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Static and Dynamic Numerical Characteristics
of Floating-Point Arithmetic

WILLIAM J. CODY, JR.

Abstract—The appearance of hexadecimal floating-point arithmetic
systems has prompted a continuing discourse on the relative numerical
merits of various choices of base, Until lately this discourse has
centered around the static properties of the floating-point representation
of numbers, and has primarily concerned only binary and hexadecimal
representations., Recent events may change this discourse considerably,
A third numerically attractive alternative for the choice of base has
been proposed, and a comparison of the dynamic numerical properties
of floating-point arithmetic systems has been completed. This paper
surveys these recent events and summarizes our current knowledge
of the numerical characteristics of floating-point arithmetic systems,

Index Terms—Floating-point arithmetic, representational
rounding errors,

errors,

INTRODUCTION

NTIL the advent of the IBM S/360 with its hexadecimal

base for the floating-point number system, most com-
puters were designed with a binary floating-point number
system, although Burroughs produced machines with an octal
system. These latter machines were used for scientific compu-
tation with very little complaint about their numerical proper-
ties. The hexadecimal machines, however, have drawn many
unfavorable comments from users who have applied them to
scientific computation.

Until recently, the arguments and discussions of the relative
merits of hexadecimal, binary, and other floating-point systems
have primarily centered upon such static aspects of the repre-
sentation of numbers as the exponent range, density of
numbers, and the maximum relative error of representation.
Within the last year, however, the discussion has broadened to
include the dynamic characteristics of the whole floating-point
arithmetic system, of which the number representation scheme
is only a part. In addition, a base 4, or quaternary, number
representation scheme has been proposed that has interest-
ing properties.

This paper surveys and summarizes what we now know about
the static and dynamic numerical characteristics of floating-
point arithmetic systems.

PRELIMINARIES

We assume that we have a normalized sign-magnitude floating-
point representation scheme with d bits per word. We will let
B denote the base for the number system, e denote the biased
exponent, and f the fraction. We will assume that f contains
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¢ bits, equivalent to N B-ary digits (where N need not be
integral), hence p=d - r~ 1 bits for the exponent e.

When we particularize our discussions we will consider only
three specific floating-point representations. These can be
characterized as (8, p, 1) = (2,9, 22), (4, 8, 23), and (16, 7, 24),
respectively. They have been chosen to give essentially the
same range of number representation for a 32-bit word as is
found in the short-precision arithmetic on current hexadecimal
machines. This is a convenience for comparison purposes
only. Other word lengths are more appropriate for scientific
computation, but the results we will obtain can be easily
modified for other values of 4 and 7.

STATIC CHARACTERISTICS

At this point we can already say a few things about the
effect of various choices of . McKeeman [7] takes the view
that f represents an equivalence class of real numbers, and that
an error is made in representing an element of the equivalence
class of f. Let us call this error the representation error.
Assuming the logarithmic probability distribution for floating-
point numbers (Hamming [4])

P(f)=1/(f1n B),

the average relative representation error (ARRE) is then found
to be

18<f<1

27'af  p-1
flnB4f 4-27"Ing

1
ARRE (¢,8) = f
1/8

and the maximum (over all f) relative representation error
(MRRE) is

MRRE (z,8) = 27! 8.

The values of ARRE and MRRE for the three representation
schemes under consideration are given in Table I. The fact
that the MRRE for binary representations is half of that for
the corresponding hexadecimal representations is frequently
used as an argument for the superiority of binary representa-
tions over hexadecimal representations. At best this superiority
is marginal, especially if the values of ARRE are also con-
sidered. The interesting feature of our comparison is the

showing for =4, As Brent [1] pointed out in suggesting the
consideration of the quaternary representation system, the qua-
ternary representation of a number is never less accurate than
the corresponding binary representation, and the value of
ARRE is more than 20 percent smaller than that for the
corresponding binary scheme.

A second possible comparison involves the range of repre-
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TABLE 1
STATIC CHARACTERISTICS OF FLOATING-POINT NUMBERS
Blp|t| MRRE ARRE Exponent N.R.
Range
- 9 9
2| 9 22| .5%2721 | ,18e2721 22771 1227 (1-2722)
- 9 9
4§ 8 (23| .sw272l | j4wp721 2272 {227 (1-2723)
-21 -21 o 9 -24
16{ 7|24 2 L17%2 22 22 (1-272%

sentable numbers. Specializing a theorem due to Brown and

Richman [2] to the case where each machine word consists

of d two-state devices, we see that for a given word length,
the choice 8 = 2 gives at least as much accuracy as and a greater
exponent range than the choice §=2/, j>1. The measure-
ment of accuracy used here is the MRRE.

Dunham [3] points out that this statement is somewhat
misleading in the sense that the extra fractional bits for the
B=2/,j>1, case partially compensate for the decrease in
exponent range. He feels that the proper measure is the ratio
of the largest floating-point number to the smallest positive
number. This number range (NR) is

-2
8™

Table I also gives the values of the exponent ranges and the
NR’s for the three representation schemes under consideration.
The overall comparison presented in Table I shows that there
is little difference between static characteristics of binary and
hexadecimal representations, and only a slight edge in the
ARRE for the quaternary representation.

NR = =gP(@1-27.

DYNAMIC CHARACTERISTICS

We now tum our attention to the characteristics of the total
arithmetic system in a dynamic situation. By an arithmetic
system we mean a floating-point number representation
coupled with a specific arithmetic. The particular arithmetic
parameters that we will consider are the method of rounding
and the number of available guard digits.

We will assume that the arithmetic has g §-ary guard digits.
Thus N + g B-ary digits, of which there may be some leading
zero digits, are developed in the arithmetic registers at an inter-
mediate stage of an arithmetic operation. The g guard digits
participate in postnormalization of the result fraction and in
rounding, but only N digits are retained at the end of the
operation,

We will discuss three different modes of rounding. In the
chop mode, hereafter abbreviated to C-mode, the intermediate
result of an operation is fitted to the precision of the machine
by ignoring any extra digits of the fraction after postnormali-
zation. By the round mode, or R-mode, we mean a simple
rounding up or down of the postnormalized fraction, depend-
ing upon whether the first binary guard digit of the post-
normalized fraction is 1 or 0. (To the author’s knowledge,
most machines that round do so before postnormalization,
giving a bastardized version of the R-mode arithmetic.) Both
C-mode and R-mode arithmetics are biased. For the C-mode
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TABLE 11
MEAN AND VARIANCE OF ERROR
2
8 t u(cc) [4 (cr)
2 22 2-211.%7 2-%6.107
4 23 2—22-69 2—'47-15
16 24 2=22.56 246,06

case the bias is obvious. For the R-mode, the bias is due to
the case where the guard digits prior to rounding are equivalent
to precisely half a unit in the last digit to be retained. This
threshold case, in which the fraction is always increased in
magnitude, occurs with a frequency that cannot be ignored in
computer arithmetic. There are many ways of removing the
bias, but perhaps the simplest is to force the last bit retained
toa 1 in the threshold cases. We will call this the R*-mode.

Some of the earliest investigations of arithmetic systems are
those of Wilkinson [8]. He developed rigid error bounds for
the results of basic arithmetic operations assuming N guard
digits and perfect rounding. His bounds are rigid upper bounds
on the error, but they are not always sharp, nor does he
attempt a statistical error analysis.

Recently, Kaneko and Liu [5] extended Wilkinson’s work
to the case of summation with g guard characters. They
showed that Wilkinson’s original bounds are modified by a
factor 1/(1 - 87¥). For the important case g = 1, this reduces
to B/(8~- 1). Thus,on a hexadec,lmal machine the error bounds
are increased by the small factor 1 E’ prompting the observa-
tion that one guard character is almost as effective as a double-
length accumulator for summation in hexadecimal systems,

To initiate the statistical study of error, let £, denote the
error due to chopping, and assume that it is uniformly dis-
tributed in [-277, 0]. Similarly, assume E,, the error due to
rounding, is uniformly distributed in [-27"",27""!]. Assum-
ing the logarithmic distribution for f, we can then determine
the mean and variance of the relative error

e=Eff

directly, as is done by Kuki and Cody [6], or by first deter-
mining the probability distribution function for €, as is done
by Brent [1], and by Kaneko and Liu [5]. In our present

terminology
O
u(e,)=0
2-1
o*(ec) = {gm
0% (e,) = § 0% ().

Table II lists some of these quantities for the arithmetic
systems under consideration. Again note that there is little
difference between binary and hexadecimal, but that quater-
nary consistently has a slight advantage.
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Kuki and Cody |6] have recently completed a number of
experiments comparing various arithmetic systems for evalua-
tion of sums, products, and inner products. For these experi-
ments § was limited to either 2 or 16. For each value of 8,
C-mode, R-mode, and R"-mode arithmetics were coupled with
0, 1, 2, and “many” guard characters, as appropriate. The
experiments were carefully designed to neutralize the effect
of the fluctuation of the number of significant bits in a hexa-
decimal fraction. Tabulated results include the minimum
value, mean, and standard deviation of the binary significance

s=-log, (Ir])

where 7 is the relative error of the computational tesult, Ina
number of cases the validity of the experimental results was
established by reproducing the results using a statistical error
analysis. The analytic results have since been extended to the
quaternary system.

Table 11 summarizes the results for the summation experi-
ments in which 500 sums of 1024 summands each were
evaluated. The summands were drawn at random from an
appropriate distribution over the interval [f6—, 16], using the
arithmetic under study to fit the data to the machine precision.
Table IV compares the analytic and experimental results for
the summation tests involving only positive summands and the
corresponding results for the experiments involving products.
For both experiments, the analytic results found in [6] have
been extended to the quaternary case.

For these experiments, arithmetic systems differing only in
their choice of binary or hexadecimal representation schemes
appear to be statistically equivalent, but somewhat inferior to
corresponding quaternary systems. R-mode arithmetic is uni-
formly superior to C-mode arithinetic, except in the case of
C-mode without guard digits applied to mixed-sign sums (see
Table III). In this case, C-mode outperformed R-mode with
an arbitrary number of guard digits. This local superiority
is because C-mode arithmetic is unbiased in this particular
case, whereas R-mode isnot. R”-mode was superior to C-mode
in all cases. For hexadecimal systems, C-mode coupled with
one guard digit was essentially as effective as C-mode with an
infinite number of guard digits. Similarly, R-mode and
R’ -mode essentially achieved maximum effectiveness with two
guard digits (one being required for postnormalization in
multiplication, and the other for rounding). These latter
trends were not nearly as striking for binary arithmetic, hence
appear to depend upon the choice of 3.

CONCLUSIONS

We can summarize our findings on the characteristics of
floating-point arithmetic systems as follows.

1) Based solely on the MREE, binary representations are
superior to hexadecimal.

2) Arithmetic systems differing only in the use of binary
and hexadecimal representations appear statistically to give
the same computational accuracy.

3) Quaternary number systems appear statistically to give
better accuracy than binary or hexadecimal systems. At least
they merit further consideration.
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TABLE HI
EXPERIMENTAL RESULTS FOR 500 SuMms ©F
1024 SuMMANDS EAcH

Hexadecimal Binary

min. min,

S

u(s) u(s)

All summands positive

12.85 13.71%.69 13. .47+.13

16.57 20.01t.65 17. .8841.57

Mixed sign summands

.96 18.23%2.04
.86 13.55%1.93
.85 13.52¢1.94

.35 17. .06
.26 18.08+2.00
.26 . .01

.31 . .08

TABLE IV
COMPARISON OF ANALYTIC AND EXPERIMENTAL RESULTS

2
Experimentl Mode Statistic

analytic |experimental

470 13.46

13.55

19.88

20.01

16.87

15.50

17.18

17.28

21.51

21.36

1

Experiment I is 500 sums of 1024 positive summands each. Experiment

II is 500 products of 20 factors each.

*
2'x‘he statistic for C-mode is -logz(u|r|). That for R -mode 1s u{s).

4) Properly implemented R*.mode arithmetic is superior
to C-mode.

5) Almost maximum accuracy can be achieved in R”-mode
with two guard digits, and in C-mode with one guard digit for
larger values of 8.

Current machine designs offer primarily hexadecimal C-mode
or bastardized binary R-mode arithmetic. There may be valid
reasons for preferring binary representation schemes over hexa-




decimal ones, but the inferior numerical performance of

current hexadecimal machines appears to be due to other
f design considerations. At this point it appears that the best
£ machine design would couple R™-mode arithmetic with two
? guard characters, and possibly a quaternary representation
cheme,
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On the Precision Attainable with Various
Floating-Point Number Systems

RICHARD P. BRENT

I. INTRODUCTION

A{EAL number x is usually approximated in a digital
computer by an element fl(x) of a finite set F of
“floating-point” numbers. We regard the elements of F as
exactly representable real numbers, and take fl(x) as the
floating-point number closest to x. The definition of
“closest,” rules for breaking ties, and the possibility of trun-
cating instead of rounding are discussed later.

We restrict our attention to binary computers in which
floating-point numbers are represented in a word (or multiple
word) of fixed length w bits, using some convenient (possibly
redundant) code. Usually F is a set of numbers of the form

szt: dipe™ (1.1)
i=1

where 8= 2% > 1 is the base (or radix), ¢ > 0 is the number of

digits, s = £1 is a sign, e is an exponent in some fixed range
m<e<M, 1.2)

and each d; is a f-ary digit 0,1, --,8- 1. Other possible




