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Abstract 
 

 Efficient adder design requires proper selection of 
a recurrence algorithm and its realization. Each of the 
algorithms: Weinberger’s, Ling’s and Doran’s were 
analyzed for its flexibility in representation and 
suitability for realization in CMOS. We describe 
general techniques for developing efficient realizations 
based on CMOS technology constraints when using 
Ling’s algorithm. From these techniques we propose 
two high-performance realizations that achieve 1 FO4 
delay improvement at the same energy and 50% energy 
reduction at the same delay than existing Ling and 
Weinberger designs.  
 
 
1. Introduction 
 

For almost half a century realizations of addition 
algorithms have been continually refined to improve 
performance due to changing technology and operating 
constraints. With each technology generation the gap 
between the underlying algorithms for addition and 
efficient realization of those algorithms has grown. As 
a result many of the adders in use today were 
developed for another technology and under a different 
set of constraints than those imposed by current 
technology, such as energy-efficiency. To alleviate this 
problem we developed a method for analyzing designs 
in the energy-delay space [14] which allowed for the 
energy-delay tradeoffs to be taken into account. 
However we did not provide guidance for algorithm 
selection and realization. In this paper we intend to 
reduce the gap between algorithm selection and 
efficient realization. We explore the leading addition 
recurrence algorithms and their realizations that have 
been developed, to identify favorable characteristics of 
each for efficient realization in modern CMOS 
technology. 

The paper is organized as follows. Section 2 
examines Weinberger’s historic recurrence for 
addition. Section 3 analyzes Ling’s transformation of 
Weinberger’s recurrence. Section 4 evaluates Doran’s 
recurrence transforms. In Section 5 techniques for 
resolving the implications of CMOS realization are 
presented. In Section 6 adder realizations for Ling 
under different constraints are proposed. Section 7 
presents a comparison of various schemes in the 
energy-delay space to demonstrate the relative 
performance and energy-efficiency of the proposed 
structures. Section 8 concludes the work. 

 
2. Weinberger’s Recurrence for Addition 
 

Weinberger presented a general form for carry 
recurrence which was not limited in group sizes and 
number of levels for carry computation. The traditional 
carry-look-ahead (CLA) adder is a specific case of this 
general carry recurrence. We use the phrase 
Weinberger’s recurrence to describe the general 
recurrence form as originally presented by Weinberger 
[1]. The sum and carry are defined and indexed as 
follows. 

iiii CbaS ⊕⊕=  

( ) iiiiii CbabaC ⋅++=+1            (1) 

In Weinberger’s recurrence, the carry propagation 
speed is improved through the use of generate and 
propagate. Propagate can either be implemented using 
an OR or an XOR. To distinguish them we refer to the 
OR realization of propagate as transmit, t, and the 
XOR realization as, p. We define Weinberger’s bit 
operations as: 

iii bag =  

iii bat +=  



Substituting into (1) obtains: 

iiii CtgC +=+1  

Weinberger demonstrated that the recurrence 
applies to any prefix variation [1], through the use of 
group generate, G, and group transmit, T (Fig.1). 

 

 
 
Figure 1. Weinberger’s recurrence for addition 
 

The computations of G and T are associative and 
idempotent, which allows for a wide range of 
recurrence tree possibilities for the carry computation. 
Kogge-Stone [7], Han-Carlson [8], Brent-Kung [9], 
and Ladner-Fischer [10] are just common recurrence 
tree variations for addition using Weinberger’s 
recurrence as discussed in [11]. 

 
3. Ling’s Transformation 
 

Technology limitations on fan-in and wired-OR in 
ECL (transistor stack height in CMOS) motivated 
simplifying Weinberger’s recurrence. Ling [2] 
developed a transformation which was able to achieve 
this simplification by factoring transmit, t, from carry. 

iiii CtgC +=+1  

( )iiii CgtC +=+1  

The transformation from Weinberger’s recurrence 
to Ling’s is shown in Fig. 2. 
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Figure 2. (a) Weinberger’s recurrence  
(b) Intermediate form (c) Ling’s transformation 

 
To create Ling’s recurrence, this transformation is 

applied to C6 which allows for a recurrence for C10 to 
be created using H and T as shown in Fig. 3. For the 
recurrence, H9 has one less term than G9 in 
Weinberger’s recurrence. To allow for recurrence T8..6 
is combined with t5, resulting in the same number of 
terms as T9..6 used in Weinberger’s recurrence. 

 

 
 
Figure 3. Ling’s recurrence 

 
Ling’s recurrence is performed on Hi : 

iii HtC =+1  

11 −− ⋅+= iiii HtgH  

The group recurrence relation for H and T allows 
for parallel prefix computation:  

(H+ and T+ denote the next logic level) 

11 −−
+ ⋅+= iiii HTHH  

211 −−
+

− = iii TTT  

An advantage of Ling’s transformation is 
compatibility with the prefix operator “• ” for the 
recurrence of Hi and Ti-1 
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As a result, Ling’s H and T have the same favorable 
properties as Weinberger’s G and T [11] when using 
the prefix operator “• ” such as associativity: 
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where  knji >≥>  

and idempotency: 
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Ling’s transformation reduces the complexity of the 
recurrence by one term, ti, in the first stage of the carry 
tree through the use of Hi-1 instead of Ci. However the 
reduction in recurrence complexity is achieved at the 
expense of an increase in sum complexity. 

( )11 −− ⋅⊕⊕= iiiii HtbaS  

The increased sum complexity can be mitigated 
through the use of conditional logic [12,13].  The 
summation can be implemented using a multiplexer, 
with Hi-1 as the select. 




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=⊕

=
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iii
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A multiplexer allows for sum to be computed with 
no increased complexity on the critical path compared 
to Weinberger’s recurrence. The net benefit from using 
Ling’s recurrence compared to Weinberger’s is the 
delay improvement achieved from reducing the 
recurrence by one term. 
 
4. Doran’s Transformations 
 

Doran demonstrated that there are four 
transformations with Ling-like properties [3]. Two of 
the transformations fit directly into Ling’s 
transformation, and the other two fit into a type we 
refer to as Doran’s transformation.  

The two forms of Ling’s transformation eliminate ti 
from the recurrence. In Ling’s original form:  

)(1 iiii CgtC +⋅=+  

and in the second form: 

)(1 iiii CptC +⋅=+  

The second form is more complex as it requires that 
an XOR be added to the first stage for the recurrence 
calculation of carry, which does not simplify the sum 
calculation. Therefore the first form is more suitable 
for CMOS realization. 

The two forms of Doran’s transformation remove gi 
from Weinberger’s recurrence. 

)(1 iiii CtgC ⋅+=+  

Doran’s transformation attempts to simplify 
Weinberger’s recurrence by removing gi from the 
recurrence for Ci+1 (Fig. 4).   

 

 
 

Figure 4. Factoring g9 from C10 
 
Removing gi reduces the number of terms in the OR 

while maintaining the same stack height as 
Weinberger. However the complexity of T remains 
unchanged. A general recurrence form for Doran’s 
transformation is shown in Fig. 5. 

 

 
 
Figure 5. Doran’s gi + Xi transformation 

 
X9 results in one less OR term than G9 used in 

Weinberger’s recurrence. However, the group 
recurrence relation for X is more complex. The group 
recurrence relation for Xi and Ti are shown below: 

(X+ and T+ denote the next logic level) 

( )11 −−
+ +⋅+= iiiii XgTXX  

1−
+ ⋅= iii TTT  

Doran noted that this formulation can be achieved 
in two forms, using either ti or pi to calculate Ti. Due to 
the increased complexity of computing Xi at each level 
of the recurrence compared with Ling’s and 
Weinberger’s recurrence, the two forms of Doran’s 
transformation are not suitable for efficient CMOS 
realization. 



5. Considerations for CMOS Realization 
 

Technology characteristics impose limits on 
realizations of Weinberger’s and Ling’s recurrences for 
addition. The primary constraint in current CMOS 
technology is transistor stack height, which is 
commonly limited to between 2 and 5 for nMOS stacks 
and 2 for pMOS stacks. In addition energy has become 
as important as performance, requiring that structures 
be analyzed over a range of operating points [14]. 
Several realization techniques have been developed to 
efficiently map recurrence algorithms to CMOS 
technology under these constraints [14]. 

 
5.1. Combined Bit-Operator and 1st Carry 
Stage 
 

In dynamic adder implementations, one logic stage 
can be removed by combining the computation of g 
and t into the first prefix computation stage [4, 5]. This 
technique is more favorable to Ling’s recurrence than 
to Weinberger’s. Under the same stack height 
constraint a Ling realization can combine more bits in 
the first stage than a realization using Weinberger’s 
recurrence. The first recurrence block with combined 
bit operators for each recurrence is shown in Fig 6. 

 

        

           11 −−+= iiiii babaH  ( )( )111 −−+ ++⋅= iiiiiii bababaC  

Figure 6. Combined first stage static CMOS prefix 2 

realization of iH  and 1+iC  

 
By combining the g and t operators with the first 

prefix block of the carry tree, the resulting logic for 
Ling’s transformation uses a CMOS logic block 
containing one less transistor in the nMOS stack for Hi 
than Weinberger’s recurrence uses for Ci+1. However, 
subsequent blocks have the same stack height since the 
recursion is performed using either H and T or G and T 
with the same prefix operator “ • ”. 
 

5.2. Conditional Computation of Sum 
 

Mathew [6] made use of conditional logic for the 
computation of sum in an attempt to reduce energy. 
The use of 4-bit conditional logic allowed for only 1 in 
4 carries to be computed, reducing the size of the carry 
tree. Additionally the conditional logic was 
implemented using static gates, which allowed for the 
switching activity of the gates to be reduced. Both 
Weinberger’s and Ling’s recurrences map efficiently to 
conditional computation of sum, with Ci and Hi-1 used 
as the select signal respectively. To take full advantage 
of conditional computation, the conditional sum path 
must have fewer stages than the recurrence path. As 
the difference between the number of stages in the 
recurrence tree path and the conditional computation 
path increases, there exists more potential for reducing 
energy through gate sizing [14]. However, as the 
difference between the number of stages in the 
recurrence tree and the conditional path decreases, the 
energy consumed by the conditional path increases and 
the possibility of the conditional sum becoming the 
critical path increases. The optimal number of bits to 
be computed conditionally and the realization of the 
conditional computation are determined by technology 
and adder recurrence structure. The conditional 
computation can be performed either by rippling or 
through the use of separate recurrence trees. 

 
6. Proposed Realizations 
 

We propose two 64-bit dynamic adder realizations 
which utilize Ling’s recurrence combined with an 
energy efficient realization that takes full advantage of 
compound-domino logic, which we found to be the 
most energy-delay efficient for CMOS implementation 
[14]. 
 
6.1. A Three Stage Ling Adder (TSL) 
 

We developed a three stage 64-bit adder by using a 
fully parallel prefix tree with Ling’s transformation. 
Under the technology limitation for dynamic gates of a 
stack with no more than 5 nMOS transistors, a prefix-4 
CMOS block can be used in the first dynamic gate for 
the recurrence. Using compound domino logic the 
static recurrence gates are implemented using prefix-2. 
The proposed full parallel prefix tree with prefix 4, 2, 
4, and 2 for the first, second, third and forth blocks 
respectively is shown in Fig. 7. 
 



 
Figure 7. 64-bit Three Stage parallel prefix Ling 
adder (TSL) 

 
The equations for the first level Hi and Ti-1 are: 
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)b)(ab)(ab)(ab(aT iiiiiiiii 443322111 −−−−−−−−− ++++=  

     The result is a worst case stack height of 4 nMOS 
transistors for both equations. However, in the first 
stage of a dynamic adder both gates must be footed, 
which increases the worst case stack height to the 
technology limit of 5. The second, third and fourth 
level Hi and Ti computations follow traditional dot 
product operations for prefix 2 and prefix 4 and do not 
violate the stack height limitations. Cout is computed 
conditionally and is selected in the same stage as S63 
using H62. 

 
6.2. Energy-Efficient Three Stage Conditional 
Sum Ling Adder (CSL) 
 

The speed and energy consumption of an adder can 
be greatly influenced by the amount of wire it uses. 
This wire impact can easily offset any advantage 
obtained by using a more efficient recurrence. We 
reduced the amount of wiring and gates in our 
proposed adder by generating every other Hi without 
increasing the number of stages (Fig. 8). This was 
achieved by conditionally computing the two-bit sum 
and selecting each group with the corresponding Hi.  
The equations for Si and Si+1 are: 


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The number of bits for conditional sum was chosen 
such that the critical path of the conditional sum did 
not exceed the delay of the recurrence path.  

 

 
Figure 8. 64-bit Three Stage Conditional Sum Ling 
adder (CSL) 
 
7. Results 
 

All of our results were obtained using estimates in 
130nm technology by applying the energy-delay 
estimation method developed in [15] to the entire 
adder. The technology parameters are: Leff = 110nm, 
nominal Vdd = 1.2V. Characterization of the 
technology was performed for the typical process 
corner at a temperature of 25C. 

A comparison of 32-bit static adder 
implementations using Weinberger’s recurrence and 
Ling’s transformation is shown in Fig. 9. Each adder is 
delay optimized for a path gain (Cout/Cin) of 4.  
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Figure 9. Comparison of 32-bit static Weinberger 
and Ling adders 
 

Ling’s transformation yields an improvement in 
delay of up to 12%, confirming the benefit that Ling 
can achieve in static adder implementations limited to 
a stack of 2 pMOS and 2 nMOS transistors. 

 



7.1. Impact of Conditional Sum 
 

A comparison of 64-bit dynamic adders with and 
without conditional sum is shown in Fig. 10. Inter-
stage wire lengths are estimated using a 4µm bit pitch. 
Each adder is sized to achieve optimal performance for 
a given path gain (Cout/Cin). The output of each adder is 
attached to a 1mm wire, and the input size is varied to 
obtain path gains of 2 through 8. The length of the wire 
attached to the output is representative of the loading 
of an adder in a typical high-performance ALU 
configuration [6]. The resulting points create an 
energy-delay curve for each design representative of 
various high-performance operating conditions. For 
each design a switching activity of 50% was applied to 
the dynamic recurrence path and a 15% switching 
activity was applied to the static gates on the 
conditional sum path. The switching factors are based 
on experimental observations in industry [14]. 

The results show an energy savings for the 2-bit 
conditional sum variants. This is primarily due to the 
reduced switching activity of the conditional path. In 
the 6 stage recurrence tree of the fully parallel prefix-2 
Ling, applying a 2-bit conditional sum improves 
energy at a slight increase in delay. The delay penalty 
is a result of increased loading on the adder input 
caused by the static gates of the conditional sum path. 
The CSL design results in improved performance and a 
slight energy savings compared to the TSL design. The 
performance improvement is due to the reduced input 
loading associated with the first gates of the 
conditional sum path relative to the first prefix-4 gates 
of the recurrence path. 
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Figure 10. Impact of conditional sum in high-
performance 64-bit dynamic adders 
 
 
 
 

7.2. Impact of Wiring 
 

The proposed TSL and CSL adders are shown in 
Fig. 11, with and without wiring, in comparison to the 
fastest Kogge-Stone implementation by Park [5], and a 
fully parallel prefix 2 Ling adder to demonstrate the 
impact of wiring on high-performance adders. 

The inclusion of wire causes each design to run 
slower, however the impact of wire on CSL is less than 
Park and TSL. Additionally each design requires more 
energy to obtain the same performance. This increase 
in energy for the same performance is the smallest for 
CSL. Without wiring TSL obtains better delay and 
energy than the CSL design. However, with wire 
included, CSL obtains better delay and energy 
compared to the TSL design. This confirms the benefit 
obtained from the techniques used in CSL. 
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Figure 11. Impact of wiring in high-performance   
64-bit dynamic adders 
 
7.3. 64-bit Dynamic Adder Comparison 
 

A comparison of TSL, CSL and the best published 
realizations of 64-bit dynamic adders is shown in Fig. 
12. The best recurrence based adder realization is a 
three stage Kogge-Stone implementation proposed by 
Park [5]. The best Ling realization is Naffziger’s six 
stage implementation, which utilizes a single stage for 
the 4-bit group H and T, followed by a four stage ripple 
carry, and finally a single stage sum select. 

The designs which have the least number of stages 
(CSL, TSL and Park’s) are the most energy-efficient. 
The reduced energy is a result of the decreased number 
of stages in the design, which allows for the same 
delay to be achieved while using a greater fan-out per 
stage. The energy reduction and performance 
improvement of these designs is limited due to the 
increased branching and gate complexity. The fully 
parallel prefix 2 adder is able to achieve high 
performance due to its balancing of branching and 



redundancy with the number of stages. However, this 
comes at a substantial cost in energy. The increased 
number of stages results in a smaller fanout per stage 
requiring twice the amount of energy to maintain the 
same performance as the proposed CSL design.  
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Figure 12. Energy-Delay Space comparison of CSL, 
TSL and the best 64-bit Dynamic Adders 
 

The realizations proposed in this paper demonstrate 
better performance than the best published 
implementations of Weinberger and Ling adders. The 
best delay is obtained by the fully parallel prefix 2 
design, Park’s Kogge-Stone design and CSL. The most 
energy-efficient design is the proposed CSL adder 
which resulted in a savings of up to 50% in energy for 
the same delay or 1 FO4 delay improvement for the 
same energy versus the fastest published realization of 
Kogge-Stone by Park [5], and a 2 FO4 delay 
improvement and 3x energy reduction versus the best 
published realizations of Ling by Naffziger [4]. 
 
8. Conclusion 
 

Ling’s and Weinberger’s recurrence algorithms for 
addition demonstrate favorable characteristics for 
efficient CMOS realization. For high-performance 
dynamic adders Ling shows a fundamental advantage 
in CMOS by reducing the complexity of the first stage 
of the recurrence tree. We have demonstrated that 
existing recurrence trees based on Weinberger’s 
recurrence can be applied directly to Ling’s 
transformation with only a modification of the first 
stage and sum computation. For static adders Ling’s 
transformation demonstrated up to 12% delay 
improvement versus adders using comparable 
recurrence trees with Weinberger’s recurrence. 
Efficient realizations of Ling’s transformation are 
presented for both: prefix selection for the best use of 
compound-domino in successive levels of recurrence 
and optimal conditional sum computation size. The 

proposed CSL adder demonstrates 50% savings in 
energy at the same delay and 1 FO4 delay 
improvement at the same energy when compared to the 
fastest published designs. 
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