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Abstract

We propose the first general multiplication algorithm in
GF(2F) with a subquadratic area complexity of O(k®/°) =
O(k'%). Using the Chinese Remainder Theorem, we rep-
resent the elements of GF(2%); i.e. the polynomials in
GF(2)[X] of degree at most k — 1, by their remainder mod-
ulo a set of n pairwise prime trinomials, Ty, . .., Ty, of de-
gree d and such that nd > k. Our algorithm is based on
Montgomery’s multiplication applied to the ring formed by
the direct product of the trinomials.

1. Introduction

Finite fields [10], and especially the extensions of
GF(2), are fundamental in coding theory [6] and cryp-
tography [13, 7]. Developing efficient arithmetic opera-
tors in GF(2%) is a real issue for elliptic curve cryptosys-
tems [9, 14], where the degree, k, of the extension must be
large (160 < k < 600).

The solutions proposed in the literature, can be classified
into two classes of methods: the generic and specific algo-
rithms. Generic algorithms work for any extension fields,
and for any reduction polynomials. The most known gen-
eral methods are an adaptation of Montgomery’s multiplica-
tion [15] to binary fields [2], and the approach described by
E. Mastrovito [12], where the multiplication is expressed as
a matrix-vector product. However, the most efficient imple-
mentations are specific algorithms which use features of the
extension fields, such as the type of the base [16, 4, 20, 8], or
the form of the irreducible polynomial defining the field. In
his Ph.D. thesis [12], E. Mastrovito, proved that some kind
of trinomials lead to very efficient implementations; this
work was further extended to all trinomials [19]. In [17], F.
Rodriguez-Henriquez and C. K. Kog¢ propose parallel mul-

tipliers based on special irreducible pentanomials.

A common characteristic of all those methods is their
quadratic area-complexity; the number of gates is in O(k?).
Implementations using lookup-tables have been proposed
in order to reduce the number of gates. In [5], A. Halbuto-
gullari and C. K. Kog, present an original method using a
polynomial residue arithmetic with lookup-tables. More re-
cently, B. Sunar [18] proposed a general subquadratic algo-
rithm, whose best asymptotic bound, O(k'°823), is reached
when k is a power of 2, 3, or 5, and when the reduction poly-
nomial has a low Hamming weight, such as a trinomial or
a pentanomial. This approach is based on the Chinese Re-
mainder Theorem (CRT) for polynomials, and Winograd’s
convolution algorithm.

In this paper, we consider a polynomial residue repre-
sentation, using n, degree-d trinomials, such that nd > k.
Our approach is based on Montgomery’s algorithm, where
all computations are performed on the residues, and where
large lookup tables are not needed. We prove that, for any
degree k, and for any reduction polynomial, the asymptotic
area-complexity is O(k®/®) = O(k'-%). Experimental re-
sults are presented, which confirm the efficiency of our al-
gorithm for extensions of cryptographic interest.

We consider the finite field, GF(2¥), defined by an ir-
reducible polynomial P. We also define a set of 2n, rel-
atively prime trinomials, (71, ...,7T5,), with deg T; = d,
for j = 1,...,2n, and such that nd > k. We denote ¢;
the degree of the intermediate term of each trinomial 73,
such that T;(X) = X¢ + X% + 1. As we shall see further,
we also need t; < d/2 (cf. Section 3). Using the Chi-
nese Remainder Theorem, an element A € GF(2*) can be
represented by its residues modulo (71, . .., Ts,). We shall
denote (A, ..., Az,), the residue representation of A. We
give more details in Section 2.2.



2. Montgomery Multiplication in Polynomial
Residue Arithmetic

In this section we briefly recall Montgomery’s multipli-
cation for integers and polynomials. We then present in
more details its generalization to polynomial residue arith-
metic.

2.1. Montgomery Multiplication for Integers and
Polynomials

Let us start with Montgomery’s multiplication over inte-
gers [15]. Montgomery’s algorithm returns a br ! mod n,
where r satisfies ged(r, n) = 1. (In practice n is almost al-
ways an odd number; thus r can be chosen as a power of 2).
In this paper, we shall refer to r as the Montgomery factor.
The idea is to replace the costly division by n, by a very
cheap division by r. The computation is accomplished in
two steps: we first define ¢ = —abn~! mod r, such that
a b+ qnis amultiple of ; a division by r, which reduces to
right-shifts, then gives a value congruent to abr ! mod n
and less than 2n. If it is larger than n, a subtraction by n
gives the final result. A vast amount of research have been
dedicated to Montgomery’s algorithms. E.g., the interested
reader can find more details in [3] and [13], chapter 14.

The same idea applies for any finite extension field,
GF(p*) = GF(p)[X]/(f), where f is a monic irreducible
polynomial of degree k in GF(p)[X]. In other words, this
means that the elements of GF(p*) can be represented as
the polynomials of degree at most k — 1, with coefficients
in {0,...,p—1}. See, e.g. [5]in the case of GF(2¥), and [1]
for general extension fields, GF(p*), with p > 2. The
polynomial, R = X%, is commonly chosen as the Mont-
gomery factor, because the reduction modulo X k and the
division by X* are simple operations. Indeed, they con-
sist in ignoring the terms of order larger than k for the
remainder operation, and shifting the polynomial to the
right by k places for the division. In order to compute
ABR™! mod P, we first define ) = —ABP~! mod R,
and compute (AB + QP)/R, where the division by R is
performed using £ right-shifts. The only difference with the
integer case is that the final correction is not necessary at the
end because the result is already a polynomial of degree at
most k — 1.

2.2. Montgomery Multiplication over Polynomial
Residues

Let (T1,...,T;) be aset of n relatively prime trinomials.
We define I' of degree n x d > k as
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The Chinese Remainder Theorem (CRT), which uses the
following ring isomorphism,

o [X]/(T)

U —

— B[ X]/(Th) x -+ - x Ty [X]/(T5)
(Umod Ty,...,U mod Ty,),

2
tells us that every polynomial, U € GF(2)[X], of degree
less than k < nd, is uniquely represented by its remainders
modulo T4,...,T,.

In the following, for every A € GF(2*) (remember that
A can be represented as a polynomial in GF(2)[X], of de-
gree at most k — 1), we denote (A4;,...,A,) its residue
representation modulo (77,...,T,), or equivalently mod-
ulo I'. In Algorithm 1 below, we shall also need its residue
representation modulo IV = [, T},;, for an extra set of
n relatively prime trinomials (T}, 41, . - . , T2y ), that we shall
refer to as (Apt1, ..., Aap).

We apply Montgomery’s scheme to the polynomials
A, B, and P given in their residue representation, i.e., by
their remainders modulo (77, ...,T),). Note that although
P is of degree k, in Algorithm 1 we only need its value
modulo I".

In our residue version, I" also plays the role of the Mont-
gomery factor; i.e., we compute ABT ! mod P. How-
ever, unlike the integer and polynomial cases mentioned
above, it is important to note that in the residue represen-
tation, (AB + QP)/I" can not be evaluated directly (that
is modulo T"), simply because the inverse of I' does not ex-
ist modulo I'. We address this problem by using n extra
trinomials (75,11, ..., Ty,), such that ged(7;, Tj) = 1 for
1 < 4,5 < 2n,i # j; and by computing (AB + QP)
modulo these n extra trinomials. Algorithm 1, below, re-
turns R = ABT~! mod P in the residue representation;
i.e. we obtain (Ry,..., Ra,), the remainders of R modulo
(T, ..., Tsy,), or equivalently modulo T x T”.

As in the polynomial case, the final subtraction is not
necessary. This can be proven by showing that the polyno-
mial R is fully reduced, i.e., its degree is always less than
k — 1. Indeed, given A, B, of degree at most k — 1, we first
compute C' = A x B (Step 1) of degree deg C' < 2k — 2.
Then in Step 2, we compute Q = C' X P! modT, of de-
gree less than the degree of I', that is at most nd — 1. Since
deg P = k, we deduce deg QP < nd — 1 + k; and since
2k —2 <nd—1+k, weget R = (C+QP)I'! of degree
atmost (nd — 14+ k) — (nd) =k — 1.

In steps 3 and 6, we remark that two base extensions (im-
plemented using Newton’s interpolation technique) are re-
quired. Since all the other steps can be performed in paral-
lel, the complexity of Algorithm 1 mainly depends on these
two steps. We analyze them in details in the next section.



Algorithm 1 [MMTR: Montgomery Multiplication over

Trinomial Residues]

Precomputed: 3n constant matrices d X d for the multipli-
cations by P, * mod Tj; (in Step 2), by P,,; mod T}, ;
(Step 4), and by F;}ri mod T},1; (Step 5), for i =
1,...,n;

Input: 5n polynomials of degree at most d — 1: A;, B;, for
i=1,...,2n,and P,,4; fori =1,....,n

Output: 2n polynomials of degree at most d — 1: R; =
A,-BiF’l mod P;, fori = 1,....2n

1: (017...702n)(_(Al,...,AQn)X (Bl,. ,Bgn)
2 (Q1y..yQn) «— (Ch,...,C) x (P Y ... P7Y)
3 (Qn1ye -5 Qan) — NI(Q1, ..., Qn)
4: (Rn+1,. .. ,Rgn) — (Cn+1, .. .,Czn)
+(Qn+1-,---aQ2n) X (Pn+17"'7P2n)
5: (Rn+1a- .. ,Rgn) — (Rn+1,. . .,Rgn)
X(F;}rlaargnl)
6: (Rl,...,Rn) <—NI(Rn+1,...,R2n)

3. Base Extensions using Trinomial Residue
Arithmetic

In this section, we focus on the residue extensions in
Steps 3 and 6 of Algorithm 1. We shall only consider the ex-
tension of @, from its residues representation (Q1, . .., Qn)
modulo T, to its representation (Qp41,- - -, @2, ), modulo
!

We use Newton’s interpolation algorithm which first
constructs an intermediate vector, ((1,...,(,) — equiva-
lent to the mixed radix representation for integers — where
the (;’s are polynomials of degree less than d. The vector
(C1,...,Cp) is obtained by the following computations:?

G =@
G =(Q2+ ) Ty mod Ty
G=((Qs+¢G) T + &) Ty mod Ty

Co=((Qn+ )Ty 4+ (uo1) Tty mod Ty,

(3)
We then evaluate the polynomials, Q,, 4, fori = 1,...,n,
with Horner’s rule, as

Qn—&-i - ( . ((CnTn—l + Cn—l)Tn—Z
+---+ )T+ )T + ¢ mod Tryy (4)

Algorithm 2, below, summarizes the computations.

IThe same analysis applies for the reverse operation in step 6.
2In (3), the additions must be replaced by subtractions if the character-
istic of the field is # 2.

Algorithm 2 [NI: Newton Interpolation]

Input: (Q1,...,Qn)
Output: (Qp11,--.,Q2x)

I: (1 @1

2: for: = 2,...,n, in parallel, do
G+ Qi
forj=1toi— 1do

G (G +G) x I;71) mod T
: fori=1,...,n,in parallel, do

Qn+i + (p mod Thyi
forj=n—1to1ldo

Qnii — (Quyi X Tj + () mod Tp, 44

R I A A

In the following, we analyze very thoroughly the Steps
2 to 5 for the computation of the (;’s in section 3.1, and
Steps 6 to 9 in Section 3.2 for the evaluation of @),,1; using
Horner’s rule.

3.1. Computation of the (;’s

We remark that the main operation involved in the first
half of Algorithm 2 (Steps 2 to 5), consists in a modular
multiplication of a polynomial of the form U = ({; + ¢;)
by the inverse of 7);, modulo 7;. Since ged(7;,1};) = 1,
we can use Montgomery multiplication, with T} playing the
role of the Montgomery factor (cf. Section 2.1) to compute

V=UxT;" modT;. (5)

Let us define Bj; = 7, mod T}, such that B;;(X) =
X' 4 X', (Note that B;j; = B, ;). Clearly, we have
T; ' = B;,' (mod T;). Thus, (5) is equivalent to

V =U x B, mod T;. (6)

We evaluate (6) as follows: We first compute p = U X
Tfl mod Bj;, such that U + pT; is a multiple of Bj ;.
Thus, V = (U + 1 T;)/ Bj,;, is obtained with an exact divi-
sion by B; ;.

By looking more closely at the polynomials involved in
the computations, we remark that B; ;(X) = X% (X% ~ti4
1), if t; < t. (Ift; < t;, we shall consider
Bji(X) = X%(X% % 4 1)). In order to evaluate (6),
we thus have to compute an expression of the form U x
(X (Xt + 1))71 mod T}, which can be decomposed into

V= (U * (X%)™" mod Ti> < (X*+1) " mod Ty. (7)
Let us first compute ¢ = (U x (X*)™' mod T;).

Again, using Montgomery’s reduction, with X“ playing
the role of the Montgomery factor,’> we evaluate W in two

3Tt is easy to see that ged (X ¢, T;) = 1 always.



steps:
p=UxT; " mod X (8)
¢=U+pT;) /X" )

Since a = min(t;,1;), we have a < t;, and thus 7; mod
X = T{l mod X® = 1. Hence, (8) rewrites p = U mod
X?, which reduces to the truncation of the coefficients of U
of order greater than a — 1. For (9), we first deduce pT; =
pX%+ pXt + p. Since degp < a < t; < 4, there
is no overlap between the three parts of pT;, and thus, no
operation is required to define p7;. In Figure 1, the grey
areas represent the a coefficients of p, whereas the white
areas represent zeros.

\ [ T —
= t;
x4 p Xt p (o =t)
d t; t;
I:I:_:l: Pt
=t
PX pXti P (a=15)

Figure 1. The structure of pT; in both cases
a = t;, and a = t;, with the o coefficients to
add with U in dark grey

Since the a coefficients of (U + pT;), of order less than
a, are thrown away in the division by X%, we only need
to perform the addition with U for the a coefficients which
correspond to p X% (in dark grey in Figure 1). Thus, the
operation U + p T; reduces to at most @ XOR, with a latency
Tx of one XOR. The final division by X is a truncation,
performed at no cost.

Let us now consider the second half of equation (7),
i.e., the evaluation of the expression V = ¢ x (Xb +
1)1 mod Tj, where ¢ = U x (X%)~! mod T; is the poly-
nomial computed in (9). Note that deg¢ < d — 1. Let us
consider four steps:

¢ =¢mod (X’ +1) (10)
Y =¢x T, mod (Xb+1) 1)
w=9+9YT; (12)
V=w/(X"+1) (13)

For (10), we consider the representation of ¢ in radix
B
Xt e, ¢ = Z i (Xb)l. Thus, using the congruence
i=0
Xb =1 (mod X°+ 1), we compute
|52
¢mod (X' +1)= " ¢,
i=0

with (d — b) XOR and a latency of [log,((d —1)/b)] T .*

4For d — 1 > b, we have [logs [(d — 1)/b]] = [logs((d — 1)/b)].

The second step, in (11), is a multiplication of two poly-
nomials of degree b — 1, modulo X b4 1. We first per-
form the polynomial product ¢ X Ti_l, where TZ-_1 is pre-
computed, and we reduce the result using the congruence
Xb = 1mod (X° + 1). The cost is thus b*> AND, and
(b — 1)2 XOR for the polynomial product, plus b — 1 XOR
for the reduction modulo (X?+1); a total of b(b—1) XOR.?
The latency is equal to T4 + [log,(b)] T'x -

For (12), we recall that b is equal to the positive differ-
ence between the ¢; and ¢;. Thus, we do not know whether
b < tjordb > t;. In the first case, there is no overlap-
ping between the parts of ¢ T; = ) X% + ¢ X 4 1); and
1 T; is deduced without any operation (cf. Figure 2). Thus,
w = ¢ + Y T;, only requires 2b XOR. If b > t;, however,
1) and ¢ X% have b — t; coefficients in common, as shown
in Figure 2. The expression w = ¢ + 1 T; is thus computed
with t; +2(b—t;) + (b4 t; — b) = 2b XOR. Thus, in both
cases, (12) is evaluated with 2b XOR, and with a latency of
at most 2 T'x. (T'x only, if b < t;.)

d t; b
T e —
» X thi » (b < ;)
b+t bty
) I 7
‘ : e Y (b > t;)
I
x4 ¥ Xti

Figure 2. The structure of ¢ T; in both cases
b <t;, and b > t;, and the 2b coefficients to
add with ¢ in dark grey

For the last step, the evaluation of V' in (13), is an exact
division; w, which is a multiple of X b4+ 1, has to be divided
by X® + 1. This is equivalent to defining c such that w =
a X% 4 a. As previously, we express w and « in radix X?.
We have

OGN 4
w= w;i (XY, a=
i=0 i=0

o (Xb)i.

We remark that defining the coefficients of «, of order less
than b, and greater or equal to ({%J) b, shown in grey in
Figure 3, is accomplished without operation. We have oy =
wo, and Oé\_d%J = WL%JH' For the middle coefficients,

(i.e., fori from 1 to | 452 | — 1), we use the recurrence c; =

w; + o 1.

Evaluating (13) thus required (d — 2b) XOR, and a la-
tency of [(d — 1)/2b] T'x, taking into account that we start
the recurrence, o; = w; + «;_1, from the two extrema si-
multaneously.

5The cost is equivalent to a matrix-vector product using Mastrovito’s
algorithm, because the construction of the folded matrix is free for X4 1.
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Figure 3. The representations of w and « in
radix X°

In Table 1, we recapitulate the computation of V' = U X
Tj*1 mod Tj in (5), and its area complexity in terms of the
number of binary operations. The total time complexity is
equal to

T =Ta+ (4+ [logy((d—1)/b)]

+ [logy (b)] + [(d — 1)/2b] ) Tx.- (14)

Eq. #AND #XOR

(8) - -

9) . a

(10) - d—b

(1) b? 2—b+1

(12) - 2b

(13) - d—2b

Total b? a+2d+ (b—1)?

Table 1. Number of binary operations (AND,
XOR) required for the computation of V' = U x
Tj_1 mod T;

So far, the quantities given in Table 1, depend on a and
b. In order to evaluate the global complexity for the evalu-
ation of all the ¢;’s, me must make assumptions on the ¢;’s,
to define more precisely the parameters a, b. In Section 4,
we shall give the total cost of (3) when the ¢;’s are equally
spaced, consecutive integers.

3.2. Computation of the Q,,.;’s using Horner’s rule

When the evaluation of ((1,...,¢{,) is completed, we
compute the Q,4;’s with the Horner’s rule. For ¢ =
1,...,n, we have

Qn+i = ( .- ((Cn Tn—l + Cn—l) Tn—2
+-- 4+ C3) T2 + Cz) T1 + Cl mod Tn+i- (15)
In (15), we remark that the main operation is a multipli-

cation of the form U x T} mod T}, 1, where U is of degree
d — 1, and both T}, and T;,1; are trinomials of degree d.

This operation can be expressed as a matrix-vector product,
M x U, where M isa (2d+ 1) x (d + 1) matrix composed
of the coefficients of T;. A multiplier architecture was pro-
posed by E. Mastrovito [11], which reduces this matrix M
to a dx d matrix, Z, using the congruence X = Xtr+i + X
The resulting matrix, Z, is usually called the folded matrix,
because the d + 1 last rows of M fall back on the d first
ones.

According to our notation, we have, T; mod T;,4; =
X' + Xtnt+i = Bj 44, for all 4, j. Thus, we have to fold a
matrix composed of only two non-null coefficients per col-
umn, as shown on the left in Figure 4. We remark that the

Z in unfolded form Z in folded form

d+tj71

dttpi; — 1

Figure 4. The structures of the unfolded and
folded multiplication matrices, for B; ,, . ; mod
Tn+1’,

folded matrix, Z (on the right in Figure 4), is very sparse.
By looking more closely, the congruences

Xt =1 = xtnpatts =1 4 xt;—1

Xd+tvn+i*1 = thnwbi*l +th+i*1

(mod T),+4),
(mod T, 44),

tell us that, choosing t; < d/2, fori = 1,...,2n, yields
tj +thts — 1 < d, and 2t,; — 1 < d; and thus every
coefficients only need to be reduced once. Moreover, we
also notice that the matrix, Z, has two non-null coefficients
from column O to column d — ¢,,1; — 1; three from column
d — ty4; to column d — t; — 1; and four from column d —
t; to d — 1. Thus, it has exactly 2d + t; + t,,1; non-null
coefficients. Since ¢;,t,4; < d /2, we can consider that the
number of non-zero coefficients is less than 3d. We study
the global complexity of (15), in Section 4.

4. Analysis of the Algorithms

In order to evaluate precisely the cost of Algorithm 1, we
consider equally spaced, consecutive ¢;’s, with ;.1 — t; =
r. Hence, if j < i (as in Steps 2 to 5 of Algorithm 2), then
t; < t;, and we have

a=t;+(j—1)r b= (i—j)r (16)



Note that a randomly chosen set of trinomials having this
equally spaced property do not necessarily lead to a valid
residue base. We recall that the trinomials, 77,...,T5,
have to be pairwise prime. In Section 5 we give examples
of such bases, whose size correspond to extensions of cryp-
tographic interest.

4.1. Complexity analysis for the computation of the

G’s

For the first part of the algorithm, i.e., the evaluation of
the (;’s, we remark (cf. Algorithm 2) that, for all 7, 7, we
perform one addition, ({; + ;) with polynomials of degree
< d, followed by one multiplication by Tj_1 modulo T3,
which complexity is given in Table 1. Using (16), the fol-
lowing formulas hold:

#AND: Y3 (-0,
and
#XOR: Zi(d+(t1+(j—1)r)

+2d+ ((i — §)r —1)%),

which, after simplifications, gives
1
#AND : E(rznZ(nf 1)(n+1)), 17)
and

1
# XOR : En(n —1)(r*n® +r’n —2rn
— 8+ 18d + 6t + 6). (18)

For the latency, we remark that the polynomials (;’s, can
be computed in parallel, for ¢ = 1,..., n, but, that the sum
for j = 1,...,n — 1 (evaluated in Steps 4 and 5 of Algo-
rithm 2), is sequential. We also notice that, for a given 4,
the evaluation of (; can not be completed before we know
the previous polynomial ;1. The delay is thus equal to the
time required for the addition of (;_1, plus the time for the
computation of U x Tijll mod T3, i.e., when b = r. (Re-
member that 7 is the difference between two consecutive
t;’s.) We conclude that the total time complexity for (3) is
equal to

(n=1)Ta+ (n—1)(5+ [logy((d = 1)/7))]
+ [logy(r)] + [(d — 1)/2r] ) Tx.  (19)

For the second Newton’s interpolation (Step 6 of Algo-
rithm 1), we observe that defining ¢,,; = tp41 + (i — 1)r,

yields the same complexities. E.g., we can choose ¢; = 1,
r=2andt,, =2.°

In terms of memory requirements, we have to store
polynomials of the form Tj_l(X) mod (X° + 1), used to
compute (11). How many of them do we need? For a
given ¢, the evaluation of (;, involves ¢ — 1 polynomials
T;'(X) mod (X®+1), of degree at most b— 1, i.e., with b
coefficients each. Since b goes from r to (i — 1)r, we have
exactly one polynomial of each degree, ranging from (r—1)
to (i — 1)r — 1. The total memory cost, fori = 2,...,n, is

- 1
equal to > ;" 23211 jr=g rn(n® — 1) bits.

4.2. Complexity Analysis for the Computation of
the Q,;’s using Horner’s rule

Let us first count the exact number of non-zero coeffi-
cients in the folded matrices, Z, given in Section 3.2. With
tj=ti1+(j—1)r,and tpi; = tpy1 + (i — 1)r, defined as
above, we get 2d +t; +t,; = 2d+ 1ty +t, 1 (i4+j — 2)r
non-zero values for each matrix. Thus, the matrix-vector
product used to compute the expressions of the form U x
T; mod T, 4; requires 2d+t1 +t,41(¢+j—2)r AND, and
d+t1+t,41+ (i+7—2)r XOR.” Because all the products
are performed in parallel, and because each inner-product
involves at most 4 values, the latency is equal to Ty + 27x.

The computation of @),+; in (15) is sequential. Each
iteration performs one matrix-vector product, followed by
one addition with a polynomial, (;, (cf. Step 9 of Algo-
rithm 2) of degree at most d — 1. We thus get # AND =
#XOR = YU Y (2d 4ty +t,+ (i 45— 2)r),
or equivalently

#AND, # XOR: %n(n —1)(4d +2rn

C3r 42 4 2np). (20)
The total delay for (15) is thus: (n — 1)(T4 + 3Tx).

4.3. Complexity Analysis for Newton’s Interpola-
tion

The total complexity for Newton’s interpolation is the
sum of the complexities obtained for the computation of the
¢;’s in Section 4.1, and for evaluation of the ), ;s with
Horner’s rule in Section 4.2. We have

1
#AND = E n(n — 1)(r?n? + 12rn + rn

+12t; — 187 +24d + 12t,,.1), (21)

oIt is also possible to choose 1 = 0. In this case, 17 is a binomial
and we obtain a slightly lower complexity. Also, the condition 2n < d/2
becomes 2n — 1 < d/2.

7We have (d - tn+i) + 2(tn+i — tj) + 3(t]) = d+t] +tn+i; hence
the result.



and

1
# XOR = D n(n —1)(r’*n® + 10rn + r’n
+ 18t — 26r +42d 4+ 12t,,41 + 6), (22)

with a latency of

2(n—1)Ta + (n —1)(8 + [logy((d — 1)/7)]
+ [logy(r)] + [(d — 1)/2r] ) Tx, (23)

or equivalently
nd
2(n —1)Ta+ O (n—|— ) Tx.
r

4.4. Complexity Analysis of MMTR

In Algorithm 1, we note that Steps 1, 2, 4, and 5 are
accomplished in parallel. In Step 1, we perform 2n multi-
plications of the form, A; x B; mod T;. Using Mastrovito’s
algorithm for trinomials [19], it requires d> AND, and d?—1
XOR; thus the cost of Step 1 is 2nd? AND, and 2n(d? — 1)
XOR. In Steps 2, 4, and 5, we perform 3n constant multipli-
cations, expressed as 3n matrix-vector products of the form
Z U, where Z is a d x d precomputed matrix®; the complex-
ity is 3nd? AND, and 3nd(d — 1) XOR. Not forgetting to
consider the n additions in step 4, the complexity for steps
1,2, 4, and 5 is: 5nd? AND, and 5nd? — 2nd — 2n XOR,
with a latency of 4 T4 + (1 + 4 [log,(d)]) Tx -

‘We obtain the total complexity of Algorithm 1 by adding
the complexity formulas for Steps 1, 2, 4, and 5, plus the
cost of two Newton’s interpolation. The gate count is:

#AND :

1
671(7"2113 +12rn? — 30rn — r%n

187 + 12 (ty + by gy + 2d) (n — 1) +30d%), (24)

1
# XOR : én(r2n3 +10rn? + 6n — 36rn — r’n + 26r

+ 6(2ty41 + 3t1)(n — 1) + 42dn + 30d* — 54d — 18);
(25)

and the delay is equal to
AnTy + ((n —1) (8 + [logy(d —1)/r)] + [logy(r)]

+ [(d—1)/2r] ) + 4 [logy(d)] + 1) Tx, (26)
that we express, for simplicity, as

AnTs + O (n—i— T;d> Tx. 27

8We only need to store 2d values per matrix.

5. Discussions and Comparisons

The parameters n, d, and ¢ that appear in the complex-
ity formulae above, make the comparison of our algorithm
with previous implementations a difficult task. To simplify,
let us assume that n = k%, and d = k'~%, (which satis-
fies nd = k). Since we need 2n trinomials of degree less
than d, having their intermediate coefficient of order less
then d/2 (see Section 3), the parameters k, z must satisfy
k1=2% > 4, which, for large values of k, is equivalent to
T < %.9 Thus, in the next AND and XOR counts, we only
take into account the terms in k2~%, k1*% and k**, and we
also consider t; = 0, t,,4+1 = n, and r = 1, which seems
to be optimal.!” For the latency, we remark from Table 1,
that the time complexity is mostly influenced by the term in
(d—1)/20.

Hence, the total complexity for Montgomery multiplica-
tion over residues (MMTR) is:

#AND :  5E* " 4k 4 %k“ + O(K*), (28)
and
#XOR: 5k %47k 4 %k‘*m + O(E*®), (29)
for a latency of
4k Ty + O (k) Tx. (30)

In the literature, the area complexity is usually given ac-
cording to the number of XOR gates. Most of the stud-
ies are dedicated to specific cases, where the reduction
polynomial is a trinomial [19], or a pentanomial. E.g.,
in [17], algorithms for special pentanomials of the form
XF 4 Xt 4 Xt 4 Xt! 4 1 are proposed. Our algo-
rithm is a general algorithm, which does not require any
special form for the reduction polynomial. The best known
general methods have an area complexity of O(k?). The
best asymptotic area complexity of our algorithm, reached
for z = 2/5, is in O(k'®). For completeness, we give the
exact complexity formula:

31 11 43 4
€k8/5 +7KT/5 4 Ekﬁ/S — 9k — Ek‘*/S + 518/5. (31)

In table 2 below, we count the number of XOR gates
for the MMTR algorithm proposed in this paper, and the
Montgomery’s algorithm proposed in [2]. For all the val-
ues of k£ in Table 2, we are able to define a set of 2n rela-
tively prime trinomials satisfying » = 1, and ¢; < d/2, for
7 =1,...,2n. If we allow r to be greater than 1 in some

9We have z < (1 — logj,(4)) /2,and lim log(4) = 0.
k—+o0

10We recall that the trinomials have to be relatively prime.



k n X d | MMTR | Montgomery [2] ‘
168 = 4 x 42 | 38,664 56,616
180 = 5 x 36 | 37,520 64,980
192 = 4 x 48 | 49,920 73,920
234 = 6 x 39| 54,200 109,746
252 = 6 x 42| 62,084 127,260
360 = 5 x 72 | 139,400 259,560
486 = 6 x 81 | 213,716 472,878
567 = 9 x 63 | 212,745 643,345

Table 2. XOR counts for our MMTR and Mont-
gomery’s algorithms.

(very few) cases, then many other interesting decomposi-
tions of the extension, k, are possible. We remark that for
extensions of cryptographic interest (for ECC), our solution
requires fewer XOR gates than Montgomery’s algorithm.
Note that, in some cases (especially for large values of k),
our algorithm also performs better than the pentanomial and
even trinomial approaches.

6. Conclusions

We proposed the first general modular multiplication
algorithm over finite extension fields, GF(2*), with sub-
quadratic area complexity of O(k*-%). Our experimental re-
sults confirm its efficiency for extensions of large degree,
of great interest for elliptic curve cryptography. For such
applications, a major advantage of our solution, is that it
allows the use of extension fields for which an irreducible
trinomial or special pentanomial [17], does not exist.
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