Abstract—A set of arithmetic algorithms is described for operands
that are encoded in the “4N™ error-detecting code with the low-cost
check modulus 4 = 27 - §. The set includes addition, additive inverse
(complementation), multiplication, division, roundoff, and two auxitiary
algorithms: “multiply by 2° ~ 1,” and “divide by 2 - 1.” The design
of a serial radix-16 processor is presented in which these algorithms are
implemented for the low-cost ANV code with 4 = 15. This processor has
been constructed for the Jet Propulsion Laboratory STAR computer.
The adaptation of “two’s complement” arithmetic for an inverse-residue
code is also described.

Index Terms—AN codes, arithmetic algorithms, arithmetic processor
design, error-detecting codes, low-cost arithmetic error codes, residue
codes.

I. INTRODUCTION

ARITHMETIC error codes are of interest to computer de-
.signers because they are preserved during arithmetic op-
 erations in the computer, and therefore can be applied to all
computer words in order to attain concurrent error detection
during the execution of programs. In addition to the theoretical
properties of arithmetic error codes [1], [2] the designer must
consider two additional aspects: the cost versus effectiveness
tradeoffs of their application [3] and the implementation of
the entire set of arithmetic algorithms of the computer using
b coded operands. This paper considers arithmetic algorithms
for both major classes of arithmetic error codes: the separate
' (residue) and nonseparate (AN) codes [2]. Attention is con-
i centrated on the low-cost radix-2 codes of both classes [3].

~ Algorithms for the residue codes have been developed as
early as 1948 in the Raydac computer, which employed a
variant of modulo 31 residue checking for its arithmetic unit
[4]. Later, modulo 3 residue checking has been mentioned
(without details) in descriptions of the IBM 7030 (Stretch)
and the Univac I computers. Sets of algorithms were dis-
cussed by Garner [5], Davis [6], Sellers ez al. [7], and Rao
{8].

The first set of algorithms for the ANV codes (with the low-
cost check modutus 4 =29 - 1) has been devised for the STAR
computer developed at the Jet Propulsion Laboratory [9],
[10]. A complete 4-bit byte-organized arithmetic processor
with 4 = 15 has been designed and constructed [11]. Experi-
ence with this processor led to the follow-on design of a second

Manuscript received January 31, 1973. This work was supported in
part by the National Aeronautics and Space Administration under Con-
tract NAS 7-100, and was performed at the Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, Calif.

The author is with the Department of Computer Science, University
of California, Los Angeles, Calif. 90024, and the Jet Propulsion Labora-
tory, Pasadena, Calif. 91103.

EE TRANSACTIONS ON COMPUTERS; VOL. C-22, NO. 6, JUNE 1973

Arithmetic Algorithms for‘ Error-Coded
Operands

ALGIRDAS AVIZIENIS

567

arithmetic processor that employed the separate modulo 15
inverse residue code 3], [12].

The nonseparate code considered in this paper is the AN
code {1], which is formed when an uncoded operand X is mul-
tiplied by the check modulus A to give the coded operand 4X.
The separate codes are the residue code [1], and the inverse-
residue code [3] which has significant advantages in fault de-
tection of repeated-use faults. The modulo A inverse-residue
encoding for a number X attaches a check symbol X" to form
the pair (X, X"). The value of X" is given by

X"=4-(AlX)

where A|X means “the modulo 4 residue of X.” A4|X is the
value of the check symbol X' employed in modulo 4 residue
encoding (X, X'). The inverse-residue code is a separate code,
sinice it has no arithmetic interaction between X and X', and
therefore differs from the nonseparate systematic subcodes of
AN codes [2].

The following sections present a set of algorithms for the
low-cost (modulo 2% - 1) AN-coded operands and a discussion
of their implementation in a byte-organized arithmetic proces-
sor. The last section discusses the algorithms for inverse-residue
coded operands of the STAR computer.

II. ALGORITHMS FOR AN-CODED OPERANDS (2° - 1)X

The entire set of binary arithmetical algorithms is conve-
niently adaptable to AN codes with the check modulus 22 - 1
and word length of &z bits [9], [11]. A fundamental con-
straint on the choice of 4 for binary n-bit AN-coded numbers
Z = AX is the requirement that the code should be comple-
mentable with respect to K(the values 2" or 2” - 1) in order
to implement the additive inverse algorithm. Assuming that
the uncoded numbers X are complemented with respect to the
integer value M, we have the requirement

K-AX=4AM- X)
which gives
K=4M,

that is, 4 must be a factor of K. Since A4 is an odd integer,
this immediately excludes the choice K =2". Consequently, a
complementable AN code can be obtained if and only if

2" - 1=AM

is satisfied. All possible choices of 4 are available from a table
of the prime factors of 2" ~ 1 [9]. The “dn + B” code [1] al-
lows other choices of A, but the algorithms are cumbersome to

568

implement. All codes with n = ka and 4 = 2” - 1 are comple-
mentable; for these codes the well-known “one’s complement”
algorithms apply directly, including complementation, sign de-
tection, range extension, range contraction, left and right arith-
metical shifting, and addition. In range extension the next
allowed word length (after ka bits) is (k + 1)a bits and range is
extended by prefixing a bits identical to the leftmost bit. Sim-
ilarly, range can be contracted by dropping a leftmost bits
when a + 1 leftmost bits are identical. The existence of range
extension and range contraction algorithms makes error-coded
arithmetic with variable-length operands possible when a byte-
organized processor is employed

Multiplication and division of the 4N-coded number Z by
the check modulus 2% - 1 are needed in computing coded
products and quotients. The “multiply by 2% - 17" algorithm
requires one x-bit parallel modulo 2” - 1 addition. Then - a
bits-long coded operand Z is extended by a bits, shifted z
positions left to form 2°Z, and then added modulo 2" - 1 to
its own (a bits extended) one’s complement Z to form the
n-bit result

Q- DIR°Z+Z)=(2° - 1)Z.
The algorithm is illustrated in Example 1.
Example 1-Multiply by (2° - 1) =15:
1=G
16X =0011 0111 0000
X=1111 1100 1000

15X =0011 0011 1001.

The inverse operation, i.e., the “divide by 2 - 17 algorithm,
generates the result (2 - 1)Z + (2 - 1) in bytes of a bits per
step, employing an a-bit parallel adder to implement

Z=02"-D{Q*- DZ+2°Z}.

The overbar designates one’s complement and the addition is
modulo 2" - 1, where n is the length of operand (2% - 1)Z.
The algorithm can be initiated because the “end-around” carry
Co and the rightmost four bits (W5, W,, W,, W,) of 2°Z are
deduced from the most significant bit Y, ., of the operand
Y =(2%- 1)Z. The rule is as follows.

1) If Y,,_; =0, then G, =0 and Wy W, W, W, = 1111.

2) Y, =1, then G =1 and W; W, W, W, = 0000.

The algorithm is itlustrated in Example 2.

Example 2—Divide by (2° - 1) = 15:
Y=15Z= 0000
W=T6Z= 1111 1101 0110 onm 1010« [TT11] = Wy w, W, w,
__0_ \ \ 0 =G
7=91111\01111 01101 00|10\10001\11010
Z= 0000 0000 0010 1001 1110 0101.

0010 0111 0100 0110 1011

A double-length coded product (2% - 1)XY of the n-bit
operands (2% - 1)X and (2¢ - 1)Y is obtained by forming the
one’s complement binary product (2¢ - 1)XY and then divid-
ing it by 2% - 1. The length of the result is 2# - @ bits. A
roundoff algorithm must be employed to obtain a single-length
(n-bit) product.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 19733

Roundoff by truncation will not yield.an AN-coded number; §
the algorithm must be modified. To round off the rightmost
n - a bits of the coded operand (2° - 1)XY we add the con- 3
stant (2 - 1)G, such that in (2° - 1)}(XY + G) the rightmost
n - a bits are identical to the leftmost (“sign”) bit and may be
dropped. The “divide by 2¢ - 17 algorithm is applied to
(2% - 1)XY to obtain the n - a rightmost bits of XY. These
bits are inspected and the value of G is selected to implement §
either up-rounding or down-rounding. The roundoff algorithm
is illustrated in Example 3. 3

Example 3—Roundoff of Eight Bits: The eight rightmost bits §
of XY = K = 1100 1011. Roundup: add 15G where G =2° - 4
K=00110101. E

1SXY =0000 0010 1001
15G =0000 0000 0011

15(XY +G)=0000 0010 1101

1110 0101
0001 101t

0000 0000.

The division algorithm must produce two coded results: the
quotient and the remainder. Given the (2n - a)-bit dividend §
(2* - DX and n-bit divisor (2° - 1)Y, the n-bit quotient }
(2° - 1)Q is obtained by first forming (2% - 1)°X and then §
executing binary division which yields the coded quotient “‘
(2% - 1)Q and the remainder (2% - 1)?R satisfying ‘

2°- 1PX=(2°- H)Q(2°-)Y +(2° - 1)*R.

The coded remainder (2 - 1)R is obtained using the “divide
by 2% - 1” algorithm. An uncoded quotient Q would result .
without the initial “multiply by 2% - 17 algorithm for the %

dividend. This initial algorithm may cause a special condition ;‘
which is analyzed in the Appendix. ,‘

In summary, we note that the AN codes with the check
modulus 2% - 1 display an exceptional adaptability to binary “
arithmetic and have a low-cost checking algorithm when the
length of operands is chosen to be some multiple ka of the §
check length a. Byte-serial variable-length operand arithmetic

can be implemented in bytes of a, 2a, etc., bits. An experi- 3
mental byte-serial processor using the above algorithms with §
n=232,a=4,and 2% - 1 = 15 has been constructed and tested
as part of the STAR computer [11], [12]. It is described in
the next section. 3

III. DESIGN OF A PROCESSOR FOR AN-CODED OPERANDS

The operand precision of 28 bits was selected for the ex-
pected class of problems, and the check modulus 4 = 15 was g
chosen in order to provide 100 percent detection of single §
determinate repeated-use faults when binary numbers are trans- 1
mitted and added in 4-bit bytes [3]. The length of coded
numbers 15X is 32 bits. The choice of 4 = 15 provides 100
percent detection of such repeated-use faults for binary coded ‘:
numbers up to 56 bits in length [3]. The STAR computer is a §
replacement system, and information is transmitted between ?
its subsystems in 4-bit bytes in order to reduce the size of the 4
data bus.

The block diagram of the AN-code arithmetical processor for §
the Star computer is shown in Fig. 1. The processor accepts
five operation codes: clear add, add, subtract, multiply, and:
divide. One processor cycle consists of 10 byte times (clock

] AVIZIENIS: ARITHMETIC ALGORITHMS

L
([= -8 BYTES ————
H MQ (32 711 MaB $
RECE
_ 4 Q-8IT
»{ ACC-MD 132) 1* gt
o—-L PR (32) *]Jt« o
e
4 [4 4 §50~ L=2+4=+8
hoB P THREE- .
INPUT |4 é,, 3
_ ADDER
@ R
| [CB ‘_'] SIGN
KT
DATA INPUT)
§ oara outpur i BITS) !
D0 @ BITS) o)

Fig. 1. AN-code arithmetic processor.

times). Operands are received on four data-input lines (DI),
and results (both partial and final) are delivered on four data-
. output lines (DO). Partial results (partial sums, products,
-~ remainders) may be up to 10 bytes long, and the last byte is
accornpanied by a “perform check” signal on a control line.
The final results (sum, difference, product, quotient) are always
8 bytes long and also have the perform check signal along with
the eighth byte. They are followed by one nonnumerical
condition-code byte, which employs a two-out-of-four encod-
ing. There are three singularity codes: sum overflow, quotient
overflow, and zero divisor, and three result codes: positive,
zero, and negative. The latter three serve as branching informa-
tion for “jump” class instructions. All partial and final results
are sent to the Checker, which consists of a modulo 15 adder
and accumulator, as shown in Fig. 2. Upon receipt of the per-
form check signal, the 4-bit check-sum accumulator is inspected
for the “1111” (“all ones™) check result. Any other check
sum indicates that the result was not a properly AN-coded
number, and a fault warning is issued. The Checker is outside
. the processor—there is one copy each in the three majority-
| voted test-and-repair processors [12].

Internally, the processor contains three 8-byte double-ranked
shift registers (Fig. 1): the accumulator/multiplicand/divisor
(ACC-MD) register, the product-remainder (PR) register, and
¢ the multiplier-quotient (MQ) register. There also are four 1-
. byte registers: adder output buffer (AOB), multiplier-quotient
buffer (MQB), PR extension (PRE), and the carry-byte register
(CBR). The adder is a three-input parallel adder that generates
a sum byte (SB) and a carry byte (CB). The CB is stored in
the 4-bit double-ranked CBR. The 8-bit output exists because
the ACC-MD input to the adder supplies the multiples 1, +2,

+4, and 8 of ACC-MD contents as operands for radix-16 mul-

tiplication and division. In this design all movement of numer-
ical information takes place four bits at once, in the series
parallel mode. At no point do two or more bits of the same
byte pass through the same logic elernent; consequently, a
fault will not damage more than one bit in one byte, and al-
ways the same bit position will be subject to damage when a
sequence of bytes passes through the faulty element. The bit
channels of the processor are physically isolated; for example,
the ACC-MD, PR, and MQ shift registers consist of four 8-bit

569

BUS

RESET

CHECK SUM
STATUS

MOD |5 ADDER

‘XX J;/“ TEST STATUS

Fig. 2. Checker element of the STAR computer.

serial shift registers each. All data lines are 4 bits wide in
Fig. 1. Multiplication and division are radix-16 operations;
therefore, only 4-bit shifts are employed.

The AN-coded binary operands are 32 bits long. The one’s
complement form is used to represent negative numbers, and
the binary point is assumed to be at the left end of the encoded
32-bit number, giving the range -1/2 < Z < 1/2 for any coded
operand Z, and the range -1/30 < X < 1/30 for the uncoded
operands X. This range was most convenient for the experi-
mental model; other ranges can be readily employed by moving
the binary point and appropriately adjusting the algorithms.
However, the range -1 < X < 1 is not available for uncoded
operands, since moving the binary point will scale the range of
X by 27, and the jump in range will be from 16/30 to 32/30.
The location of the binary point must be referred to the coded
numbers in order to obtain simple sign detection and overflow
detection algorithms. Zero is represented by a string of 32
ones; the all-zero number is not a properly coded number,

The clear-add algorithm needs one cycle for its execution. It
replaces the contents of the ACC-MD by the input operand,
which is added to zero and then stored in the ACC-MD. At the
same time this sum is also returned on the output lines to the
external Checker.

The add and subtract algorithrns add the input operand or its
digitwise complement, respectively, to the operand in the ACC-
MD, store the sum in the ACC-MD, and also send it to the
Checker. Additions that do not generate an end-around carry
(eac) are completed in one cycle. If an eac is detected, the
carry byte is sent to the Checker, a check is performed on this
incomplete result, and a second cycle is employed to add the
eac to the contents of ACC-MD. In case of overflow the
“additive overflow” singularity code follows the result on the
output lines.

The multiply algorithm requires that the multiplicand 15X
should be already in the ACC-MD register; it is placed there by
clear-add command, or is left there by the preceding operation.
Ore cycle is employed to load the multiplier 15Y into the MQ
register and to derive sign information for the product in a
duplexed sign-test circuit. The multiplier is then sensed one
byte at a time; consequently, there are eight radix-16 steps,
each one consisting of from one to three cycles. The multiplier
byte is recoded into a form possessing not more than two non-
zero (*1) bits, and appropriate multiples (£1, +2, +4, +8) of
the multiplicand are added to the partial product in PR. Every
partial result (nine bytes, plus the eac byte) is also delivered to

570

the Checker to check the addition. None, one, or two cycles
may be required. Each step is concluded with a contraction-
and-shift cycle for the 9-byte partial result P* of the preceding
additions. This cycle rounds the partial result P* to a 9-byte
result P (which is a multiple of 16) by subtracting a constant
15N, to get

P=pP*- 15N; = 15(16T)
since
P*=15(16T + N)).

Simultaneously, P is shifted one byte right (divided by 16)
and the value of NV; (0 <N, < 15) is stored in one byte of MQ,
which has delivered a multiplier byte for decoding and thus
can accommodate the “correction byte” ;. At the end of the
eighth step, the PR contains the result

P® =(15X)(15Y) - 15N = 15(15XY - N).

The terminal step is now perforned to get an 8-byte rounded
product P as a result. One cycle is used to divide P® by 15,
and the 8-byte result

P® - 15=15XY-N

(which is usually not a multiple of 15) is returned to PR and
the Checker. However, the value of N has been stored in the
MQ and is now available to form the 16-byte result by attach-
ing MQ at the right end of PR:

Piong = (15XY = N) + .

During the next cycle, N is sent to the Checker and added to
the check sum of 15XY - N, which was not tested. Internally,
the roundoff constant G is computed during this cycle from
the bytes of N. The algorithm is concluded by adding the
coded roundoff constant 15G to get the final 8-byte rounded
result

Prma =(15XY - N) + N + 15G = [5(XY + G)

where G is the up- or down-rounding constant that would have
been used for an uncoded product XY. Although one’s com-
plement is being used for subtractions, only nine bytes of the
partial products were needed for the steps of the algorithm.
The contract-and-shift cycle permits this time-saving variation
of one’s complement multiplication. The multiplication time
for nonzero operands is

7
Im =1+ (k;+1)+3 cycles
i=0

where k; is the count of nonzero digits in the recoded ith mul-
tiplier byte. Since a multiplier can have as many as 16 and as
few as two nonzero digits (one +1 and one -1) in its recoded
form, the variation of ¢#,,, is

14 <1, <28 cycles.

Zero operands are detected upon arrival and a zero result is
delivered immediately, taking only two cycles.

The divide algorithm requires that the divisor 15Y should be
already in the ACC-MD register. One cycle is used to load the

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197

single-length (8-byte) dividend 15X into the PR register and to
record the signs in the duplex sign circuits. Tests for zero
dividend (giving an immediate zero result) and zero divisor
(a singularity) are performed during this cycle, and in either
case only one additional cycle is needed to complete the algo-
rithm. The divisor is returned to the Checker in case of a
“zero divisor” singularity. In the nonzero cases the next cycle
is used to form 15(15X), that is, to multiply the dividend by
15 in order to get a properly coded quotient 150, such that 7

152X = (15Y)(15Q) + 15°R

is satisfied, where R is the remainder in uncoded division. The 4
quotient 15Q is then generated in eight radix-16 steps, one “‘f‘
byte of the quotient at a time. The first cycle of each step is
employed to finish restoring the remainder (if required by
the preceding step) and to shift the remainder one byte left §
(multiplying by 16). Four cycles of quotient generation fol- E
low. First, the magnitude of the remainder is diminished by i
eight times the divisor. The sign of this result selects the left-
most bit of the new quotient byte and decides whether +4
(restoration) or -4 (further decrease) will be the next multiple "
of the divisor. If restoration is called for in the last cycle, it
will be performed during the shift cycle of the next step. All |
partial results are returned to the PR register and also are sent
to the Checker. Two cycles are needed for the terminal step:
one completes the storage of the quotient into MQ, the other §
is used to move the quotient into ACC-MD and to deliver it to §
the Checker. The total time for division is

tg=2+5X 8+72 =44 cycles.

The “quotient overflow™ singularity occurs whenever the al-
lowed operand range -1/30 < Q < 1/30 is exceeded. This 4
implies [15Q| < 1/2 as a requirement, and the test is an at-

tempt (during the first step, second cycle) to generate a bit
of value 1 for the leftmost position of the coded-quotient 2
magnitude; if it succeeds, the quotient will overflow. This E
condition leads to an immediate termination of the algorithm g
(in one cycle), and an output of a “zero” value pseudoresult
and an appropriate singularity code. The remainder of division
is not made accessible in this experimental model of the pro-
cessor, although it can be obtained from the contents of PR. &

IV. CONVERSION TO AN INVERSE-RESIDUE CODE
PROCESSOR

The AN-coded arithmetic processor of the STAR computer
displays two disadvantages of the AN codes. :
Disadvantage 1: One’s complement arithmetic must be em- 1
ployed which is less convenient than two’s complement, due
to eac, especially in a byte-gerial processor. E
Disadvantage 2: The use of the nonseparate AN code makes 1
the implementation of multiple-precision and floating-point i
operations relatively cumbersome. 4
In view of these limitations, the decision was made to design 3
an inverse-residue code processor for two’s complement arith-
metic as a replacement for the original AN-code processor. 7
The algorithms for residue code processors were known to ?,
exist [4]-[8]. The principal difficulty was posed by the adap- §
tation of two’s complement representation of negative numbers.

VIZIENIS: ARITHMETIC ALGORITHMS

In the residue code processor (Fig. 3), the operands (X, ¥
enter the Main Processor, while the check symbols (X', Y', or
", Y") enter the Check Processor. The operations of the
two processors must be independen:. Such independence is
readily attainable for one’s complement, following the argu-
ment used in the discussion of AN codes. In a two’s comple-
ment processor a special condition occurs when the two’s com-
plement (modulo 2™) Main Processor addition discards a left-end
carry-out Cy,. This reduction of the sum by 2" requires the
modulo A4 reduction of the residue sum in the Check Processor
by the constant 42", This constani has the value 1 for 4 =
2% - 1 and n = ka. (The inverse-residue sum must be increased
by 1 modulo 2% - 1.) The “correction signal” C,, = 1 that is
conveyed from the Main Processor to the Check Processor
makes them interdependent and raises the concern about the
possibility of compensating errors. To prove that such com-
pensating errors cannot.occur we consider two cases for which
the “correction signal” value is in error.

Case 1—-*Correction Signal” C,, =] is Caused by an Error:
An incorrect carry-out C,, = 1 will occur only due to the addi-
g tion of an error value 2/ which will cause a carry Cjeq = 1
B when the adder positions to the left (/+ 1, -+, n - 1) all have
L the carry-propagate condition (input bit pairs 0, 1 or 1, 0).
B The error value is -2" + 2/, the correction signal compensates
L only for the -2" part, and the +2/ error value remains

detectable.
L Cuse 2—Correction Signal C, = 1 is Inhibited by an Error:

-2/ has prevented the carry-out Cj,; = 1, and this in turn has
inhibited the signal C,, = 1 which should have been sent. The
result X + Y of the Main Processor differs by 2” ~ 2/ from the
correct result, and 2” - 2/ is a multiple of 2 - 1 for the values
' =0,a,2a,---,(k- 1)a when n = ka. This is an undetectable
error for 4 =2% - 1 in general; however, it will be detected for
all j because of the following. Since C, =0 is sent, the check
processor computes the check sum (27 - 1)|[(X"” + Y"), while
the main processor sum is X + ¥ - 2/ due to the error. The
error value - 27 has not been compensated for in the check sum,
= and it remains detectable.
= In both cases neither the Main Processor result nor the
¢ Check Processor result are equal to the correct values, but it
| has been shown that the check algorithm will always produce
,j a disagreement, and the occurrence of the error will be de-
. tected. This proof overcomes the principal objection to two’s
§ complement arithmetic. The algorithms of the inverse-residue
g code processor in. general follow those developed for one’s
L complement arithmetic. The preceding two cases are illustrated
. in Examples 4 and S.
Example 4—Case 1:

5 X" =1011 X=1111 0100
: ? Y"=0101 Y =0000 1010
| 151(X"+Y")=0001 ——01111 1110 correct sum S
. correct Cp=_ Q¢ 1 error adds 2*
: correct S = 0001 —1 0000 1110 incorrect sum S*
incorrect Cy, = __1_<-—-J__

¢ incorrect S" = 0010 the error is detected.

i i

i This case is symmetric to the previous one. An error value of

RESULT Z OPERANDS
« MAIN PROCESSOR Y
MoDULO 27 :
WITH n = ka
ereon | CHECKER
- Az‘éGOR'THM: ¢.| "CORRECTION ALGOR ITHM
SIGNAL| @-1[2+ S1GNAL"
7711
i CHECK PROCESSOR [
CHECK RESULT z | MODULO 2°-1 o

Fig. 3. Inverse residue code arithmetic processor.

Example 5—Case 2:

X"=1011
Y" =0100

X=1111 0100
¥=0001 1010
151X +Y")=1111 [——1 0000 1110 correct sum S
correct C,, = +1 -1
correct S” = 0001 [——O 1111
incorrect C, = 0

incorrect S"' = 1111

error adds -2°

1110 incorrect sum

the error is detected.

APPENDIX
THE DIvISiON ANOMALY

Given the dividend AX and the divisor AY, the restoring
division algorithm will yield the results Q and AR such that

AX=0QXAY+AR, O<|AR|<|AY|,or0<|R|<|Y]

is satisfied, and the sign of AR is the same as the sign of AX.
The dividend 42X and divisor AY should yield AQ and A2R
such that
A*X=AQ X AY +A’R, 0<|A’R|<|A?Y],

or0< |R|<|Y]

is the required condition. However, the direct application of

the restoring algorithm will give
A*X=Q*X AY +R*, O0<|R*<|AY].

The largest quotient Q* that is computed may not be the
required multiple AQ of 4, but exceed it by the value K:

0*=A0 +K.

This, in turn, will make R* less than the required multiple
A’R=A4%X - AQ X AY of A*:
R¥=A’X-AQ X AY-KX AY
such that
A’R=R*+KXAY, 0<K<A.
In radix 27 division with 4 = 2% - 1 we have
0<K<2-2

as the value of the “quotient overshoot” K.

The correction of the quotient consists of choosing the last
quotient digit g, such that the quotient has the value 4Q and
the remainder 4?R has the same sign as the dividend 42X.
This means that g, can be in the range

-(2°-2)<g, < 1.

The only positive value of g4 can be g, = 1, since the division
criterion gives the last partial remainder R(1) such that

O0<IR(1)I<|AY|or0<2% X [R(1)] <2° X [AY].

When 4 =27 - |, we need to satisfy |[42R| < |42Y] and this
can be attained with g, < 1 because of what preceded.

In the STAR computer implementation of division, the value
of g, is obtained by ccmputing the modulo 4 = 15 residue N
of all preceding radix 16 quotient digits:

N=15l(g; +- - +qy).

The value N = 0 indicates go = 0. When 1 SN < 13, it is the
value of the “quotient overshoot” and g, = -N is selected.
When N = 14, the test is made for g = 1; if this changes the
sign of the remainder, then qo = - 14 is selected. A negative
value of g, requires a subtraction ro generate the final quotient

AQ.
ACKNOWLEDGMENT

The logic design of the processors was performed and con-
struction of the AN-code processor was directed by D. A.
Rennels and A. D. Weeks from the Spacecraft Computers Sec-
tion of the Jet Propulsion Laboratory. The author wishes to

thank them for numerous stimulating discussions, as well as
D. K. Rubin and J. J. Wedel of the JPL who also have contrib-
uted valuable advice and constructive criticism.

REFERENCES

{1] W.W.Peterson, Error Correcting Codes. New York: Viley, 1961,
pp. 236-244.

{2] H. L. Garner, “Error codes for arithmetic operations,” IEEFE
Trans. Electron. Comput., vol. EC-15, pp. 763-770, Oct. 1966.

{3] A. AviZienis, “Arithmetic error codes: Cost and effectiveness
studies for applicaticn in digital system design,” JEEE Trans.
Comput., vol. C-20, pp. 1322-1331, Nov. 1971.

{4] R. M. Bloch, R. V. D. Campbell, and M. Ellis, “The logical design
of the Raytheon computer,” Math. Tables and Other Aids to
Computation, vol. 3, pp. 286-295, 317-323, Oct. 1948.

[5] H.L.Garner, “Generalized parity checking,” IRE Trans. Electron.
Comput., vol. EC-7, pp. 207-213, Sept. 1958.

[6] R. A. Davis, “A checking arithmetic unit,” in 1965 Fall Joint
Comput. Conf., AFIPS Conf. Proc., vol. 27. Montvale, N.J.:
AFIPS Press, 1965, pp. 705-713.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 19734

{71 F.F.Sellers, J1., M.-Y. Hsiao, and L. L. Bearnson, Error Detectin
Logic for Digital Computers. New York: McGraw-Hill, 1968,
ch. 8, 10.

[8] T.R.N.Rao, “Error-checking logic for arithmetic-type operations.
of a processor,” IEEE Trans. Comput., vol. C-17, pp. 845-849,
Sept. 1968.

[9] A. AviZienis, “A set of algorithms for a diagnosable arithmetic

unit,” Jet Propulsion Lab., Pasadena, Calif., Tech. Rep. 32-546,

Mar. 1964.

——, “An experimental self-repairing computer,” in Information

Processing '68, Proc. IFIP Congr. 1968, vol. 2, A. J. H. Morrell

Ed. Amsterdam: North-Holland, 1969, pp. 872-877. .

—, “The diagnosable arithmetic processor,” Space Programs

Summary No. 37-37 (Jet Propulsion Lab., Pasadena, Calif.), vol.

4, pp. 76-80, Feb. 1966. y

A. AviZienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A.

Rohr, and D. K. Rubin, “The STAR (self-testing-and-repairing) :

computer: An investigation of the theory and practice of fault-

tolerant computer design,” IEEE Trans. Comput., vol. C-20, pPp. :

1312-1321, Nov. 1971.

>

(10]
{11]

[12]

Algirdas AviZienis (S’55-M’56-F’73) was born
in Kaunas, Lithuania, on July 8, 1932. He re-
ceived the B.S., M.S., and Ph.D. degrees in elec-
trical engineering from the University of Illingis,
Urbana, in 1954, 1955, and 1960, respectively. :
From 1955 to 1956 he was a Research Engi-.
neer at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, Pasadena. During
graduate studies at the Digital Computer Labor-
atory, University of Illinois, he was a Fellow in
1954-1955 and 1956-1958, and a Research As-
sistant in 1959-1960, participating in the design of the Illiac II com
puter. In 1960 he rejoined the Jet Propulsion Laboratory and initiated
the JPL self-testing and repairing (Star) computer research project. In
1962 he joined the faculty of the School of Engineering and Applied
Science at the University of California, Los Angeles. He is currently
Professor and Vice Chairman in the Department of Computer Science 9
and conducts research in digital system design and fault tolerance. He
has also remained associated with the Jet Propulsion Laboratory as
principal investigator of the STAR computer research project. 4
Dr. AviZienis is 2 member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu,
and the Association for Computing Machinery, and is the Chairman of 4
the Technical Committee on Fault-Tolerant Computing and a member ;
of the Governing Board of the IEEE Computer Society. He has served
as Chairman of the First International Symposium on Fault-Tolerant .
Computing (1971) and as Program Chairman of COMPCON 1972. In
1968 he received the Computer Society Honor Roll award for organizing
and chairing the first Workshop on the Organization of Reliable Auto-
mata. He received the NASA Apollo Achievement Award in 1969.

