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Abstract
We present a new methodology for designing modulo
2"+1 adders with operands in the diminished-one number
system. The proposed methodology leads to parallel-prefix
adder implementations. Both an analytical model and
VLSI implementations in a standard-cell technology are
utilized for comparing the adders designed following the
proposed methodology against the existing solutions. Our
results indicate that the proposed parallel-prefix adders
are considerably faster than any other already known in
the open literature and as fast as the corresponding

modulo 2" and modulo 2"-1 adders.

1. Introduction

Modulo arithmetic has been used in digital computing
systems for various purposes for many years. In particular
modulo 2"+1 arithmetic appears to play an important role
in many algorithms.

High performance digital signal processing (DSP)
systems often make use of the Residuec Number System
(RNS) [1-4]. In a RNS based application every number X
is represented by a sequence of residues (Xi, Xy, ..., Xm)
where X; = X mod p;. The p;s, 1 £i £ M, comprise the base
of the RNS and are pair-wise relative prime integers. A
two operand RNS operation, suppose ¢, is defined as (Z,,
ZQ, ey ZM) = (Xla Xz, ey XM) * (Ylv Yz, viey YM), where
Z; = (X; ¢ Y) mod p;. For most RNS applications ¢ is
either addition, subtraction or multiplication. Since the
computation of Z; only depends upon X;, Y; and p;, each Z;
is computed in parallel in a separate arithmetic unit, often
called channel. Moduli choices of the form {2"-1, 2",
2"+1} have received significant attention because they
offer very cfficient circuits in the area x time® product
sense [5]. Addition in such systems is performed using
three channels, that in fact are a modulo 2°-1 (equivalently
one's complement), a modulo 2" and a modulo 2°+1 adder
[1, 2]. The addition delay in an RNS application which
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uses the above moduli, is dictated by the modulo 2"+1

channel. The latter means that if we can cut down the time

required for modulo 2"+1 addition we also cut down the
addition time in a RNS application.

Modulo 2"+1 adders are also utilized as the last stage
adder of modulo 2"+1 multipliers. Modulo 2"+1 multipliers
find applicability in :
® Pseudorandom number generation : special cases of the

linear congruential sequence [6] use modulo 2°+1
multiplication to obtain reasonably long sequence of
pseudorandom numbers

¢ Cryptography : for attaining the desirable statistical
independence between ciphertext and plaintext [7-9]

e In the Fermat number transform which is an effective
way to compute convolutions because of its easy VLSI
implementation and its lack of round off errors [10].

Leibowitz [11] proposed the diminished-one coding
system, which is not only suitable for Fermat numbers, but
also for general moduli of the form 2°+1. Computations
over modulo 2"+1 rings, based on these numbers, is also
adopted for many residue number system implementations
[12, 13]. In the diminished-one sysiem each number X is
represented by X” = X — 1. The representation of 0 is
treated in a special way. Therefore, the adders that
implement the diminished-one modulo 2"+1 addition are
combinational circuits accepting n bits wide operands.

Efficient VLSI implementations of modulo 2"+1 adders
for the diminished-one number system have recently been
presented in [14, 15]. The adders presented in [14, 15]
although fast are, according to the comparison presented in
[14] still, slower than the fastest modulo 2" adders or the
fastest modulo 2"-1 adders presented in [16]. Therefore
their use in a RNS application would still limit the
performance of the system.

In this paper we propose a new method for designing
parallel-prefix modulo 2"+1 adders. We also show using
both an analytical model as well as VLSI implementations
that the proposed parallel-prefix design methodology leads
to considerably faster adder implementations than those
presented in [14] and as fast as the modulo 2" or the fastest



modulo 2"-1 architecture [16].

In the next Section we revisit the basics of speeding up
the addition process. The derivation of the proposed here
architecture is presented in Section III. Comparative
results that show the time efficiency of the proposed
architecture against the existing solutions are presented in
Section IV. Some conclusions are given in the last section.

2. Preliminaries

In order to speed up the addition operation, the carry
computation time should be minimized. One solution is to
use carry look-ahead (CLA) adders [2, 17].

However, when the operand length is large the number
of inputs to the high order gates of the carry computation
unit also becomes quite large. In current VLSI technology
gates with a large number of inputs are either not available
or too slow. Therefore such circuits are designed as a tree
of gates with less inputs, leading to a circuit with more
logic levels and therefore of increased delay.
Consequently, in the case of wide operands it is profitable
to design the carry computation unit with more than one
levels of CLA [17]. Under this approach at each level of
the carry computation unit the inputs are divided into
groups, a smaller CLA unit is employed for each group
and collective CLA units are introduced for between
groups carry computations. In the general case of a multi-
level CLA adder both the number of levels and the number
of groups in each level needs to be investigated for each
implementation technology for reaching the design that
best balances performance and implementation area.

A special form of CLA adders, well known as parallel-
prefix form, can be derived if carry computation in binary
addition is treated as a prefix problem [18]. In a prefix
problem n inputs (suppose€ X,i, Xp2, ..., Xo) and an
arbitrary associative operator o are used for computing n
outputs, SUppose Yn.1, Yu2, -.-» Yo, according to the relation
Vi= X;0 X0 ...0%Xg, fori=0,...,n-1. Let A=a,a,; ...
2,3, and B = b, b, ... b;by be two n-bit numbers and S =
Sp.1 Sn.2 --- S1S¢ their sum. Carry computation is transformed
into a prefix computation if the associative operator o is
defined according to [19] as :

(8m» Pm) 0 (86 PK) = (8m + P * 8o P * P>

where :

® g, = 3; - by, is the carry generate and

® p; = a; + by is the carry propagate term. (Note that p; may
also be defined as p; = a; @ b;, where @ denotes the
exclusive-OR operation, but since this leads to somewhat
slower implementations, we will not adopt it in this
work)

Then the carries are computed as ¢; = G;, where G; is the

first member of the group relation (assuming that carry

input ¢;, = 0):
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[ (g0, po), if i=0
G, Py = 0))
(g, po(Giy, Py, if 1<i<n-1
After the computation of the carries the sum bits are given
by s; = h; ® ¢;.y, where h;= a; @ b; is the half-sum.

Usually the o operation on a pair of (g,, p,) terms is
represented as a node (see Fig. 1) and a whole carry
computation unit is represented as a tree structured
interconnection of such nodes. Several tree structures have
been proposed in the past [19-21]. Figs. 2 and 3 present
for n = § the tree structures proposed by Sklansky [20] and
Kogge—Stone [21] respectively, that are the fastest among
the already proposed. The gate level implementation of the
nodes is given in Fig. 1. The insertion of the buffering

nodes, O is not mandatory. The adders that result
following a proposed tree structure feature layout
regularity, but each structure has distinct implementation
area, speed and fan-out characteristics. For example,
adders with a Sklansky prefix structure require less
implementation area but have increased fan-out compared
to adders with a Kogge-Stone prefix structure. A full
comparison among the already known parallel-prefix
adders can be found in [15].

& & P Pu [ & LI
DY @%ﬁ b5 ol

Fig. 1. Logic operators and their implementations
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Fig. 2. Sklansky Structure
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Fig. 3. Kogge—Stone Structure.

Adders with a carry input signal c¢;, = c.; can also be
designed with a simple extension of the parallel-prefix
architecture. Let G, P denote the new generate and
propagate functions respectively, assuming a carry input
Cin = €€ {0, 1}, where



[ (go+po-ci.po), ifi=0
(G, P =1
L (g, p) 0 (G'u1, P, if 1<€i<0el,
and chi = GAi for 0 <i<n-1. Then, as it has been proven in
[16] the generate and propagate signals for an adder with a
carry input can be derived by those of an adder without a
carry input by the relation :
(G P)=(Gi+Pi-cy, P €)
Relation (3) implies that by adding a single row of logic
blocks to the output of the carry computation unit
(irrespectively of the architecture used for the
implementation of the latter) we can construct an adder

with a carry input. Such a modification is shown in Fig. 4.
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Fig. 4. Parallel-prefix adder structure

For modulo 2"+1 operations the diminished-one number
system is often used. In this system the value 0 is not used
or is treated separately (for example using an additional
zero-indication bit). We will hereafter denote with X* the
representation of X in the diminished-one number system,
that is, X* = X — 1. If S is the sum of A and B then (also
stated in [14, 15]) :

A+B=S® A*+1D+B*+1)=S*+1&
PA*+B*+1=S*=
[ A* +B*+ 1 - (2"+1),
| if A% + B* + 1221
(A*+B*+1)mod(2"+1) =1
| A* + B* + 1 otherwise

o

[ A* +B*-2° if A* + B*2> 2"
(A*+B*+1)mod(2"+1) =1 o
| A* + B* + 1 otherwise

[ (A*+B*)mod 2°, if A*+B*22"
(A*+B*+1)mod(2"+1) =1

L A* + B* + 1 otherwise
The last relation reveals that a diminished-one modulo
2"+1 adder can be implemented by incrementing the sum
when the carry output ¢, = 0, or equivalently if we
connect the carry output of the carry computation unit in
Fig. 4 to the carry input via an inverter. Such a design has
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been reported in [14, 15] and is presented in Fig. 5. When
parallel-prefix structures are used for the carry
computation unit, the resulting adders [14, 15] are the
fastest diminished-one modulo 2°+1 adders known in the
literature.
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Fig. 5. Modulo 2"+1 adder architecture proposed in
[14, 15].

It is obvious that following the above design method the
resulting diminished-one modulo 2°+1 adders will always
be slower than the corresponding parallel-prefix modulo 2"
adders and the fastest parallel-prefix modulo 2"-1 adders
[16] because :

e of the extra stage of o operators that is required and
¢ the re-entering carry has a large fan-out.

To this end, in the next section we present new and faster
parallel-prefix implementations derived by recirculating
the carries in each level of the carry computation unit
instead of having a final stage of re-entering carry.

We should note that all diminished-one adders suffer
from the double zero output meaning problem, that is, a
zero output may either represent an actual zero output (that
is, an addition with a result of one in a normal
representation) or an erroneous representation of zero.
However, erroneous zero output results only when the two
inputs are complementary. Therefore, this situation can be
easily detected using a simple combinational circuit.

§,

3. Novel modulo 2"+1 adder design

Let X' denote the complement of X. The last stage of

operators in Fig. 5, accepts the re-entrant carry ¢*; =
G'..; and produce the modulo 2"+1 carries ¢*; = Gi=G;+
P; - G',.;, for 0 £i < n-2. As we have mentioned earlier,
this design apart from adding an extra logic operator stage
also has the disadvantage that the rc-entering carry has a
fan-out of n. Therefore in the sequel we utilize the idea of
carry recirculation in each prefix level, that was introduced
in [16], for transforming the computation of the carries c*;
of the modulo 2"+1 adder, for -1 < i < n-2, in a parallel-
prefix computation problem.



We define the complement of (G, P) denoted by (G, P)'
to be equal to (G, P) and the group generate and group
propagate functions G, and P,}, for the group of bits a, a-
1, ..., b, with a > b as (G,p, P.p) = (& Pa) 0 (a1, Pa1) 0... 0
(8v» Pv)-

The novel parallel - prefix modulo 2"+1 adder design
method, that we propose in this paper, is based on the
following three theorems :

Theorem 1.
Let ¢*;, with -1 <1< n-2, be the carries of the modulo 2"+1
addition and
[ (G, Poy), if i=-1
(G*, P*) = 1
L (g p) 0 (G*i1, Py, if0<i<n-2,
where G,., P,, are computed according to relation (1).
Theﬂ, C*i = G*i~
Proof.
We will use induction for the proof of the Theorem.
e For i = -1 we have that (G*,, P*)) = (G,.1, P..;)' or
(G*_l, P* )= (G'n»l, Pn»l)v Therefore C*.l = 'n»l G*,l.
e Assume that the relation holds for i = k, which means
that cHe = G*k.
e Then fori=k+1, we have that :
(G*i1, PXei1) = (Zs1> Pre1) 0 (G, PHY)
= (81> Prs) 0 (€%, PH)
= (i1 + Prr1C*i Prs1 P¥0).
The above relation leads t0 G*,; = Z1 + PreiC*i Since

¥l = Bt + D€ We get €¥ = G ]
Theorem 2.

(G*;, P*) = (G;, P) 0 (Guotie1s Po-rind)’

Proof,

According to theorem 1 we have
(G*, P*) = (G, P) 0 (Gp1, Pr)' = (G;, P) o
((Gue13415 Pacris) 0 (Gi, Py)' =

= (Gj, P) 0 (Grris1 + Po1,is1Gi, Poerin P’ =
=(Gy, Pi) 0 ((Ghoris1 + Pre1,141GY)'s Py innP) =
= (G;i + P{(Gu-101 + Pr1inG)', PiPry i P) =
= (Gi+ P; G 1jsi(Porivs + GY), PiPryiv) =
=((Gj+ PiGuiv) (Gi + Ployin + GY), PiPoyin) =
=(Gi+ PG 141, PiPrgiv) =
= (Gi’ P)o (G'nvl,iﬂ.’ Pn—l,i+1) =
= (G, P)o (Gn-1,1+1, Pn-l,i+1)'

Theorem 3.
Suppose that (Gx, Py) = (G, P) 0 (Gi,m Piw)' and that (G,
Py = (G, P) o (p% &9 0 (Gi.ym» Pirm)', with i > m. Then

G, =G;,.

Proof.

Since (Gyx, Px) = (G, P) 0 (Gim Pim)' = (G, P) 0 (G'ism Piym)
we get that :

Gy, =G+ PGy 4

Since (Gy, Py)=(G, P) 0 (p% g% ¢ (Gi.ym» Piim)=(G, P) 0
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(p'i, g‘i) 4 (G'i-l,ma Pi-l,m)’ we get that :

Gy, =G +P(p; +giGhim)=GCG+P(gipi+giGiim) =G+
P(gi(p' + Glipw) =

G +P(gi + pi Giyw)' = G + PG )
From (4), (5) we get the required G, = G,. n

Theorem 2 equivalently implies that the relation (G*,
P*) = (8, P1) 0 .- 0 (8> Po) 0 (€1, Pu-1) O - 0 (8ivt, Pis1))’
holds for 0 £i < n-2, that is, the carries in a modulo 2"+1
adder can be computed using a prefix structure in which
the carry at each position i does not only depend on bits i
to 0 but also on the bits n-1 through i+1. This can be
achieved by re-circulating the carries at each prefix level
instead of having a single final stage for the re-entrant
carry, as proposed in [16]. For achieving carry re-
circulation at each prefix level more logic operators must
be added to a Kogge-Stone prefix structure and the outputs
of the highest order 2™ operators of stage m-1 need to be
driven to the lowest order 2™ operators of stage m.

The fastest parallel-prefix modulo 2" and modulo 2"-1
adders are capable of computing the carries within
m=log,n prefix levels. For not delaying the addition
operation in a RNS environment, the proposed adders
should also be able to compute the carries within log,n
prefix levels. However, the equations in the form
produced by Theorem 2 can not always be implemented in
log;n prefix levels. To overcome this, one needs to apply
Theorem 3 (o the terms (Gypisl, Paiie) J times
recursively, until n-1-j-i equals to a power of 2. That it
although Theorem 2 defines the carry at each bit position i
(-1£i<n-2)as:

c* = G*, where (G*;, P*) = (G;, P) 0 (Gyot,is1, Pre1in)’s
efficient parallel-prefix implementations are derived by
transforming the above computation in :

(G*i ’ P*l) = (Giv Pl) o (p'n-ls g.n-l) 0..0 (p.n-j+l» g'n-j-H) o

(Gn-l-j,i+1’ Pn-l-j,i+1)' .
The latter relations can be implemented in log,n levels
using a prefix structure which needs more prefix logic
operators as well as modifications of some of the existing
in order to produce except the normal terms their
complements.

In the general case of n bits wide operands, the carries
for a diminished-one modulo 2"+1 adder can be computed
in log,n stages, where the first (log,n—1) stages are

comprised by 3 % —1 operators and the last by n operators.

Although the hardware overhead that the above
described modifications impose may at first seem large,
many of the extra logic operators are shared among the
computation of several carries and the hardware overhead
of the modification for the complement generation is too
small.

Example.
Consider two 8-bit operands A = a;a62524333,a;29 and B =



bsbgbsbsbsbb by in  the  diminished-one  number
representation. For constructing a parallel-prefix modulo
257 adder for them, from Theorem 2 we get the following

equations :

.1 = ((g7,p7) 0 (g6,06) 0 (€5.Ps) 0 (g4.D4) 0 (€3.03) 0 (€2.p2) ©
(g1.p1) 0 (80:P0))’

€o = (go,Po) 0 ((&7,P7) 0 (&6:Ps) 0 (g5:Ps) 0 (g4,P4) 0 (g3,p3) 0
(g2:p2) 0 (g1.p))'

¢1 = (21.p1) 0 (80:Po) 0 ((€7,P7) 0 (Z6:Ps) 0 (gs:Ds) 0 (84,Da) O
(g3.p3) 0 (g2:p2))

€2 =(g2,P2) 0 (g1,p1) 0 (€o,Po) 0 ((g7.P7) 0 (&6:Ps) 0 (&s,Ps) ©
(g4,p4) 0 (g3,p3)'

€3 = (g3,p3) 0 (g2,D2) 0 (g1,p1) 0 (EowPo) 0 ((g7:p7) 0 (Ze:Ps) ©
(g5,ps) 0 (g4,p))

Cs4 = (g4.P4) 0 (g3,p3) 0 (£2.P2) 0 (€1,P1) 0 (£0.P0) 0 ((g7.P7) ©
(g6:Ds) 0 (g5,D5))’

Cs = (gs,ps) 0 (84,P4) 0 (83,P3) 0 (82,2) 0 (81.P1) 0 (&o,Po) ©
((g7.p7) 0 (g6:P6))'

Cs = (g6:Ps) 0 (g5,Ds) 0 (€4,P4) 0 (83,P3) 0 (82,p2) 0 (81,pV) ©
(g0>po) 0 ((g7,p7))

The carries of the fastest modulo 256 parallel-prefix
adders can be computed in 3 prefix levels. Since we want
our adders to be as fast as the modulo 256 ones, we should
be able to compute c; up to ¢g within 3 parallel-prefix
levels. Consider however the equation for co. Since this
equation has 8 terms that need to be associated by the use
of operator o which treats its left and right operands
distinctly, it is clear that the computation of ¢, as indicated
by the above equation can not be achieved within 3
parallel-prefix levels. This is obvious since for computing
(G7,1, P71)' the 3 prefix levels are exhausted and a 4th level
is required. In such cases Theorem 3 should be used
recursively. Applying Theorem 3 in the ¢, computation
case, we get :

Co = (0.D0) 0 (D'1,€"7) 0 (P's,L's) 0 (D's.8'5) 0
((84.pa) 0 (83.p3) 0 (82.p2) 0 (81.pD)’

The latter expression of ¢, can be implemented within 3
parallel-prefix levels assuming that more operators as well
as small modifications of those existing in a Kogge-Stone
structure are introduced as follows :
¢ The complements of g7, p7, g ps. & and ps must be

formed.
& At the first prefix level more operators are introduced as
follows:
< An operator for computing (go,po) 0 (p'7,")-
< An operator for computing (p's,g's) 0 (p's.£'s)-
® At the second prefix level one more operator that
computes the term (go,po) 0 (p'7.£'7) 0 (P's,g's) 0 (P's,L's)
is required along with a slight modification of the
operator that produces (Gs;, Ps;) in order to also
produce (Ga 1, Ps1)'.
® At the last prefix level one more operator that produces
Co 1s added.
Applying Theorem 3 where necessary in the above
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carry equations we can get the following set of equations
that can all be implemented within 3 parallel prefix levels :
C.1 = ((g7,p7) 0 (g6:D6) 0 (5,D5) 0 (24,Pa) 0 (g3.3) 0 (€2,02) 0

(g1,p1) 0 (0,P0))'

Co = (80,P0) 0 (P'7.€7) 0 (P's,&'s) 0 (P's,g's) 0 ((84,P4) 0 (€3,D3)
0 (22,p2) 0 (g1,pD)

¢ = (g1,Pv 0 (go,po) 0 (p7,€7) 0 (P's,8's) 0 ((s.Ps) 0 (&4.Ds)
0 (g3,p3) 0 (g2.p))

C2 = (g2,p2) 0 (g1.p1) 0 (€o:Po) 0 (P'7,€'7) 0 ((&,Ps) 0 (g5,Ds)
0 (84:P4) 0 (g3.03))'

€3 = (g3.p3) 0 (82,p2) 0 (€1,P1) 0 (&o,Po) 0 ((g7.p7) 0 (&.D6) ©
(gs,ps) 0 (&,Pzt))'

Cs = (g4,Pa) 0 (€3,p3) 0 (€2,P2) 0 (g1,P1) 0 (€o.Po) 0 (P'7,E7) 0
((g¢-Ps) 0 (g5,ps))’

Cs = (gs,ps) 0 (84,p4) 0 (€3,P3) 0 (&2,D2) 0 (g1,p1) 0 (&o,Po) 0
((g7.p7) 0 (g6:ps))’

Cs = (&6:Ps) 0 (g5.Ps) 0 (84,P4) 0 (83,P3) O (£2,P2) 0 (81,p1) 0
(20.po) 0 (g7.p7)'

In the above equations it is easy to see that the extra
operator introduced for computing (go,po) 0 (p'7.g%) is
shared among the computation of ¢, ¢, and ¢,. The modulo
257 adder that can be devised by the above equations is
presented in Fig. 6. Modified operators are indicated by
gray color.

©,P) G.R)

6, R0, P.)¥ (G, R)o,, R

@ @

Fig. 6. Proposed diminished-one modulo 257 adder.

4. Comparisons

In this section, at first, we compare the proposed adders
against those proposed in [14, 15] using both an analytical
model as well as VLSI implementations. We use the
notation SKL and KST for diminished-one modulo 2"+1
adders with the architecture proposed in [14, 15] and
presented in Fig. 5 and a Sklansky or a Kogge-Stone prefix



carry computation structure respectively.

We will at first make use of the analytical model
originally presented in [22], that was also used in [14 - 16],
under the notation "unit-gate model”, for comparing the
proposed adders against SKL and KST adders. This model
assumes that each gate excluding exclusive-OR, counts as
one elementary gate for both area and delay. An exclusive-
OR gate counts for two elementary gates for both area and
delay. The model ignores fan-in and fan-out, therefore the
validation of the estimates that it produces will be later
carried out by CMOS static implementations.

Table |. Adder Area and Delay Model Estimations

Adder Area Delay
Modulo 2" 3 2logn+3
En logn + 5n
Fastest 3nlogn+5n 2logn+3
Modulo 2"-1 [16]
SKL -;—nlogn+8n—l 2logn+5
KST 3nlogn+7n 2logn+5
Proposed
ropose (9%—3)logn+3n—2 2logn+3

In Table I we present the area and delay estimates using
this model as a function of the word length n. We have
also included results for the fastest modulo 2" and modulo
2%-1 [16] adder. For the derivation of the area estimates the

buffering nodes in the carry computation prefix
structure of Figs 2 and 3, have not been taken into account.
Considering the delay, Table I does not only reveal that
the proposed adders are faster than both SKL and KST
adders, but that they can operate as fast as the fastest
known modulo 2" and modulo 2°-1 adders, which makes
them ideal for use in an RNS application. From Table I we
can see that among the modulo 2"+1 adders, SKL adders
require the less area for their implementation. It should be
noted however that the estimations produced by the
adopted model do not take into account the area that may
be required for buffer insertion needed to alleviate the
unlimited fan-out problem of Sklansky prefix structures.
For more realistic evaluation, the proposed as well as
SKL and KST adders were described in HDL for n=4, 8,
16 and 32. For direct comparisons with the results
presented in [16], we mapped our designs to the AMS
CUB implementation technology (0.6 um, 2-metal layer,
5.0 V) using the Design Analyzer® tool of Synopsys Inc.
Each design was then recursively optimized for speed until
the tool's algorithm was unable to provide a faster design.
As a last stage of each recursive run the tool was instructed
to recover as much area as possible. Table II lists the
obtained results. The delay results are based on the
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assumption of worst case process parameters and are

expressed in ns, whereas area results are expressed in
1.2

mils”.

Table Il. Area and delay resuits of static CMOS

implementations
n | Architecture Area Delay
4 SKL 66.7 2.70
KST 87.2 2.69
Proposed 84.0 2.02
8 SKL 183.2 3.87
KST 189.9 3.82
Proposed 199.1 3.20
16 SKL 349.6 4.64
KST 426.3 4.58
Proposed 694.5 3.85
32 SKL 706.8 5.80
KST 955.6 5.79
Proposed 1356.4 4.79

Table II indicates that the proposed are the fastest
diminished-one modulo 2"+1 adders. Moreover, the
performance difference becomes larger in favor of the
proposed adders as n becomes larger. On the average of
the examined cases the proposed are approximately faster
by 19% than SKL or KST adders. For reaching the fastest
implementations our proposed design methodology
requires on the average 31% and 17% more
implementation area over SKL and KST adders.

Table Ill. Area-Time Constraint Driven Optimization

Results
n Area Delay
4 58.9 2.57
8 155.8 3.78
16 { 4252 4.58
32 | 1005.0 5.78

As one can observe in Table II, in all examined cases
the proposed methodology leads to faster than SKL and
KST adders. However, these fastest implementations
require more area than the fastest implementations of SKL
and KST adders. Therefore, it is interesting to examine
whether when we restrict the area of the proposed adders
to that of the fastest among SKL and KST adders, the
proposed adders would still offer better performance. In
Table III we present area and delay results obtained by
instructing the synthesis tool to find the smaller
implementation of the proposed adders that offers at least
the performance of the fastest SKL or KST adders.
Comparing the results of Tables II and III, we can see that
in all but one case (in the n=32 case the tool gave a slightly
faster implementation with a slightly larger area) the



proposed adders can lead to at least the same performance
as the fastest among SKL and KST adders with smaller
implementation area.

We have also described in HDL modulo 2" adders with
both a Sklansky and a Kogge — Stone adder, for n=8, 16
and 32 and mapped them to the above technology targeting
the minimal possible delay. Table IV lists the results
obtained for the fastest among them as well as results from
Table II above and from Table III of [16]. These results
indicate that the proposed adders apart from being the
fastest adders for diminished-one modulo 2"+1 addition,
offer a delay close to that of the fastest modulo 2" or
modulo 2"-1 adders. Therefore, the proposed adders are
highly suitable for RNS applications.

Table IV. The proposed adders as part of an RNS

Fastest Modulo 2"| Modulo 2"-1 | Proposed
[16] Modulo 2"+1
n Area Delay | Area |Delay] Area |Delay
8 | 138.6 2.85 196.6 | 3.30 | 199.1 | 3.20
16 | 451.6 3.78 588.7 | 405 | 694.5 | 3.85
32 ] 1150.1 4.55 1341.2 1 497 | 1356.4 | 4.79

5. Conclusions

In this paper we have presented a novel architecture for
designing diminished-one parallel-prefix modulo 2"+1
adders. Our architecture was derived by recirculating the
carries in each level of the prefix structure, instead of the
carlier proposed method of re-entering the final carry at an
additional stage. Static CMOS implementations have
shown that the proposed modulo 2"+1 adders compare
favorably with the other already known adder
architectures. Moreover, the parallel-prefix modulo 2"+1
adders proposed are as fast as the fastest modulo 2" and
modulo 2°-1 adders, that is, highly applicable in RNS
applications.
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