is shown in Figure 4. The inside brackets no-
tation was replaced by a superscript with the letters 7,
Jj+1, and § — 1 to simplify the presentation. Vector
vl is represented as dQ, and vector v? is represented
as gD. The polygons show the data used by substages
1 and 2 in the reference module. The shaded area in-
dicates the data bits stored in the reference module.

Step j (Reference Module)

i+l j+1
W&d WSJW
J+i
WCI‘&J |
Data bits stored in the upstream L
module, delayed and used by

substagel (reference module).

J+

Wq*?

Data bits used by
substage 2.

Data bits used by
substage 1.

Figure 4. Snapshot of data used and gener-
ated in a LSA on-line division module

270

Step j-1 (Downstream Module)

Let us discuss the allocation of particular bits of
dQ and ¢D to modules. Observe that substage 2 of
the reference module (Mjy) needs the bits dQ7, ; and
qu 15 to complete the computation of the residual val-
ues. However, these bits cannot be generated by the
downstream module My, since it is operating on step
j — 1. For this reason, at least these bits should be
generated/stored in Mj. In our design we dgcided to
store the bits dQ], dQ, i+6» 4D}, 5, and ¢D] , inside
module M}, as shown in Flgure 4 However, module
M1 needs dQI 3, dQi s, gDI7}, and qu+6 as in-
puts for its substage 1. The solution is to send these
bits available on M}y to Mjy.,.1, after a delay, such that
Mp41 receives the correct information at the proper
time.

Another observation is that the LS carry bit and the
MS carry and sum bits of the bit-group representation
of the residual (WC;y4,WS;, and WC;) do not need
to be stored. This information is used to reduce the
number of memory elements required in the module
design.

4 Design of radix-2 LSA on-line Di-
vider Modules

From the previous analysis of the matrices (which
provided a template for the LSA on-line module) and
data dependencies we obtain the following data path
design for the general LSA on-line division module (not
the MS module) as shown in Figure 5.

The Figure shows the local communication between
the reference module and its neighboring upstream and
downstream modules. The reference module sends the
two MS bits of WS and WC, generated by the CSA
substage 1 block, to it’s upstream neighbor module,
and it also sends the two delayed LS bits of the prod-
ucts gD and dQ to its downstream neighbor. Similarly,
the reference module receives the two delayed bits of
the products ¢D and d@ from it’s upstream module
and the two MS bits of WS and W calculated by the
CSA substage 1 of the downstream neighbor. This kind
of simultaneous data communication between modules
is the most important characteristics of the LSA or-
ganization which allows each module in the array to
share the job allocated to the entire system. This job
sharing is done such a way that each module works in
a different algorithm step.

The signals tokenl and token2 are control signals
that enable the Append Register slice allocated to a
module to start appending the incoming digits to the
vectors D and @). To maintain the alignment condition
on the data vectors, token2 is delayed 5 clock cycles
related to tokenl. This way, token?2 is generated when

Loy 2

d digit LLoy % %
tokenl
token2 —O(append register Q I. -bl append register D
> %
3 j
_§ B —
E seart Y_4d07.0) Y Y0050 %
§ Complementer 4D (1)
3 5 54 .%_,
S' -dQ (1:0) ~dQ(4:3)] -dQ (1:0)
__i ~qD(4:3)
D (1:0) |
(1) 3
sl s b S WC(4:3)
CSA substage 1 z § 3 ¥
B <]
B WS(4:3)
2 At P 1 b o
D)
m CSA substage 2
WCr(2)
WCr (1:0) % ﬁ%
WSr(1:0)

Wsn(3:2)

Figure 5. Data path for general LSA on-line
division module

the first fractional digit of the quotient shows up at the
output of the selection logic. The selection logic does
not generate output digits for the first 5 clock cycles of
the on-line divider operation (including the clock cycle
when the first fractional input digit is received).

The complementer block has an active high start
control signal for the negation of the data vectors com-
ing from the SBVM modules, which are in two’s com-
plement system. Basically, the complementer is a se-
ries of 2-input XOR, gates which have one of its inputs
connected to the start signal. The control signal is re-
quired to avoid the generation of complemented values
before a module gets a valid input data to work with.

The design of the MS LSA module is a little bit dif-
ferent, as mentioned before. The data path for the MS
LSA module was designed as shown in Figure 6. It con-
siders several conditions already defined: the on-line
delay (0 = 4) for the division operator, the truncation
requirements of the residue estimate imposed by the
selection function, and the addition of digit nj+4 (n in
the Figure).

The MS LSA module communicates with the down-
stream neighbor the same way as the other modules.
The MS bits of the residual generated at the MS LSA
module is transferred to the Selection Function mod-
ule, which in turn computes the output digit ¢;—1 (g in

Downstream Module

271

%

g digit

d digir

tokenl
token2 —-[append register Q J. L" append :zglsfe?‘—j—-%_‘
3

2 e 3
3 =
3)
3 o - T =
§ I _ Complementer 1 §
" g (10 % L
5] ! sy 0 3
) { Combination and Alignment unit | u// g
1<)
PG Q
-dQ(7:3)
[D(73)
I ¥ = z
s jd g WQ4:3)
CSA substage 1 ; 3 3 ¥ -
sho1e
FI S WS(4:3)
7] 24 #
CSA substage 2
Wer4:2)
- =
5 E Ve 2 2
- l ¥ ¢ l H t
ey b
R WCr(1:0) Wer(1:0) wsr0)
B Wir5:2)
g WCr(4:0) WSr(1:0)
§ s Wsri)
& WSr(s:1) §e.
)
0

Figure 6. Implementation of MS LSA Module

the Figure).

In order to avoid an increase in the number of in-
puts into the CSA structure at the point where 714
is inserted, what would increase significantly the delay
through the CS adder due to the extra level of FAs, we
use a combinational logic to combine n and the vector
P = —dQ2~* before the CS addition. This approach
was proposed originally in [12]. Considering that digit
n is represented in two’s complement by a pair (ng, ny),
which represents the value —2n, + n,, its insertion at
the bit position 274 is done as follows:

Ng MNg. Ng Ng Ng Ny 0
Ps Ps- Ps Ps Ps Ps D1
z . T T T Y P

where p, represents the sign bit of the vector P and p,
represents its first fractional digit. The variables z and
y are generated by the following logic expressions:

and

z =15+ (ny)'ps Y="nyDps

For a precision of n bits:

modules are required.

5 Simulation Results

The proposed LSA module designs and the stan-
dard on-line design were described using VHDL
code, compiled and simulated using Modelsim!. A
simulation result of the LSA on-line divider is
shown in Figure 7 for the input operands N
(0.01101011101110110), 0.420822 and D
(0.11011111110101111), = 0.874382, which results in
@ = (0.01111011001101...)2 =(0.101111111T1111...),
considering up to 14 fractional digits (the simulation
result shows more than 14 digits). The digit —1 is rep-
resented as 1. A testbench to apply all possible 6-bit
inputs was used to verify the divider operation. The
test compares the on-line division quotient with the
quotient obtained with a division operation available
in a VHDL library. The result of standard and LSA
on-line division design were also compared for verifi-
cation. The LSA design does not increase the on-line
delay (what usually happens when pipelining is used).

ClobRday e
folgivisasciock

HNAMLNAARS UL AAN NN AN RN
I

Conirol signals

Iotdivisa/ce

foldmsascntri_neg | __f
Jolgivisa/token

Joldvisaistan | ___ |

Inputs n, d

foldivisa/nt [§7
loldivise/n0 |0

Joloivisag G

Quatient bits
foldvisasclock
Joldivisa/z

PO o g
2

e T PR R TR TR TR TR EAY)
5 4

(T
us

Entity:oldivisa Architeciure:archdivisa Date: Tue Oc1 31 23:14:33 PST 2000 Row: 1 Page: 2

Figure 7. On-line LSA Divider - Simulation
trace.

To better understand the calculation of the residue
in the LSA organization consider Figure 8 which shows
the calculation of the residue in terms of WS and WC
both in the standard design and in the LSA design.
Two instances of the residue calculation steps have
been marked to show how different modules (MSB, M2,
M1 and MO0) work on the different steps of the residue
calculation. The Figure also compares the values of
WS and WC obtained using LSA approach with that
of the standard approach.

LAll CAD tools used in this work are Mentor Graphics tools

272

ns ws wc ws

MSB M2 ML MO

o | [ovoms | ouoo0 _ ooun

000 00000
03 LLILLLELLILLIL0\\ 0000000000000000001 / LLLLIL 00000 00000
303 1111100000000000110 000000000000000000L 111111 LLLIL| 00000 | 00000
403 1111110000000000110 00000L1111111111101 1l 00000 11ill
503 0001100000000000110 111111L11L1ELL11161 00011¢ 00000 00000 11110
603 0101010000000000110 1110111111111111101 010101 00000 00000 00110
703 [0000101000000000110] [1t110t11titittiL0n] ["000010 | 00000 00000 00110
803 Mlll\mllﬂ\lllﬂlﬂlllllllllllﬂl 000LLL | 10000 00000 00110
903 1010011010000011110 0101101101111110001 101001 10000(00000| 00110
1003 1011001011000000110 010011010111111110L 101100 10100 W

wowo
000001 11111 00000 | 00000]
il 1L 1111t 00001
1104 1L 1 ter

1wl e

111010 11 1101

00110 ittt 1taitf tior

o001l 11011 1111t

Standard LSA Modules

Figure 8. Residue calculation steps in Stan-
dard and LSA on-line dividers

Precision Standard LSA
TClock | Area TClock | Area
(ns) (gates) (ns) (gates)
32 20.8 2412 22.9 2715
64 28.1 4877 23.0 5888 |

Table 1. Synthesis Results for 0.5um CMOS
ASIC technology

6 Experimental Results

The VHDL code for the LSA on-line divider was
processed by Leonardo synthesis tool to generate the
ASIC implementation of this design. The EDIF netlist
was generated setting the technology to 0.5um CMOS.
This EDIF netlist was then converted into EDDM for-
mat and imported to the IC station where it was floor-
planned, auto routed and extracted to generate SDF
netlist. After filtering SDF netlist through RCD it was
submitted to Velocity to perform Static Timing Anal-
ysis. The result of the synthesis process applied to two
values of the operand precision is shown in Table 1.

The same VHDL code was also synthesized using
CAD tools for Xilinx 4000 series of FPGAs. The results
are shown in Table 2.

It was not our objective to excessively control the
implementation of the designed modules but rather
have some results to show the benefits of this design
approach. Minimum constraints were imposed to the
synthesis tools, for both implementation cases.

The results obtained in these experiments confirm
our earlier statement that the LSA on-line divider is al-
most insensitive to the variation on the precision of the
operands. For both FPGA and ASIC technologies, the
design kept approximately the same clock cycle time
for 32 and 64 bits of precision, while the standard im-
plementation increased by 31-35% with the increase in
precision. The decrease in the clock period with the

Precision Standard LSA
TClock (ns) || TClock (ns)
32 16.0 12.5
64 21.1 9.6

Table 2. Synthesis Results for Xilinx 4000 se-
ries FPGA

increase in precision obtained for the FPGA implemen-
tation (LSA - 64 bits) shows that the CAD tool was
able take advantage of the LSA organization to gener-
ate a better performance circuit for this technology. It
also shows that the 32-bit design for FPGAs could be
further improved.

For small precision values, the use of standard on-
line design is more adequate than the LSA on-line.
The LSA organization consumes more area than the
standard design, 21% more area when the operand’s
precision is 64 bits. In fact, the precision of the LSA
organization for 64 bits is in fact 66 bits, given that
n = 5(M — 1) + 6, where M is the number of modules
used, according to Eq. 8. So, the extra area for the
LSA also accounts for these two extra bits, and should
be a little bit less if exactly 64 bits of precision were
considered in the design.

The reader should consider that these results were
obtained without any manual intervention in the syn-
thesis process. We believe that more performance can
be extracted from this design. In particular, if an op-
timal module is created, it can be made available as a
library cell which may then be used to create on-line
dividers of any desired precision. It would be very suit-
able for VLSI design since the modules are fixed in size
and have only local connections.

7 Conclusion

The use of LSA organization in the radix-2 on-line
modules was first proposed in [8] for on-line multipli-
cation and continues in this work for on-line division.
For the best of the authors’ knowledge there is no sim-
ilar work done by other researchers. The experimen-
tal results obtained for both ASIC and FPGA tech-
nologies confirmed the effectiveness of the approach to
overcome the excessive delay imposed by large fanout
values in the standard on-line design. It is appropriate
to handle large operand’s precision. If necessary, LSA
modules may span over multiple chips since the LSA
organization provides the means to avoid having the
off-chip communication delay affect the computation
cycle time. The discussion of this feature can be found
in [5]. The LSA on-line divisor is suitable for VLSL

Radix-4 division implementations are common for
conventional division, but not to on-line division. An
algorithm was presented in [12]. It is expected that
larger complexity of the radix-4 design will result in a
longer cycle time, what may reduce the contribution

. of the fan-out delay on the overall clock cycle. The

273

advantages obtained with the LSA organization may
be less noticiable, but they will be there. This subject
must be further investigated.

Acknowledgments

The authors would like to thank the International
Student Department of UAS Offenburg for partially
supporting this project.

References

[1] J. Bruguera and T. Lang. 2-D DCT Using On-Line Arith-
metic. In IEEE Int. Conference on Acoustics Speech and
Signal Processing, pages 3275-3278, Detroit; MI, May 1995.
M. D. Ercegovac. On-line Arithmetic: An Overview. In
Real Time Processing VII, volume 495. SPIE, 1984.

M. D. Ercegovac and T. Lang. On-line Scheme for Comput-
ing Rotation Factors. Journal of Parallel and Distributed
Computing, (5):209-227, 1998.

H. T. Kung. Why Systolic Architectures? Computer, 1982.

M. Louie. Variable Precision Arithmetic with Lookup Ta-
ble Based Field Programmable Gate Arrays. PhD thesis,
UCLA, 1994.

M. E. Louie and M. D. Ercegovac. On Digit-Recurrence Di-
vision Implementations for Field Programmable Gate Ar-
rays. In Proc. of the 11** Symposium on Computer Arith-
metic, pages 202-209, Canada, June 29- July 2 1993.

A. F. Tenca and M. D. Ercegovac. Design of high-radix
digit slices for online computations. In Proc.of the SPIE Int.
Conference on High-speed computing, digital signal process-
ing, and filtering using reconfigurable logic, pages 14-25,
Boston; MA, Nov. 1996.

A. F. Tenca, M. D. Ercegovac, and M. E. Louie. Fast On-
line Multiplication Units using LSA Organization. In Fr-
naklin T. Luk, editor, SPIE - Advanced Signal Processing
Algorithms, Architectures, and Implementations IX, pages
74-83, Denver, Colorado, 19-21 July 1999.

A. Tisserand and M. Dimmler. FPGA implementation of
real-time digital controllers using on-line arithmetic. In Lec-
ture Notes in Computer Science, number 1304, pages 472—
481. Springer, 1997.

K. S. Trivedi and M. D. Ercegovac. On-line Algorithms for
Division and Multiplication. IEEE Trans. on Computers,
C-26(7):681-687, 1977.

P. K.-G. Tu. On-line Arithmetic Algorithms for Efficient
Implementation. PhD thesis, University of California, Los
Angeles, Sept 1990.

P. K.-G. Tu and M. D. Ercegovac. A Radix-4 On-line Di-
vision Algorithm. In IEEE 8th Symposium on Computer
Arithmetic, pages 181-187, 1987.

P. K.-G. Tu and M. D. Ercegovac. Design of On-line Di-
vision Unit. In IEEE 9th Symposium on Computer Artih-
metic, pages 42-49, 1989.

D. M. Tullsen. A Very Large Scale Integration Implemen-
tation of an On-line Arithmetic Unit. Master’s thesis, Uni-
veristy of California, Los Angeles, 1986.

(2]
3]

(4]
(5]

(6]

8

(10]

(1]

[12]

(13]

