
Efficient Mapping of Addition Recurrence Algorithms in CMOS

Bart R. Zeydel
ACSEL

University of California
Davis, CA 95616

brzeydel@ucdavis.edu

Theo T.J.H. Kluter
EPFL

Lausanne, Switzerland
ties.kluter@epfl.ch

Vojin G. Oklobdzija
ACSEL

University of California
Davis, CA 95616

vojin@ucdavis.edu

Abstract

 Efficient adder design requires proper selection of
a recurrence algorithm and its realization. Each of the
algorithms: Weinberger’s, Ling’s and Doran’s were
analyzed for its flexibility in representation and
suitability for realization in CMOS. We describe
general techniques for developing efficient realizations
based on CMOS technology constraints when using
Ling’s algorithm. From these techniques we propose
two high-performance realizations that achieve 1 FO4
delay improvement at the same energy and 50% energy
reduction at the same delay than existing Ling and
Weinberger designs.

1. Introduction

For almost half a century realizations of addition
algorithms have been continually refined to improve
performance due to changing technology and operating
constraints. With each technology generation the gap
between the underlying algorithms for addition and
efficient realization of those algorithms has grown. As
a result many of the adders in use today were
developed for another technology and under a different
set of constraints than those imposed by current
technology, such as energy-efficiency. To alleviate this
problem we developed a method for analyzing designs
in the energy-delay space [14] which allowed for the
energy-delay tradeoffs to be taken into account.
However we did not provide guidance for algorithm
selection and realization. In this paper we intend to
reduce the gap between algorithm selection and
efficient realization. We explore the leading addition
recurrence algorithms and their realizations that have
been developed, to identify favorable characteristics of
each for efficient realization in modern CMOS
technology.

The paper is organized as follows. Section 2
examines Weinberger’s historic recurrence for
addition. Section 3 analyzes Ling’s transformation of
Weinberger’s recurrence. Section 4 evaluates Doran’s
recurrence transforms. In Section 5 techniques for
resolving the implications of CMOS realization are
presented. In Section 6 adder realizations for Ling
under different constraints are proposed. Section 7
presents a comparison of various schemes in the
energy-delay space to demonstrate the relative
performance and energy-efficiency of the proposed
structures. Section 8 concludes the work.

2. Weinberger’s Recurrence for Addition

Weinberger presented a general form for carry
recurrence which was not limited in group sizes and
number of levels for carry computation. The traditional
carry-look-ahead (CLA) adder is a specific case of this
general carry recurrence. We use the phrase
Weinberger’s recurrence to describe the general
recurrence form as originally presented by Weinberger
[1]. The sum and carry are defined and indexed as
follows.

iiii CbaS ⊕⊕=

() iiiiii CbabaC ⋅++=+1 (1)

In Weinberger’s recurrence, the carry propagation
speed is improved through the use of generate and
propagate. Propagate can either be implemented using
an OR or an XOR. To distinguish them we refer to the
OR realization of propagate as transmit, t, and the
XOR realization as, p. We define Weinberger’s bit
operations as:

iii bag =

iii bat +=

Substituting into (1) obtains:

iiii CtgC +=+1

Weinberger demonstrated that the recurrence
applies to any prefix variation [1], through the use of
group generate, G, and group transmit, T (Fig.1).

Figure 1. Weinberger’s recurrence for addition

The computations of G and T are associative and
idempotent, which allows for a wide range of
recurrence tree possibilities for the carry computation.
Kogge-Stone [7], Han-Carlson [8], Brent-Kung [9],
and Ladner-Fischer [10] are just common recurrence
tree variations for addition using Weinberger’s
recurrence as discussed in [11].

3. Ling’s Transformation

Technology limitations on fan-in and wired-OR in
ECL (transistor stack height in CMOS) motivated
simplifying Weinberger’s recurrence. Ling [2]
developed a transformation which was able to achieve
this simplification by factoring transmit, t, from carry.

iiii CtgC +=+1

()iiii CgtC +=+1

The transformation from Weinberger’s recurrence
to Ling’s is shown in Fig. 2.

(a)

 (b)

(c)

Figure 2. (a) Weinberger’s recurrence
(b) Intermediate form (c) Ling’s transformation

To create Ling’s recurrence, this transformation is

applied to C6 which allows for a recurrence for C10 to
be created using H and T as shown in Fig. 3. For the
recurrence, H9 has one less term than G9 in
Weinberger’s recurrence. To allow for recurrence T8..6
is combined with t5, resulting in the same number of
terms as T9..6 used in Weinberger’s recurrence.

Figure 3. Ling’s recurrence

Ling’s recurrence is performed on Hi :

iii HtC =+1

11 −− ⋅+= iiii HtgH

The group recurrence relation for H and T allows
for parallel prefix computation:

(H+ and T+ denote the next logic level)

11 −−
+ ⋅+= iiii HTHH

211 −−
+

− = iii TTT

An advantage of Ling’s transformation is
compatibility with the prefix operator “• ” for the
recurrence of Hi and Ti-1








 +
=








•









−−

−

−− 11

1

11 ji

jii

j

j

i

i

TT
HTH

T
H

T
H

As a result, Ling’s H and T have the same favorable
properties as Weinberger’s G and T [11] when using
the prefix operator “• ” such as associativity:









•








=








•









−−

+

−−−

+

1..1

..

..

1..

1..1

..

..1

1..

kn

kn

ni

ni

kj

kj

ji

ji

T
H

T
H

T
H

T
H

where knji >≥>

and idempotency:









=








•









−−−−−

+

1..1

..

1..1

..

..1

1..

ki

ki

kj

kj

ji

ji

T
H

T
H

T
H

Ling’s transformation reduces the complexity of the
recurrence by one term, ti, in the first stage of the carry
tree through the use of Hi-1 instead of Ci. However the
reduction in recurrence complexity is achieved at the
expense of an increase in sum complexity.

()11 −− ⋅⊕⊕= iiiii HtbaS

The increased sum complexity can be mitigated
through the use of conditional logic [12,13]. The
summation can be implemented using a multiplexer,
with Hi-1 as the select.





=⊕⊕
=⊕

=
−−

−

1
0

11

1

iiii

iii
i Hiftba

Hifba
S

A multiplexer allows for sum to be computed with
no increased complexity on the critical path compared
to Weinberger’s recurrence. The net benefit from using
Ling’s recurrence compared to Weinberger’s is the
delay improvement achieved from reducing the
recurrence by one term.

4. Doran’s Transformations

Doran demonstrated that there are four
transformations with Ling-like properties [3]. Two of
the transformations fit directly into Ling’s
transformation, and the other two fit into a type we
refer to as Doran’s transformation.

The two forms of Ling’s transformation eliminate ti
from the recurrence. In Ling’s original form:

)(1 iiii CgtC +⋅=+

and in the second form:

)(1 iiii CptC +⋅=+

The second form is more complex as it requires that
an XOR be added to the first stage for the recurrence
calculation of carry, which does not simplify the sum
calculation. Therefore the first form is more suitable
for CMOS realization.

The two forms of Doran’s transformation remove gi
from Weinberger’s recurrence.

)(1 iiii CtgC ⋅+=+

Doran’s transformation attempts to simplify
Weinberger’s recurrence by removing gi from the
recurrence for Ci+1 (Fig. 4).

Figure 4. Factoring g9 from C10

Removing gi reduces the number of terms in the OR

while maintaining the same stack height as
Weinberger. However the complexity of T remains
unchanged. A general recurrence form for Doran’s
transformation is shown in Fig. 5.

Figure 5. Doran’s gi + Xi transformation

X9 results in one less OR term than G9 used in

Weinberger’s recurrence. However, the group
recurrence relation for X is more complex. The group
recurrence relation for Xi and Ti are shown below:

(X+ and T+ denote the next logic level)

()11 −−
+ +⋅+= iiiii XgTXX

1−
+ ⋅= iii TTT

Doran noted that this formulation can be achieved
in two forms, using either ti or pi to calculate Ti. Due to
the increased complexity of computing Xi at each level
of the recurrence compared with Ling’s and
Weinberger’s recurrence, the two forms of Doran’s
transformation are not suitable for efficient CMOS
realization.

5. Considerations for CMOS Realization

Technology characteristics impose limits on
realizations of Weinberger’s and Ling’s recurrences for
addition. The primary constraint in current CMOS
technology is transistor stack height, which is
commonly limited to between 2 and 5 for nMOS stacks
and 2 for pMOS stacks. In addition energy has become
as important as performance, requiring that structures
be analyzed over a range of operating points [14].
Several realization techniques have been developed to
efficiently map recurrence algorithms to CMOS
technology under these constraints [14].

5.1. Combined Bit-Operator and 1st Carry
Stage

In dynamic adder implementations, one logic stage
can be removed by combining the computation of g
and t into the first prefix computation stage [4, 5]. This
technique is more favorable to Ling’s recurrence than
to Weinberger’s. Under the same stack height
constraint a Ling realization can combine more bits in
the first stage than a realization using Weinberger’s
recurrence. The first recurrence block with combined
bit operators for each recurrence is shown in Fig 6.

 11 −−+= iiiii babaH ()()111 −−+ ++⋅= iiiiiii bababaC

Figure 6. Combined first stage static CMOS prefix 2

realization of iH and 1+iC

By combining the g and t operators with the first

prefix block of the carry tree, the resulting logic for
Ling’s transformation uses a CMOS logic block
containing one less transistor in the nMOS stack for Hi
than Weinberger’s recurrence uses for Ci+1. However,
subsequent blocks have the same stack height since the
recursion is performed using either H and T or G and T
with the same prefix operator “ • ”.

5.2. Conditional Computation of Sum

Mathew [6] made use of conditional logic for the
computation of sum in an attempt to reduce energy.
The use of 4-bit conditional logic allowed for only 1 in
4 carries to be computed, reducing the size of the carry
tree. Additionally the conditional logic was
implemented using static gates, which allowed for the
switching activity of the gates to be reduced. Both
Weinberger’s and Ling’s recurrences map efficiently to
conditional computation of sum, with Ci and Hi-1 used
as the select signal respectively. To take full advantage
of conditional computation, the conditional sum path
must have fewer stages than the recurrence path. As
the difference between the number of stages in the
recurrence tree path and the conditional computation
path increases, there exists more potential for reducing
energy through gate sizing [14]. However, as the
difference between the number of stages in the
recurrence tree and the conditional path decreases, the
energy consumed by the conditional path increases and
the possibility of the conditional sum becoming the
critical path increases. The optimal number of bits to
be computed conditionally and the realization of the
conditional computation are determined by technology
and adder recurrence structure. The conditional
computation can be performed either by rippling or
through the use of separate recurrence trees.

6. Proposed Realizations

We propose two 64-bit dynamic adder realizations
which utilize Ling’s recurrence combined with an
energy efficient realization that takes full advantage of
compound-domino logic, which we found to be the
most energy-delay efficient for CMOS implementation
[14].

6.1. A Three Stage Ling Adder (TSL)

We developed a three stage 64-bit adder by using a
fully parallel prefix tree with Ling’s transformation.
Under the technology limitation for dynamic gates of a
stack with no more than 5 nMOS transistors, a prefix-4
CMOS block can be used in the first dynamic gate for
the recurrence. Using compound domino logic the
static recurrence gates are implemented using prefix-2.
The proposed full parallel prefix tree with prefix 4, 2,
4, and 2 for the first, second, third and forth blocks
respectively is shown in Fig. 7.

Figure 7. 64-bit Three Stage parallel prefix Ling
adder (TSL)

The equations for the first level Hi and Ti-1 are:

332211

221111

))((
)(

−−−−−−

−−−−−−

+++
+++=

iiiiii

iiiiiiiii

bababa
babababaH

)b)(ab)(ab)(ab(aT iiiiiiiii 443322111 −−−−−−−−− ++++=

 The result is a worst case stack height of 4 nMOS
transistors for both equations. However, in the first
stage of a dynamic adder both gates must be footed,
which increases the worst case stack height to the
technology limit of 5. The second, third and fourth
level Hi and Ti computations follow traditional dot
product operations for prefix 2 and prefix 4 and do not
violate the stack height limitations. Cout is computed
conditionally and is selected in the same stage as S63
using H62.

6.2. Energy-Efficient Three Stage Conditional
Sum Ling Adder (CSL)

The speed and energy consumption of an adder can
be greatly influenced by the amount of wire it uses.
This wire impact can easily offset any advantage
obtained by using a more efficient recurrence. We
reduced the amount of wiring and gates in our
proposed adder by generating every other Hi without
increasing the number of stages (Fig. 8). This was
achieved by conditionally computing the two-bit sum
and selecting each group with the corresponding Hi.
The equations for Si and Si+1 are:





=⊕⊕
=⊕

=
−−

−

1Hiftba
0Hifba

S
1i1iii

1iii
i

()



=+⊕⊕
=⊕⊕

=
−−++

−++
+ 1Hifttgba

0Hifgba
S

1i1iii1i1i

1ii1i1i
1i

The number of bits for conditional sum was chosen
such that the critical path of the conditional sum did
not exceed the delay of the recurrence path.

Figure 8. 64-bit Three Stage Conditional Sum Ling
adder (CSL)

7. Results

All of our results were obtained using estimates in
130nm technology by applying the energy-delay
estimation method developed in [15] to the entire
adder. The technology parameters are: Leff = 110nm,
nominal Vdd = 1.2V. Characterization of the
technology was performed for the typical process
corner at a temperature of 25C.

A comparison of 32-bit static adder
implementations using Weinberger’s recurrence and
Ling’s transformation is shown in Fig. 9. Each adder is
delay optimized for a path gain (Cout/Cin) of 4.

0

1

2

3

4

5

6

7

8

9

10

D
el

ay
 (F

04
) Weinberger

Ling

Ladner-Fischer
prefix 2

[1-1-2-4-4]

Ladner-Fischer
prefix 2

[1-1-2-2-4]

Ladner-Fischer
prefix 2

[1-1-2-2-2]

Kogge-Stone
prefix 2

Figure 9. Comparison of 32-bit static Weinberger
and Ling adders

Ling’s transformation yields an improvement in
delay of up to 12%, confirming the benefit that Ling
can achieve in static adder implementations limited to
a stack of 2 pMOS and 2 nMOS transistors.

7.1. Impact of Conditional Sum

A comparison of 64-bit dynamic adders with and
without conditional sum is shown in Fig. 10. Inter-
stage wire lengths are estimated using a 4µm bit pitch.
Each adder is sized to achieve optimal performance for
a given path gain (Cout/Cin). The output of each adder is
attached to a 1mm wire, and the input size is varied to
obtain path gains of 2 through 8. The length of the wire
attached to the output is representative of the loading
of an adder in a typical high-performance ALU
configuration [6]. The resulting points create an
energy-delay curve for each design representative of
various high-performance operating conditions. For
each design a switching activity of 50% was applied to
the dynamic recurrence path and a 15% switching
activity was applied to the static gates on the
conditional sum path. The switching factors are based
on experimental observations in industry [14].

The results show an energy savings for the 2-bit
conditional sum variants. This is primarily due to the
reduced switching activity of the conditional path. In
the 6 stage recurrence tree of the fully parallel prefix-2
Ling, applying a 2-bit conditional sum improves
energy at a slight increase in delay. The delay penalty
is a result of increased loading on the adder input
caused by the static gates of the conditional sum path.
The CSL design results in improved performance and a
slight energy savings compared to the TSL design. The
performance improvement is due to the reduced input
loading associated with the first gates of the
conditional sum path relative to the first prefix-4 gates
of the recurrence path.

0

50

100

150

200

250

300

350

400

450

6 7 8 9 10 11
Delay (FO4)

En
er

gy
 (p

J)

TSL

Prefix 2 Ling

CSL

Prefix 2 Ling
w/ 2-bit Cond. Sum

Figure 10. Impact of conditional sum in high-
performance 64-bit dynamic adders

7.2. Impact of Wiring

The proposed TSL and CSL adders are shown in
Fig. 11, with and without wiring, in comparison to the
fastest Kogge-Stone implementation by Park [5], and a
fully parallel prefix 2 Ling adder to demonstrate the
impact of wiring on high-performance adders.

The inclusion of wire causes each design to run
slower, however the impact of wire on CSL is less than
Park and TSL. Additionally each design requires more
energy to obtain the same performance. This increase
in energy for the same performance is the smallest for
CSL. Without wiring TSL obtains better delay and
energy than the CSL design. However, with wire
included, CSL obtains better delay and energy
compared to the TSL design. This confirms the benefit
obtained from the techniques used in CSL.

0

50

100

150

200

250

300

350

400

450

6 7 8 9 10 11
Delay (FO4)

En
er

gy
 (p

J) Park

Prefix 2 Ling

TSL

CSL

 without-wire

 with wire

Figure 11. Impact of wiring in high-performance
64-bit dynamic adders

7.3. 64-bit Dynamic Adder Comparison

A comparison of TSL, CSL and the best published
realizations of 64-bit dynamic adders is shown in Fig.
12. The best recurrence based adder realization is a
three stage Kogge-Stone implementation proposed by
Park [5]. The best Ling realization is Naffziger’s six
stage implementation, which utilizes a single stage for
the 4-bit group H and T, followed by a four stage ripple
carry, and finally a single stage sum select.

The designs which have the least number of stages
(CSL, TSL and Park’s) are the most energy-efficient.
The reduced energy is a result of the decreased number
of stages in the design, which allows for the same
delay to be achieved while using a greater fan-out per
stage. The energy reduction and performance
improvement of these designs is limited due to the
increased branching and gate complexity. The fully
parallel prefix 2 adder is able to achieve high
performance due to its balancing of branching and

redundancy with the number of stages. However, this
comes at a substantial cost in energy. The increased
number of stages results in a smaller fanout per stage
requiring twice the amount of energy to maintain the
same performance as the proposed CSL design.

0

100

200

300

400

500

600

700

6 7 8 9 10 11
Delay (FO4)

En
er

gy
 (p

J)

Park [5]
TSL

Prefix 2 Ling

CSL

Naffziger [4]

Figure 12. Energy-Delay Space comparison of CSL,
TSL and the best 64-bit Dynamic Adders

The realizations proposed in this paper demonstrate
better performance than the best published
implementations of Weinberger and Ling adders. The
best delay is obtained by the fully parallel prefix 2
design, Park’s Kogge-Stone design and CSL. The most
energy-efficient design is the proposed CSL adder
which resulted in a savings of up to 50% in energy for
the same delay or 1 FO4 delay improvement for the
same energy versus the fastest published realization of
Kogge-Stone by Park [5], and a 2 FO4 delay
improvement and 3x energy reduction versus the best
published realizations of Ling by Naffziger [4].

8. Conclusion

Ling’s and Weinberger’s recurrence algorithms for
addition demonstrate favorable characteristics for
efficient CMOS realization. For high-performance
dynamic adders Ling shows a fundamental advantage
in CMOS by reducing the complexity of the first stage
of the recurrence tree. We have demonstrated that
existing recurrence trees based on Weinberger’s
recurrence can be applied directly to Ling’s
transformation with only a modification of the first
stage and sum computation. For static adders Ling’s
transformation demonstrated up to 12% delay
improvement versus adders using comparable
recurrence trees with Weinberger’s recurrence.
Efficient realizations of Ling’s transformation are
presented for both: prefix selection for the best use of
compound-domino in successive levels of recurrence
and optimal conditional sum computation size. The

proposed CSL adder demonstrates 50% savings in
energy at the same delay and 1 FO4 delay
improvement at the same energy when compared to the
fastest published designs.

Acknowledgements

This work has been supported by SRC Research Grant
No. 931.001 and California MICRO 01-063.

References

[1] A. Weinberger, J.L. Smith, “ A Logic for High-Speed Addition,” Nat.

Bur. Stand.. Circ., 591:3-12, 1958.
[2] H. Ling, “High-Speed Binary Adder,” IBM Journal of Research and

Development, vol. 25, no.3, pp. 156-166, May 1981.
[3] R. W. Doran, “Variants of an Improved Carry Look-Ahead Adder,”

IEEE Transactions on Computers, Vol. 37, No.9, Sept. 1988.
[4] S. Naffziger, “A Sub-Nanosecond 0.5µm 64-b Adder Design”, 1996

IEEE International Solid-State Circuits Conference, Digest of Technical
Papers, Feb. 1996, pp.362-363.

[5] J. Park, et. al., “470ps 64-Bit Parallel Binary Adder”, 2000 Symposium
on VLSI Circuits Digest of Technical Papers.

[6] S. K. Mathew et al, “A 4GHz 130nm Address Generation Unit with 32-
bit Sparse-tree Adder Core,” 2002 Symposium on VLSI Circuits Digest
of Technical Papers, pp.126-127.

[7] P.M. Kogge and H.S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations”, IEEE Trans.
Computers Vol. C-22, No. 8, Aug. 1973, pp.786-793.

[8] T. Han, D.A. Carlson, “Fast Area-Efficient VLSI Adders,” 8th IEEE
Symposium on Computer Arithmetic, Como, Italy, pp.49-56, May
1987.

[9] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders,”
IEEE Transactions on Computers, C-31(3), March 1982.

[10] R. E. Ladner, M.H. Fischer, “Parallel Prefix Computation,” JACM,
27(4):831-838, Oct. 1980.

[11] S. Knowles, “A Family of Adders,” 14th IEEE Symposium on
Computer Arithmetic, Adelaide, Australia, April 14th-16th, 1999.

[12] J. Sklanski, “Conditional-Sum Addition Logic,” IRE Trans. on
Electronic Computers, Vol. EC-9, No2, pp.226-231, 1960.

[13] O. J. Bedrij, “Carry-Select Adder,” IRE Trans. on Electronic
Computers, Vol. EC-11, pp. 340-346, 1962.

[14] V. G. Oklobzija, B. R. Zeydel, H. Dao, S. Mathew, R. Krishnamurthy,
“Energy-Delay Estimation Technique for High-Performance
Microprocessor VLSI Adders,” 16th IEEE Symposium on Computer
Arithmetic, Santiago de Compostela, Spain, June 15-18th 2003.

[15] V. G. Oklobdzija, B. R. Zeydel, H. Q. Dao, S. Mathew, R.
Krishnamurthy, "Comparison of High-Performance VLSI Adders in
Energy-Delay Space", IEEE Transaction on VLSI Systems, in press,
2005

