618

[6]1 T. L. Booth, Sequential Machines and Automata Theory. New
York: Wiley, 1967.

[7] P. J. Denning and S. C. Schwartz, “‘Properties of the working set
model,” in Ass. Comput. Mach. 3rd Symp. Operating Syst. Prin-
ciples,Oct. 1971, pp. 130-140.

[81 A. Paz, Introduction to Probabilistic Automata.
ademic, 1971.

New York: Ac-

Erol Gelenbe (S’67-M’70) was born in Istanbul,
Turkey, on August 22, 1945. He received the
B.S. degree in electrical engineering from the
Middle East Technical University, Ankara, Tuz-
key, in 1966 and the Ph.D. degree in computer
science from the Polytechnic Institute of
Brooklyn, N.Y., in 1969,

After obtaining his degree he was appointed
to an Assistant Professorship at the Polytechnic
Institute of Brooklyn and taught courses in
programming and in switching and automata
During the summers of 1970 and 1972 he was a Visiting

theory.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-22, NO. 6, JUNE 197%

Scientist and Lecturer at the Philips Research Laboratories, Eindhoven,
The Netherlands, where he did research in the modeling of computer
operating systems. Since the fall of 1970 he has been on the faculty of
the Department of Electrical and Computer Engineering and of the
Graduate Program in Computer, Information and Control Engineering,
University of Michigan, Ann Arbor, where he introduced new courses in
compiler writing, programming languages, and operating systems theory.
On leave of absence from the University of Michigan since January
1972, he has been at the research laboratory (LABORIA) of the Institut
de Recherche d’Informatique et d’Automatique (IRIA), Rocquencourt,
France, first participating in the design of an operating system, and
then initiating and heading a research project in models of computer
systems. His primary research interest at the present time is the quan-
titative evaluation and modeling of operating systems and of other in-
formation processing systems. He has published several papers in jour-
nals and at symposia on that subject, as well as on automata and formal
language theory. He is a referee for several journals in computer sci-
ence, and is a European Lecturer of the Association for Computing
Machinery. He is active in ACM activities in Europe, is a member of the
program committee of the 1973 ACM International Computing Sympo-
sium, and was co-chairman of the Symposium on Computers and
Automata held in New York City in 1971.

Circuit Structure and Switching
Function Verification

MIN-WEN DU anp C. DENNIS WEISS

Abstract~A new approach is presented for the design of multiple fault
detection tests in which the structure of a combinational circuit is used
to reduce the number of input combinations required. The structure is
defined by the interconnection of the basic elements, each of arbitrary
complexity. The fault model assumes that the functions realized by the
basic elements may undergo any deviation whatsoever, but that the cir-
cuit structure is fault free. Thus, arbitrary combinations of multiple
faults within one or more basic elements are included in the model.
Decomposition theory can be used to verify that a set of input combi-
nations is a multiple fault detection test set under this model. A process
called expansion will be introduced to simplify this task. A well-defined
procedure is given for deriving a suitable test set which for some circuits
is minimal or near minimal. It will yield a multiple fault detection test
of length less than 2" for any circuit with a nontrivial nondisjoint de-
composition, defined by a basic-element partition. Higher order basic-
element partitions are introduced as a generalization. An upper bound
is given on the length of a multiple fault detection test for any circuit
with a given structure, independent of the function realized on the
structure. The bound is tighter when function information is also used.

Index Terms—Combinational logic networks, fault detection, func-
tional decomposition, multiple fautts.

Manuscript received October 13, 1971; revised November 27, 1972.
A preliminary version of this paper was presented at the 9th Allerton
Conference on Circuit and System Theory, October 1971.

M.-W. Du was with the Department of Computer Science, The Johns
Hopkins University, Baltimore, Md. 21218. He is now with the College
of Engineering, National Chiao Tung University, Hsinchu, Taiwan,
Republic of China.

C. D. Weiss was with the Departments of Computer Science and
Electrical Engineering, The Johns Hopkins University, Baltimore, Md.
He is now with Bell Laboratories, Holmdel, N.J. 07733.

I. INTRODUCTION

ESIGNING tests for multiple faults in combinational
circuits has proven to be extremely difficult, primarily

because most approaches require the consideration of each .

combination of possible signal faults, usually assumed to be of
the stuck-at-1 or stuck-at-0 variety. If there are n lines in a
circuit, there are 3" - 1 possible multiple stuck faults. Al-

though these may be considered in equivalence classes [1],

[2], the number of such classes may still be quite large. ,
The most familiar approaches to the design of fault detection

tests involve either simulation [3] or employ the basic path
sensitization idea [4]-[6], sometimes with the use of the "
Boolean difference [7]-[10]. In the present study, a quite

different approach is possible, in which knowledge of the struc-

i

ture of a combinational circuit is used to reduce the number of

approach employed in [11] also exploits circuit structure, and -

the results reported here can be incorporated into the proce-

dures in [11].

A circuit’s structure is defined by the interconnection of the §
basic elements, each of arbitrary complexity. The idea is to
exploit the fact that the structure of a circuit implies con- ;
straints among certain sets of subfunctions of f, the circuit

3

input combinations required to test the circuit. The fault free :

output function. These constraints enable one to draw infer- @

ences of the following form.

If a circuit C' with known structure produces outputs fo(S)

AND WEISS: SWITCHING FUNCTION VERIFICATION

10 |11
12 13 (14 |15

>
O | U

lUHOOO
je+]

©)

. Fig. 1. (a) Circuit diagram. (b} Structure defined by G and H. (c)
Normal circuit output function f for Example 1.

o input combinations in a set .S, then that circuit must also
roduce outputs fo(T') for some set T which, in general, prop-

hat multiple fault C may have experienced, as long as its
tructure can be assumed to be correct. This form of inference
ill be illustrated with a simple example.

Example 1: Fig. 1(a) is a circuit with input variables 4, B,
, D. It can be viewed as an interconnection of two basic
- elements G and //, with the structure shown in Fig. 1(b). The
-normal circuit output function fis given in Fig. 1(c).

- Using Fig. 1(b), it is clear that f can be decomposed in the
orm f=G(H(A, B), C,D), where G and H are the output func-
ions of the basic elements in that figure.

Consider the four subfunctions

f(4,B,0,0)=G(H, 0,0)
f(4,B,0,1)=G(H,0,1)
f(4,B,1,0)=G(H, 1,0)
f(4,B,1,1)=GH, 1, 1).

ach subfunction must be either identically zERO, identically
NE, H, or H, where H is a function of 4 and/or B. Further-
ore, this will be true in the presence of any multiple fault
volving G and H as long as the structure in Fig. 1(b) is not
iolated.

Now, assume that the circuit output is observed to be correct
orinputsin the set S = {i3,i,ig, 9,50, 011,512,013, 14,05}
here i; denotes the binary input combination whose decimal

 the four subfunctions. Since f(4, B, 1, 1) is not identically
“ZERO Or ONE, let H = f(4, B, 1, 1). f(is) =f(iy;) = 0 implies
that f(4, B, 0, 0) is neither identically ONE, H, or H. It must
be identically zErRO. Therefore, we conclude that fly) =
(ia) = 0. Similarly, we conclude that f(4, B, 0, 1) must be
identically ONE and f(4, B, 1, 0) must be H, so that f(i,) =

tly includes S. This will be true, furthermore, irrespective of

quivalent is /. These outpurs are shown in Fig. 2 on maps of

619

A B

00 ig) (AR} 1) 0

01 1ig) rlig) tlig) 0

10 ¢} 1 @] o]

11 O 1 1 1
L]

£ir,2,0,00 £a,2,0,1) 2,5,1,0 £a0,1,1)

Fig. 2. f(S) for Example 1.

f(s) =1 and f(i;) = f(ig) = 0. Finally, we conclude that S is in
fact a multiple fault detection test since the correctness of the
circuit output on S implies, using only structure information,
that the circuit output is correct for all input combinations.

In subsequent sections, we will formalize and develop the
ideas in Example 1 and show the following.

1) How to use the circuit structure to choose appropriate
sets of subfunctions of the output function among which use-
ful constraints hold.

2) How to find a subset S of input combinations such that
if the circuit response to S is correct, then it is necessarily cor-
rect for all remaining input combinations regardless of what
multiple fault may be present, as long as the assumed struc-
tura) properties are unchanged.

II. FORMULATION OF THE FUNCTION VERIFICATION
PrROBLEM

A combinational circuit C will be viewed as an interconnec-
tion of basic switching elements E, ,- - - , Ex. Each is either an
individual gate or itself a combinational circuit with inputs and
one output.,) C will be assumed to be free of feedback loops
and to have only one circuit output fro. Each input of a basic
élement is driven by either a primary input variable from the
set I = {I;,---,I,}, or by the output of another basic ele-
ment. 21 will denote the Cartesian product {0, 1}”.

-Definition 1: The variation of a basic element E;, var (E;) is
the set of possible faulty functions that E; may realize. Here
we let var (E;) = {glg: {0, 1}™ > {0, 1}}, where m; is the
number of inputs to E;. Thus, var (E;) is the set of all m;-place
switching functions. var (C) = var (Ey) X - - - X var (Ey) will
denote the variation of C, where Ey, - - - , Ej, are all the basic
elements in circuit C.

Rather than selecting functions for var (£;) that could be ob-
tained by assuming all possible combinations of single or mul-
tiple stuck faults on lines within E;, we have chosen a more
encompassing mode] that includes these as well as more general
multiple faults due perhaps to incorrect part selection or wiring
within any basic element £;. This model has been explored by
Kautz [12], Thurber [13], and Hornbuckle and Spann [14],

. ordinarily under the assumption that only a single basic ele-

ment is faulty at any time. (In [12] and [13] only array
circuits are considered.)

Let f¢ denote the correct output function realized by C, and
let f, denote a circuit output function obtained if, for all i, the

ith basic element in C realizes the ith component of g =

1A k-output element can be replaced by k parallel single-output basic
elements, each with the original inputs.

620

(81, " .8x),& € var (C). Then the set of functions realizable
on Cis Fo = {f|f = f,, g € var (C)}. Note that F¢ does not
depend on the particular functions realized by the basic ele-
ments in C but only on the topological structure of the circuit,
defined by the interconnections among £y, - - - , E.

Let f,ps denote the output function realized by a possibly
faulty circuit C under observation and test. That is, f,, is an
arbitrary function in F.

Definition 2: A set of input combinations S is a function
verification test set (FVTS) if

Tous(S) = Fc(S) = fors = fe.

That is, suppose the observed response of a possibly faulty cir-
cuit C agrees with the normal output f- onS. Then if S is an
FVTS, this implies that the circuit realizes f¢, i.e., that f,,, is
identical to f,.

Definition 3: A set of input combinarions S verifies aset T
if

Jobs(S) =1c(S) = fops(T) = Fo(T).

Clearly, if T = {0, 1}", then & is an FVTS for the circuit. In
any event, T satisfies the property V fy € F¢, fo(S) = fc(S) =
Fo(T) = Fo(T).

This paper develops techniques for deriving from § a set T
verified by it. Although the present techniques do not always
yield a maximal set 7, they are computationally simpler than
general procedures that do [11].

I11. Basic ELEMENT PARTITIONS AND SETS OF
COMPARABLE CONFIGURATIONS

One can systematically derive from a circuit C those sets of
subfunctions of fo among which useful constraints exist. They
are useful in the sense that they permit selection of a set S that
will verify a set T properly containing .

We begin by defining certain partitions of the input variable
set J, each associated with a basic elemenr of the circuit.

Consider the general physical partition of a circuit €' defined
by basic élement Ej as in Fig. 3.2 X, Y, and Z are disjoint sub-
sets of the input variables 7. More formally, let IN(E}) =
{,: I, € I and there exists a path from I, to Ej}, OUT(E)) =
{,: I, € 1 and there exists a path from J, to the circuit output
that does not pass through E;}. In Fig. 3, IN(Ej) = X U Z;
oUT(E)) =Y U Z.

Definirion 4: For any basic element E ;in C, a basic-element
partition F; is defined by P; = [X|Y||Z] where Z = IN(E}) N
OUT(£;), X = IN(E}) - Z,and Y = OUT(E}) - Z. If Z = ¢, then
write P; = [X1Y]. If | X| <2 or Y = ¢, then P; is called a trivial
partition.®

The significance of P; is that it defines a decomposition of
the circuit output function fo(/) as

fe)=f(h{(X,2),Y,Z) (1)

2In general, there may be lines going from subcircuit 1 to subcircuit
2, but where the functions on these lines depend only on Z. The defini-
tions for the sets IN(EI') and OUT(E}) hold for this case as well, without
modification. ’
The rules in Theorem 3 are not useful for configurations defined by
trivial basic-element partitions.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197

o

|

Subcircuit 2

A

/\ /\

Z Y

Fig. 3. Element Ej defines the physical partition shown,? and a basic-4
element partition on the inputs: Pi=[XtY\Z]. 4

where &; is the output function of basic element £; expresse
in terms of primary input variables, and f; is the circuit outpu
function expressed in terms of the output of E; and the pri
mary input variables. Clearly, variables in X control the circui
output only by affecting the value of &;; and variables in Y’
have no effect on the value of h;. Note that if Z is empty, (1
is called a disjoint decomposition of f¢; otherwise, it is a non
disjoint decomposition [15] -[18].

Definition 5: Let P; = [X|YliZ] be a nontrivial basic-elemen
partition of a circuit realizing f¢, and x, y, z denote specific
binary assignments to the variables in X, Y, and Z, respectively
Then a subfunction fo(X, y, z) will be called a configuration
(CEG) of fc. With Z fixed at z, the set {fc(X, y;,2): y; €
2[Y]} is a complete set of comparable configurations associ
ated with F;.

Note that there are [2{]] complete sets of comparable con-
figurations associated with the single partition Pi=[X|Yl|Z].

The following theorem is a generalization of the basic idea in
Ashenhurst [15]. It establishes the constraints among the sets
of subfunctions of f identified before.

Theorem 1: For every complete set of comparable configura-
tions, there exists a function Y(X) such that every subfunction
in the set is one of the functions 0, 1, Y(X), Y(X).

Proof: 1f P; = [X|Y|IZ], then with z fixed and y; € 2[Y],
fe(X, yi, 2) = fih(X, 2), y;,) € {0, 1, Y(X), Y(X)} where]
V(X)) = hi(X, z). For a particular £ and z, Y(X) may bej
identically O or 1.

Definition 6: Every configuration fo(X, y, z) in a complete
set will be referred to as a 0-CFG, 1-CFG, or Y *-CFG accord-
ingly as fo(X, y,2) = 0,= 1, or € {(X), P(X)}.

C' is a tree circuit if every primary input variable and basi
element output goes to only one basic element input, an
there are no loops. For tree circuits, Z = ¢ in any basic-element
partition F;. For such a circuit, decomposition theory providesd
a simple description of the necessary and sufficient conditio
on a function in order that it be realizable on a given treelik.
structure, ’ :

Theorem 2-Ashenhurst [15], Karp [17]: If C is a treelik
structure, then f € F¢ if and only if for every P = [X|Y
{f(X, y1): y;€2¥11 C {0, 1, ¥, ¥} for some function v(X

Example 2: For the circuit in Fig, 4(a),

J AND WEISS: SWITCHING FUNCTION VERIFICATION 621

X,
1
CFG) = f£.(Xyy2) L \fc(ia)] I
i p.)
i
1 CFG, = £, (xygz) l ‘fc(ib) ‘]
k Fig. 5. i, and iy, are comparable: ia>~ ip.
CFG = fc(xyz)L lfc(ia)m.\ I]fc(ib)=ﬁ I ‘
(a)
CFG) = f,(Xy,z) I Ec(ia) 1 l
CFG2 = fc(xyaz,)l ch(ib) []
£o=foloj1]o 0ol1 3
0|1 f{1{0f, 4|56 7 (b
o|l1|1]o0 I 8|9 1011
0j1]1(0H, 12 13 [14 15 . CFGy = fc(xyaz)[clig)=k [{fc(ib)=k I . |0_CFG
LT L 14
I3 cra, = fc(Xsz)l }fc(ic)w [Ifc(id)=7 } |Y'-cm
l , Fig. 6. (a) If iy, ip € T, the CFG is a ¢ *-CFG verified by T. (b)If i,
offol1]o olof1])fo ip € T, then this pair of CFG’s is linked by T. (c) If iy, ip, ip,ige T,
0 ml 110 ol-l1 m 0 then CFG is a k-CFG verified by T, where k = {0, 1}..
o[x 1o AHRAE
oflrji]o ofifaflo . o) . .
_ input combinations forming the domain of the subfunction
CFG, CFG, CrG3 C7Cy fe(Xyz). Also, given two comparable configurations (from
© (d) the same complete set) CFG, = f(X v, 2), CFG, = fo(X Yg2),
VFig. 4. (a) Circuit for Example 2. (b) Output function fc. (c) Complete if iy = (x Ya Z) € D(C’FGI)’ ip = (x Yg Z) GD(CFG2), then ig
set of two comparable configurations defined by Py. (d) Another and i} are called comparable input combinations because they
complete set of two comparable configurations defined by P;. agree in the bit positions corresponding to the X and Z vari-
ables (see Fig. 5). This will be denoted i, ~ 7).
= o\ = Definition 7: T C 21 pe of input combinations.
NE)={h. 0} out@E) =, L} finition 7: Let T C 257 be a set of input ¢ o
)) a) A configuration CFG = fo(X y z) is a Y*CFG verified
N(E2) = {3, 14} OuT(ty) = {1, 12,15} by T if there exists a pair i;, i, € D(CFG) N T such that
IN(E3) = {I,,1,,15,1,)} OUT(¥53) = empry. felia) # fc(ip). See Fig. 6(a).

b) Let CFG; and CFG, be comparable y*-CFG’s verified

hus, by T. They are linked by T if there exists a pair i, €
Py = LILI], P, = [l4L1,15], (CFGy) N T, i, € D(CFG,) N T for which i, ~ i,. See
Fig. 6(b).

Ps = L I3 1slemptyllempty] . ¢) For k & {0, 1}, CFG, is a k-CFG verified by T'if a com-

Only P, is a nontrivial basic-element partition. Corresponding parable y*-configuration CFG, and four input combinations
0 Py, we have the two complete sets of comparable CFG’s are found with i,, i), € D(ECFG)) N T, i, ig €DICFG))NT
own in Fig. 4(c), (d). Each CFG is encircled. Of these four, such that i, ~ i,, i, ~ iy and felin) = feliy) = k, fo(,) #
nly CFG, is a y*CFG. The others are either 1-CFG’s or fc(ig). See Fig. 6(c).

-CEFG’s. Theorem 3: Let S C 2] and T be a set verified by S. Let

i € 8T denote that input combination i can be added to 7 (if

IV. UsiNG COMPARABLE CONFIGURATIONS TO DERIVE not already present) without destroying its property of being
INPUTS VERIFIED BY § verified by S.

Given a set § C 271 , it is desired to derive a larger set T of a) Y-y implication rule: Let CFG,, CFG, be two compara-
put combinations verified by S (in the sense of Definition 3). ble ¥*-CFG’s verified and linked by T. Then i€ D(CFG,) N
is will be done using the constraints established by Theorem 7T = 7€ $T where T~ i and 7€ D(CFG,).

. Three implication rules will be applied recursively to derive b) O-implication rule: Let CFG be a 0-CFG verified by T.
ew input combinations verified by S. To specify them, the Then i€ D(CFG)=i€ $T.

ollowing terminology is useful. ¢} I-implication rule: Let CFG be a 1-CFG verified by 7.
“Let CFG dendte some configuration Jo(X y z) with domain Then i € D(CFG) =i € $T.

(CFG) = {(xy z) : x € 211} That is, D(CFG) is the set of The proof follows directly from Theorem 1. Note that in a),

622

fc(z) fC(l) if CFG, and CFG, are both y or both J; other-
wise fC(z y=fc(@). In b) fe()=0;inc) fe(@) = 1.

We can now define a special set T that is verified by a given
set of input combinations S.

Definition 8: Let S C 2U1 . Then T'is the basic expansion of
S for a circuit C if T is the largest set to which § can be
expanded by recursive application of the Y-y implication,
O-implication, and 1-implication rules, employing all complete
sets of comparable configurations defined by the nontrivial®
basic-element partitions of the circuit C. -

It is easily seen that the order in which § is expanded does
not affect the final set T, so that the basic expansion set T is
uniquely defined by S and the normal circuit C.

Example 3: Consider the circuit in Fig. 7(a) with nontrivial
basic-element partitions P, = {[,I314|1,], P3 = [I31411,].
Let S = {iy, iy, s, iy, i12,i14}. The basic expansion set T is
found as follows.

a) CFG, is a y*-CFG verified by S and CFG, is a 0-CFG
verified by S. Using the O-implication rule on CFG, . i,, 5,4,
is,ig,is,ET.

b) CFG;, CFG, are linked y*-CFG's verified by S. The
Y-y implication rule implies /4, i;3 € 7. No further rules are
applicable, so that fo(T') is shown in the final map in Fig. 7(c).

Theorem 4: A sufficient condition that § € 211 be an FVTS
for a circuit C is that 7 = 21/) where T'is the basic expansion
of S.

Proof: This is a direct consequence of Theorem 1. It is
not, in general, necessary that 7 = 21 if § is an FVTS, as
shown by the following example.

Example 4: Consider the circuit shown in Fig. 8. There are
22° =264 distinct functions from 21 to {0, 1}, but the above
structure can realize at most 22 - (22°)° = 252 functions, the
total number of distinct ways of assigning functions to the
basic elements. Hence, there exists f ¢ Fo. But then there
exist fy € F¢, f, & Fg, which differ for only one domain
element u.

To see this, let g; = fo € F-, and define a sequence of func-
tionsgy, - -, g, where g,- differs from g;,, for only one domain
element,j =1, - 1,and g, = f € F. Let g; be the last
function in the seqwuence thar is a function in F. Then let
h =8, f2 = gier- We have £, (21 - {u})=£,eU- {u})and
LW #1, (u) But now S =21~ {4} is an FVTS of f, because
the structure can realize f; since f; € F, but cannot realize
f2 since f, & Fo. On the other hand, § = T for f; since the
above circuit has no nontrivial basic-element partitions. There-
fore, the converse of Theorem 4 is not always true.

We conjecture that the converse of Theorem 4 is true for tree
circuits. No proof has yet been found, but efforts at con-
structing counterexamples have failed. In particular, if 7 #
pASt , where C is a tree circuit, then the following construction
appears to always yield a function f € F, f # fo. Let the
basic expansion of S be T; C 211 Then select some u, ¢ T,
such that the basic expansion § U {ul} is T2 c 21 Continue
until the basic expansion of S U {uy, -+, u;_,}is T, ¢ 21
but for every u ¢ T;, the basic expansion of S U {ug, -
u;_y,u}is 210 Then choose f such that

f(T) = fe(Th)

IEEE TRANSACTIONS ON COMPUTERS, JUNE 19733

E
~9)

CFG4

(c)

Fig. 7. (a) Circuit for Example 3. (b)fc and the reference map. (c)
Derivation of the basic expansion set 7" from S. 1

Fig. 8. Circuit for Example 4.

U - 1) =12 - T,

In all cases investigated, f does not violate Theorem 2 so that S
is not an FVTS of the tree circuit C. :

V. APROCEDURE TO FIND AN FVTS ForR A CIRCUIT

A simple procedure is presented here for finding an FVTS
for a given circuit. The strategy will be to add input combina ‘
tions to an originally empty set S (and hence to. T) so that T' ,,
the basic expansion of S, verifies all *-, 0-, and 1-CFG’s and §
all comparable Y*.CFG’s are linked. T is recomputed using
the rules in Theorem 3 after each combination is added to S,
thereby avoiding the placement of some unnecessary combina-}
tions into S. Finally, each input combination not in T is added$
to S, one by one, again with recomputation of 7 at each step,
until 7 =2UT, 1

Procedure 1: For constructing an FVTS for a circuit with at§
least one nontrivial basic-element partition. |

In the following steps, combinations are added to S; and T
the basic expansion of S, is recomputed (using rules in Theorem@
3) after each addition to S. ;1

Step 1: Order the collection of complete sets of comparabl

AND WEISS: SWITCHING FUNCTION VERIFICATION

figurations (by size of configuration in the set, for example).

 Step 2: In each complete set of comparable configurations,

Blect one Y *-configuration CFG and add to S [as in Definition

)] a pair such that T verifies CFG.

Step 3: For each 0-CFG and 1-CFG that is contained? in a

*.CFG verified in Step 2, do the following when possible:

d combinations to S [as in Definition 7 ¢)] so that T verifies
ese.

Step 4: If CFG is a Yy *-CFG verified by T, then for each y*.

ponfiguration CFG; comparable to it, add combinations to S

fas in Definition 7 a), b)] so that T verifies CFG; and links it

fo CFG.

Step 5: Add combinations to S [as in Definition 7 ¢)] so that

s many of the remaining 0- and 1-CFG’s as possible are verified
hy T

‘ Ste[[)I]6: One by one, add 10 S combinations not in T until

AR

Step 7 (optional): For each i € S, if the basic expansion of

- {i} is also 21! delete i from S.

Example 5: For the circuit in Fig. 9, the nontrivial basic-

ement partitions are

Py = I3 141516]
Py = [Isls| 1, 131,]
Py = (L1, 15)14151]
Py = [I4lsl6|l 1, 15] .

Let Rj(Ci) denote the CFG (subfunction of f¢) associated with
the jth row (ith column) of the map in Fig. 9(b). Also,
/(LEFT), Rj(RIGHT), Ci(TOP), Ci(BOTTOM) will denote con-
figurations that are half rows and columns.

Step 1: The sets G,, G,, G5, and G, of comparable config-
urations associated with Ps, Py, P, , and P, are all columns, all
half columns (top and bottom), all rows, and all half rows
(left and right), respectively.

- Step 2: In Gy, add iy, iso to S (denoted {iy, igo} -+ §),and
I verifies Y*-CFG Cl1. In G,, {i3,} = S, and T verifies y*-
CFG C1 (BoTTOM). In Gs, {is} = S, and T verifies V*-CFG
j 1. InG4, {is} = S, and T verifies y*-CFG R1 (RIGHT).
~Step 3: For the 0-CFG Cl (ToP) contained in C1, let {ig} >
> so that T verifies C1 (ToP). [Note that C1 (TOP) is compara-
ble to the Y*-CFG C1 (BoTTOM).]

_ For the 0-CFG R1 (LEFT) contained in R1, let {{;} > S so
at T'verifiesR1 (LEFT). [Note that R1 (LEFT) is comparable
o the Y*-CFG R1 (RIGHT).]

At this stage, input combinations in S are shown as starred
ocations in Fig. 9(c), and f(7") is the full set of values shown
n Fig. 9(c).

~ Step 4: In order that T verify and link all y*-CFG’s compa-
able to C1 (in G), we can identify the 1-CFG R6 to serve as a
-axis® for G;. With {iss} > S, T verifies this 1-CEG. The

4CFG; is contained in CFG; if DICFGy) < D(CFG;).

5A l-axis (0-axis) through a set (not necessarily complete) of compa-

able CFG’s is a 1-CFG (0-CFG) whose domain intersects that of each

onfiguration in the set. Having verified such an axis, each Y *-CFG in
e set is already linked to the others in the set, and each can be verified

by the addition of at most one input combination to S.

623

Cl C2 C3c4 Cc5C6 C7 C8

Rl olofojojo 1|11 1| 2| 3| 4] 5| 6] 7
R2 ofojcjojo 111 13[8 10111)12{13}|14}15
R3 oto|Ccjofo |1 |1]1 I, 16|17|18|19(20(21]22|23
R4 ojojciojo 1|11 I 24(25126(27/28]29/30|31
R5 0 j0f0jojoj1 11 32{33|34135|36|37|38(39
R6 11 11 (1Ll |1|1]1]1 I3l 1 40(41(42|4314445(46(47
R7 Tl 2113111 I, 1 48149[50{51(5253|54|55
R8 ojofjojojo |11 |1 13] 56|57(58159|60|61162(63
A P P E”
I5 I
I
(b)

0% 0*1 0 [0 |O* 1% O*|0*|0 [0 [O*|1*

o* 0*|0 |0 |0 |0 |1

0 [0 {040 |1

0 0 {0 |0 [0 {0 |1

o* o*lo [0 |O [0 |1

1* 1*1 |1 [1 |1 [1*[1
1
1
(© (d)

Fig. 9. (a) Ciréuit for Example 5. (b) Output function f. (¢) S (shown
starred) after Step 3. (d) T (all entries) during gtep 4.

basic expansion T is now as shown in Fig. 9(d). It can be seen
that Step 4 is already complete for G, and G,. With {is¢} ~
S, R8 becomes a Y*-CFG verified by T, and with the verified
I-axis C6 [see Fig. 9(d)], Step 4 is complete for G5 and G,.
Also, all 0-CFG’s are now already verified by 7.

Step 5: With {iss}, {is}, {i;} = S, all 1-CFG’s are verified
by T.

Step 6: At this point, T = 200

Step 7: None of the elements in S = {iy, #,is,Is, i, 7,15,
i32, ia0,las,las,is¢} can be deleted, so that a length-12 EVTS
is obtained.

By applying somewhat more complicated rules, a length-10
FVTS S = {iy, is, iso, las, Ig, i36, 160, 38, I39, {52} may be
found.

Example 6: A nontree circuit that has nontrivial basic-ele-
ment partitions is shown in Fig. 10(a). E,, E3, E¢, and E,
each realize the odd parity functions of k inputs; £, and Es
realize NAND; and E4 and Eg are NOT gates. The non-
trivial basic-element partitions are Ps = [DEF |CI|AB], Py =
[EF|ABC||D]. v

The complete sets of comparable CFG’s defined by P are
Gy = {R1, R2}, G, = {R3, R4}, Gy = {R5, R6}, G, =
{R7,R8}.

|
|

Cl C2 C3 C4 C5 C6 C7 C8
1111 1
4]
o]

|'ﬁ olr|[oir|ol~|lo]~
l"d Hliolo|m|rlo|lo|r~
Hlolriol-|lr~lololw

1
1
|0
1
0
F

=

o

(b)

O* 1% 2 3 4% 5% ¢ 7
8% 9*10 11 12%13%*14 15
l6*17%18 19%20%21%22 23
24%25 26%27 26 29 30 31
32*%33%34 35 36*37%38 39
40*41%42 43 44%45%46 47
48%49*50 5] 52%53%54 554%
56 57 58 59 GO*&1l 62*%63

(c)

Fig. 10. (a) Circuit for Example 6. (b) Output function fc. (©) FVTS
found.

The complete sets of comparable CFG’s defined by Py are
Gs = {R1 (LEFT), " - - ,R8 (LEFT)}, G¢ = {R1 (RIGHT), - * - ,
R8 (RIGHT)}. Applying Procedure 1 to find an FVTS, we
obtain the following.

In Step 2, {iy6, 17}, {is2,is3} > S. R3,R3 (LEFT),R7 and
R7 (RIGHT) are verified to be y*-CFG’s.

In Step 3, {iz0, iat}, {iss, iso} = S. R3 (RIGHT) and R7
(LEFT) are verified to be 0-CFG’s.

In Step 4, {isa, iz6}, {iso,i62} = S. R4 and R8 are verified
to be Y*CFG’s. Also, they are linked to R3 and R7,
respectively.

In Step S, {io, i1}, {is, ig}, {is2, @33}, {ia0, iar }, {ia, is},
{iv2, 13}, {136, is7}, {iaa, ias} > S. All O- and 1-CFG’s are
verified.

InStep 6, {i,o}, {iss} ~S. T becomes 2111

In Step 7, none of the elements in S can be deleted. The

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197 b

final combinations in S are starred in the map of Fig. 10(c). 4
This is an FVTS of length 30. 4

VI. GENERALIZATION AND AN UPPER BOUND ON THE
LENGTH OF THE MINIMAL FVTS

Theorem 1 can be generalized so that a wider class of circuits §
can be treated. An upper bound on the length of the minimal ;
FVTS will then be derived. i

In Theorem 1, each basic element is considered separately to
find the basic-element partitions. When k basic elements are
considered at a time, a kth-order basic-element partition can be §
constructed.

Definition 9: Let J be the index set of k basic elements. The
kth-order basic-element partition for {E i€ J} is P}‘ =
[X1YZ], where Z = Uje s IN(E}) NYjey OUT(E)), X = Ujcy
IN(Ej)- Z,and Y = Uj= ; OUT(E)) - Z. ;

If k=1, the first-order partitions of Definition 4 are obtained.

Theorem 5—Based on Karp [17]: Let [X|Y||Z] be a kth
order basicelement partition. For any z € 2121 the set of 3
subfunctions {fc(x;, Y, z): x; € 21%1} contains at most 2% ?
distinct functions. |

Proof: The partition defines a multiple nondisjoint de- }
Composﬁion of fC' fC(X’ Y’ Z) = g(ﬁl (X’ Z)’ Tt Bk(X5 Z)’ ,
Y, Z) where the f; are the outputs of the k basic elements
defining the partition. Forz€ 22! {fa(x;, ¥, 2): x; € 2%} =
{e(B(x1, 2), "+, Blxs, 2), Y, 2): x; € 21X1}, where (8, (x;,2)

, Bx(x;, 2)) € {0, 1}. Thus, the set contains at most 2%
distinct functions, each of the form g(u, Y, z) for u € {0, 1}*
This completes the proof. |

The set of subfunctions {fa(x;, Y, z) = x; € 21X1} are col-
umns in the map of Fig. 11. Theorem 5 asserts that there are |
at most 2¥ different columns on the map. 4

“Theorem 5 can be used to modify Procedure 1 to derive
function verification test sets using higher order basic-element
partitions [19]. Here we will derive an upper bound for the
minimal FVTS of a circuit C based on a single kth-order basic- §
element partition.

In a map of fe(X, Y, z), if there are exactly 2% distinct col-§
umns, then after verifying all function values appearing in one
copy of each such column, we can verify all function values in‘3
any other column with at most 2¥ - 1 combinations. Thus, at§
most 2% - 21¥1 4 Q-1 - 2%) combinations are suf-
ficient to verify fo(XYz). On the other hand, if there are fewer
than 2% distinct columns, consideration of the CFG’s
{fe(Xy;2): y; € 201} in jtself does not permit reduction i
the number of combinations required; all 2X" ¥ will be used:

From any kth-order basic-element partition P}‘ = [X1Y]IZ]
an upper bound on the length of the minimal FVTS can be;
derived as follows. If there are m maps fo(XY2), each wit f
2% distinct columns, then the length of the minimal FVTS 1

no greater than
LF=m[2F -2+ (2% - 1) 2X1 - 2%)]
‘ +(2 - my QXYL (o

Thus min, ¢, , min ., P¥ k(L J) is an upper bound on th
length of the minimal FVTS of the circuit. 1In this formula, ‘

AND WEISS: SWITCHING FUNCTION VERIFICATION

XK

¥y

X . xzixl

v, ¥l

Fig. 11. Map of f(X, Y, 2).

C
)
ABCD = O .+« 15
EFPGH=0
£ |
EFGH
15

Fig. 12. Circuit for Example 7.

is the largest integer solution to £+ 1 +log, (¢t +1) < || because
. for a map to have more than 2% columns and 2% distinct col-
umns, k must satisfy 2% < 2!X! £ < 2'Y! The case k= 2!Y!
eads to a map (subfunction) in which all combinations must
be used since all k entries in each column must be known to
classify it with respect to the 2% distinct columns. Thus, if not
all entries are to be used, k should satisfy k + 1 <2!Y! There-
ore, it is necessary that k+ 1 +log, (K +)< [X |+ | Y (< |]].
Let [X|Y||Z] be a nontrivial first-order basic-element parti-
ion (k = 1). Then an upper bound that is independent of the
- function realized on the structure is

224 21X 2) 4 (2121 1y - glx VYT 3)

his follows from (2), for if the function is nondegenerate,
m = 1 is guaranteed because at least one fo(Xyz) is a ¢-CFG.

In the following example, we find an upper bound on an
VTS using a kth-order basic-element partition with k = 2.
Example 7: Consider the circuit in Fig. 12 with the second-
rder-basic-element partition [ABCD |EFGH] . Assuming only
‘that there exist four distinct columns in the map shown, an
upper bound on the length of an FVTS is 22 - 2* + (22 - 1) -
2% - 22) =100, whereas 2171 =256,

If the circuit had only a single line from E, to E 1, then the
bound in (3) can be applied (assuming f depends nonvacuously
onatleast one x;). At most,46 combinations are then required
in an FVTS and, hence, in the most general multiple fault
detection test. Note that only the structure of the circuit has
‘been used to find this bound.

VII. CONCLUSION

A new approach has been presented for finding multiple fault
detection tests. It is also expected to have application to the

625

fault location problem and to the design of circuits that are
easily tested. The basic expansion technique in Procedure 1 is
computationally faster than finding the total expansion of a
set of input combinations as discussed in [11], and can be in-
corporated into the more general algorithm.

REFERENCES

[1] D. R. Schertz and G. A. Metze, “On the indistinguishability of
faults in digital systems,” in Proc. 6th Annu. Allerton Conf.
Circuit and Systems Theory, Oct. 1968, pp. 752-760.

E. J. McCluskey and F. W. Clegg, “Fault equivalence in combina-

tional logical networks,” JEEE Trans. Comput., vol. C-20, pp.

1286-1293, Nov. 1971. .

[3] H.Y.Chang, E. Manning, and G. Metze, Fault Diagnosis of Digital
Systems. New York: Wiley, 1970.

[4] D. B. Armstrong, “On finding a nearly minimal set of fault detec-
tion tests for combinational logic nets,” IEEE Trans. Electron.
Comput., vol. EC-15, pp. 66-73, Feb. 1966.

[5] J. P. Roth, “Diagnosis of automata failures: A calculus and a
method,” IBM J. Res. Develop., pp. 278-291. July 1966.

{[6] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed

algorithms to compute tests to detect and distinguish between

failures in logic circuits,” IEEE Trans. Comput., vol. C-16, pp-

567-580, Oct. 1967.

V. Amar and N. Condulmari, “Diagnosis of large combinational

networks,” IEEE Trans. Electron. Comput., vol. EC-16, pp. 675-

680, Oct. 1967.

F. F. Sellers, Jr., M. Y. Hsiao, and L. W. Bearnson, “Analyzing

errors with the Boolean difference,” IEEE Trans. Comput., vol.

C-17, pp. 676-683, July 1968.

[9] P. N. Marinos, “Derivation of minimal complete sets of test-input
sequences using Boolean differences,” IEEE Trans. Comput., vol.
C-20, pp. 25-32, Jan. 1971.

[10] S.S. Yau and Y.-S. Tang, “An efficient algorithm for generating
complete test sets for combinational logic circuits,” IEEE Trans.
Comput., vol. C-20, pp. 1245-1251, Nov. 1971.

[11] M.-W. Du and C. D. Weiss, “Multiple fault detection in combina-
tional circuits: Algorithms and computational results,” JEEE
Trans. Comput., vol. C-22, pp. 235-240, Mar. 1973.

{12] W. H. Kautz, “Testing for faults in combinational cellular logic
arrays,” in Conf. Rec. 8th Annu. Symp. Switching and Automata
Theory, Oct. 1967, pp. 161-174.

[13] K. J. Thurber, “Fault location in cellular arrays,” in 1969 Fall
Joint Comput. Conf., AFIPS Conf. Proc., vol. 35. Montvale,
N.J.: AFIPS Press, 1969, pp. 81-88.

{[14] G. D. Hornbuckle and R. N. Spann, “Diagnosis of single-gate
failures in combinational circuits,” IEEE Trans. Comput., vol.
C-18, pp. 216-220, Mar. 1969.

[15] R. Ashenhurst, “The decomposition of switching functions,”
Agnn. Comput. Lab., Harvard Univ., vol. 29, 30, pp- 74-116,
1959.

[16] H. A. Curtis, A New Approach to the Design of Switching Cir-
cuits. Princeton, N.J.: Van Nostrand, 1962.

[17] R. M. Karp, “Functional decomposition and switching circuit
design,” SIAM J. Appl. Math., vol. 11, pp. 291-335, June 1963.

[18] J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,”
IBM J. Res. Develop., vol. 4, pp. 227-238, Apr. 1962.

[19] M.-W. Du, “Multiple fault detection in combinational circuits,”
P1917D2 dissertation, The Johns Hopkins Univ., Baltimore, Md.,
1972.

[2

—_—

—

[7

—

{8

—

Min-Wen Du (S’70-M’72), for a photograph and biography see page
240 of the March 1973 issue of this TRANSACTIONS .

C. Dennis Weiss (§’62-M’66), for a photograph and biography see
page 240 of the March 1973 issue of this TRANSACTIONS .

o R . cot

