i

o3

Abstract—This paper describes a family of algorithms for evaluation
f a class of elementary functions including division, logarithms, and
xponentials, The main objective is to demonstrate the feasibility of
higher radix implementations, in particular, radix 16, and to compare
- performance with radix 2. The emphasis is not on optimality of a
. single algorithm, but rather on the optimality of a class of algorithms.
L An attempt to implement a much wider class of functions than is pres-
" ently done in arithmetic units is encouraged by the current level of
- digital technology and the existence of suitable algorithms. Besides the
definitions of the algorithms, which are based on continued products
' and continued sums, details related to implementation are discussed.

Index Terms—Continued products, continued sums, division, expo-
- nential, logarithm, pipelining, radix 16, redundant number, symmetric
digit set.

[. INTRODUCTION

HE USE of continued products and sums has long been

T recognized as a practical way to reduce the evaluation of
' certain elementary functions to a series of additions, shift
perations, and perhaps accesses to precomputed constants
- [11-[10]. Recently, DeLugish [1] defined efficient algorithms
- for the evaluation of a wide class of elementary functions based
- upon continued products and sums, and the use of radix-2 re-
_dundant digit set {1,0, 1}(I=-1). The algorithms generate
 the value of the function on a digit-by-digit basis. Redundancy
13] simplifies the digit selection procedure and accelerates the
omputation by increasing the probability of a zero digit
alue. DeLugish has shown that for a class of functions, in-
luding division, multiplication, square root, logarithm, ex-
onential, trigonometric, and inverse trigonometric functions,
peration times are from one to three multiplication cycle
imes.
In this paper, we are concerned with speeding up some of
he DeLugish algorithms using the radix-16 digit-by-digit eval-
ation, ie., 4 bits/step. Only the algorithms for the frac-
ional parts of the radix-2 floating-point numbers are con-
idered. The arguments are assumed to be of m = %’, radix-16
digits precision. By the multiplicative normalization of a
iven argument X, € [%, 1), we mean a sequence of transfor-
mations such that X, - mZ, M; > 1 where the multipliers are
f the form My =1+S; - 167 for 0 <k <m. Similarly, in
the additive normalization, X, - Z/%, 4; > 0 with 4; =S -
67*. In both cases, Sk € {10,---,10}. As defined by
obertson [12], the set of values for S; with the redundancy
atio of % allows an efficient multiple formation as well as low
recision selection rules.

Manuscript received August 11, 1972; revised November 21, 1972.
iThis work was supported in part by NSF Grant GJ813.

The author is with the Department of Computer Science, University
f Illinois, Urbana, I11. 61801.

~ Radix-16 Evaluation of Certain
Elementary Functions

MILOS D. ERCEGOVAC

II. MULTIPLICATIVE NORMALIZATION
The multiplicative normalization is performed recursively as

Xew1 =X (148, - 167, 0<k<m, 2.1)
normalizing X, to I inm + 1 steps, by appropriately choosing
the values of S;.. Sy can be determined on the basis of X, but
to keep selection dependent on the same register positions, the
scaled remainder is defined as

Ry=16F (X, - 1), 0<k<m. (2.2)

From (2.1) and (2.2), the scaled remainder recursion follows:

Riy = 16R; + Sy + SgRy - 16771 0<k<m. (2.3)

For the chosen symmetric redundant digit set {S,} with
max {IS, |} =10, Ry,, will remain in the same bounds as Ry
if -2 <Ry <3. Correspondingly, 1 - (3)- 16 ¥ <X, <1+
(%)’ 167%. The first step in the derivation of the selection
rules, as described in detail in [17], is the calculation of the
intervals in the range of Ry for all ¥ and for each value of S
such that Ry, satisties the bounds. To preserve continuity of
the Ry range, the allowed values for S, must correspond to
the overlapping intervals in the Ry range. These overlaps are
caused by the redundancy in the digit set {S)}. Sinceit is pos-
sible to choose for the interval boundaries the numbers that
are simple in the binary sense, the low precision operations
will suffice in the implementation of the selection rules. Since
the correspondence between values of Sy and the intervals of
Ry reduces, for 2 <k <im, to '

(-28) - 1) <32R; < (-25; + 1), (2.4)

a simple selection rule will be to form Sy as the scaled re-
mainder rounded to the most significant digit with the op-
posite sign. Then, it is convenient to perform selection in the
first three “irregular” steps using modified rounding instead of
using a table lookup or a direct combinational approach.

The following definitions are used in the algorithms.

1) Two’s complemernt representation of scaled remainders:

am)
Ry=-ro+> r2™, r,€{0,1} foralli 2.5)
i=1

2) Truncated scaled remainder:

Ry=-ry+ i r2" (2.6)

i=1

3) Nonsign part ofﬁk:

SR

bt

i
i

2L i

Pos s

e

T s =

g S i

L ST et o o i e S i A e R i

gl

caaizen

562

6 .
A
don27, ifrg =

Ty = . . 2.7
S R2Y, ifro=1.
i=1
4) Step-dependent rounding constant:
6 ;
=X w27 e {0,1} andu;=£,Ry). (2.8)
i=1
5) Sk is in sign and magnitude representation.
6) [Z] denotes the integer part of Z. 29)
7) |Z] denotes the smallest integer not smaller than Z.
(2.10)
Algorithm N (Multiplicative Normalization) 2.11)
Step N1: (Initialize) k<0,
So«1if 2 <X <3,
So < 0if 3 <X, <1,
R1 <”‘IY() (l +So) - 1.
Step N2: (Loop) for0<k<m:
k<~k+1,
ISk 1< [(Ty + Up)16];sign (Sx) «
@ (-Rk):

if k <k,, then
Ryt < 16Ry + 8y + SpRy - 167%41
otherwise Ry ,, < 16R, + Sx

where

6
a) Uy =Z w2, uy =u; =0,
i=1 us =Kyro7,,
us =K 1oy (ry +713),
uUs =Ky (ro +r3ra) + Ky [ro + 7 (P +
F3)+rg] +K,
ug =K Fars + Korg(ry +ryr3),

and K;, K,, and K denote steps k=1, k=2, and k> 2.
respectively.
b) ky = [(m +3)/2].

This simplification is the consequence of the decreasing effect
of the term SR, 16™%*! on Ry, . It is a useful feature of this
normalization procedure that at every step, an increasing num-
ber of digits Sy can be obtained from R;. This reveals the
possibility of a variable radix approach to achieve higher speed.
At the step k =k, all remaining digits Sg, Sgeq, ", Sy are
available after replacmg the leading digits of R k, With the
digits from the set {8, -+, 8}, insucha way that the value of
the truncated remainder remains unchanged. This also reduces
the error bound of the normalized argument [14] to

Xt 1< () 167,

III. ADDITIVE NORMALIZATION

lemarl=11- (2.12)

The additive normalization is a right-directed recoding where
one replaces the nonredundant digit set {0, -- -, 15} with a re-
dundant one {10,--+,10}. The procedure is simple and
exact. Rounding, as a selection rule, applies to all steps. Since

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1973

Xiewr =Xi - Sel67%, 0<k<m 3.1)

with the scaled remainder defined as Ry = 167! X, the basic
scaled remainder recursion is

Rysy = 16Ry - S,

0<k<m 32) §

and IR, I< %,

Algorithm A (Additive Normalization) (3.3)
Step A1: (Initialize) k <0,

So < 1,

Ry <Xy - S,.

for0<k<m

k<k+1,

ISkl < [(Ty + Up)16]; sign () =

Sign (R k)a

Step A2: (LLoop)

Risy < 16Ry - Sy

1

where U = -32 This choice of the rounding constant restricts

Sk to {8, -, 8}, which is sufficient for recoding.
IV. DivisioN
Consider ,{
m ,
v, YollM
=0-_ _i=0 @4.1) 3

Xo [T M;

i=0

where My =" + Sy - 167, 0<k <m. If the digits S, are de-
termined using the multiplicative normalization (Algorithm N), §
then

=1+ €ma1 (42) j;‘

where lep .| (15) 16™, given in (2.12). Consequently,

m
YO l_[Mi=Qm+1 %Q

(4.3) 3
i=0 |

with the relative error 181= le,,,,|. The partial results are de- §

fined recursively as
Crr = Qi (1 +S,167%),
Qo =Y. (4.4) ;
An example of the division algorithm is given in Fig. 1. The §

multiplicative normalization scheme is shown in Fig. 2, and ":
the result evaluation scheme is shown in Fig. 3. 2

0<k<m

Algorithm D (Division) 4.5) §

Normalization: : Result Evaluation:
Step DI1: k < 0; . 1 Qo < Yo
Step D2: fork <m: [Algorithm N] D Oker < Ok
I + QrSp167F,
Note in Fig. [that the six leading diglts of R, represent, after !
recodmg, the remammg digits S, -+ ,8:,: 0.597BEA9 -
0.678415 -

RCEGOVAC: EVALUATION OF CERTAIN ELEMENTARY FUNCTIONS 563

X0» 0.70999997854232 ¥0= 0.59314718055994 YO/XO= 0.83541858941702 L+1
K SK 1L KK+l Qv el r———L—
CIN HEXADECTPAL) [IN DECIMAL) CIN CECIMALY ADDER _I
[-+443071000002 38 0.70999997854232 N59316TIRD55994 L
17 54 TADBF FFFC D00 1.02052496915459 9

LB8264907205491

2 -5’ 206720 2FFCRFFO «B35GG5T698RE34

.000590887725748

=

SELECT-COMPLEMENT

3 -3 =20 15128401 F7GF

o

»9993579598295C

°

.083538346827708

o 3 -3EA893006741B1

-

-00000373427224

>

-83542170900747

©83541852221656
8754185720118 SELECT-COMPLEMENT - 1,5y

5 -4 " 15 97BE9IDSE 6 BE

o

+999299919560712

=

& 1 =-597BEA96CAS21D

©

-99999997916537

©

h L <6B4L54TATISEAT 1.00000000151711 0.835418590634644 p .
8 -7 : - THEABBBOGOAABS 0.9597999598873¢C 0.83541858932287
9 L} ; L415467705B84501 EB 1.00000000000371% 0.83541858942012 SHIFTING NETWORK - 03k
10 -¢ ‘E J158TT9584FC 992 1.00000000000008 0.83541858941708 Ck
L
1 -1 .547795B4FCBIDE 1.00000C00000002 0.83541858941704 * Sk
12 -5 <4TT95B4FGB231A 1.000060000000000 0.83541858941702 R] ROM le— Kk
Fig. 1. Example of the division algorithm. L+l
Sk
L+l Pl C,0sk<n,
~ by (My) 05k <<k Lyet = Le—Skl6;" k1sksm
Cyp=4 1 vKickgm
I 2 , for Ex kv 2

f {0;t4;t8)x16" IR,

Fig. 4. Result evaluation scheme with ROM.

[SELECT-COMPLEMENT Jo— m m
| = Al .
(0321221167 * 1py InXo =In (X, [T M;) -In{ [] M, ¢2)

7 i=0 i=0
[[SELECT-COMPLEMENT Jo— 5, with M =1+5;-167%, 0<k<m. According to the Algo-
16-+1g, rithm N, 11 - Xo /2 MI<(&)- 16™. Then
[swiFTiNG NETWORK Ja— K m
R ’ inXo~-3 In(1+s;-167). (5.3)
R i=0
Rk+1216Ry+ 3y +16~ 5 T15, Ry
Ri+1

Since the logarithmic constants In (1 +Sk - 167™) are stored
Fig. 2. Multiplicative normalization scheme. with m-digits precision in a fast Read-Only memory (ROM),
the result will contain an accumulated roundoff error
leg|<($)m - 16™ inversely proportional to the radix of

Q '
E__L’ implementation. Due to the finite precision, the actual re-
Apesr quirement for the ROM capacity is decreased by approxi-

f (0;%4;28)x167%q, . .
] mately one-half, as follows from the power series expansion
[Sevecr comriement Jo s, for the logarithm:
Oettoimeta, o In(1+8; - 16%)~ S - 167 (5.4)
[ssLscr-coLmegm b s, for k> k, where k; = [(21og, 10~ 1 +4m)/8].
s See the multiplicative normalization scheme in Fig. 2, and
167%Q,

the result evaluation scheme with ROM in Fig. 4.

{__SHIFTING NETWORK Je— &
t

Algorithm L (Logarithm) 5.5)
Q
[;T—‘] Normalization: : Result Evaluation:
Qu+170y +167%5,0, Step L1: k< 0;) i Lo < 0;
Qs Step L2: fork<m: |ABOHMN {1 0 then
Fig. 3. Result evaluation scheme. ‘ : Ly <Ly - 1n(1
D+ Sk 167%); otherwise
VL <« Lp-Sp167".
V. LOGARITHM | ket T Sk Ok
For a floating-point argument X = X,2°* VI. EXPONENTIAL

_ - An initial manipulation [3], [1] of the argument reduces the
=in Xy + 2 . , ; .
InX=InXo+ Exln2, -1 evaluation of e to the evaluation of eXo with 1X,!<In 2.
g but we considér only an algorithm for In X, the calculation Let X log, e =1+ F where] and F denote the integer and frac-
of the second term presenting no problems. tional parts, respectively. Since X = X log; e1n 2,

564

e =2l 12 = ol Xo (6.1)

The factor 2! is easily incorporated into the exponent part of
the result. To simplify the initial step, F is restricted to F < 0
and / is correspondingly adjusted so that X, € (-In 2, 0].!
Consider

Xo=Xo - ln<ﬁ M,->+ln<ﬁ M,.> 6.2)

i=0 i=0

where My =148, -167%,0<k<m. IfX, - In (7% M;) ~ 0,
then eXo ~ 7% M;. The corresponding result evaluation re-
cursion is

Qo =1
Qiert =0k (1 48 - 167F), (6.3)

The constants S, are determined by the additive normaliza-
tion, using the scaled remainder recursion:

Ry = 16R; - 16 In (1 +5, - 167%),

0<k<m.

0<k<m. (6.4)

The set of stored constants is the same as the one for the
logarithmic algorithm. For &k > k,, (5.4), the normalization is
defined by the Algorithm A4, Step A2. As derived in [17], the
rounding with Uy = 312 is the selection procedure in all steps,
except in the initial, which is performed according to the fol-

lowing table.

Xo My In M,
[-1.0] 1 0
3 1 -1/4 1
[_gy——s__) € f -z
3 = g 17
(‘an,“g) e 11/32 5

The constants, necessary to be precomputed, are stored in the
ROM. A summary of the procedure for calculation of ¥
follows.

Preparatory Operations P
Step P1: N« X log, e.
Step P2: If X >0, then] < [N] + 1; otherwise I < [N].
Step P3: Xo < (N~-1)In 2. ‘
The additive normalization scheme with ROM is shown in
Fig. 5, and the result evaluation scheme is shown in Fig. 2.

6.5)

Algorithm E (Exponential) (6.6)

Normalization:
R, « X, - 1uM,;
if k <k,, then
|8kl [(T +
Ux)16];
sign (Sg) <
sign (Ry);

Rk+1 <« 16Rk -
16¥1n

(L+81675);
otherwise Step A2;

Step El: k < 0;
Step E2: fork <m:

1Two multiplications in the X, calculation could be replaced by one
division of X by In 2 so that X = In 2 + X, if the division scheme gives
the remainder [2], [11].

IEEE‘ TRANSACTIONS ON COMPUTERS, JUNE 197 ‘

SELECT-COMPLEMENT 0.5k

(Oi+1,+2)%Cy 16X

I\—ﬁr
K Ry
SELECT-COMPLEMENT 1.5k

16*cy p—r—— |

SHIFTING NETWORK I-— (-k)p

:_?_

Ru+1

Sk

r— k

{ Ri+1:16Ry ~16%Cy, { Rk+1:16Ry - Sy,

Ck =4 (My), 1Sk<ky, Ck=l, kigsksm

Fig. 5. Additive normalization scheme with ROM.

where k, is defined in (5.4) and Uy = 31—2 .

VII. IMPLEMENTATION

This investigation of the use of radix 16 in the implementa-
tion of the described algorithms has been motivated by the §

speed improvement over the radix-2 approach and by possible
tradeoffs in the hardware requirements. A brief discussion of §
the radix-16 implementation and some basic comparisons with 4
the radix-2 approach [1] follow, with more details given in
[17]. The general configuration may contain two arithmetic
units, as the fastest solution, or the normalization and the re- §
sult evaluation can be performed in an overlapped mode, using __
one “pipelined” arithmetic unit. In either case, the main parts
of the arithmetic unit are as follows. The three-input adder 3

with the multiple formation networks is estimated to be twice 3

as complex in the radix-16 case as the corresponding part in
the radix-2 case. Speedwise, we estimate that the add times

satisty £, <1.2 f,,- The fast variable shifting network of the
“barrel switch”-type [16], on the other hand, requires more

than 30 percent more hardware in the radix-2 case. Speedwise, 4
Isn, > 1.315, , where fg denotes the shifting delay. The
selection procedure in the radix-2 case requires a simple 4-bit

comparison.

The radix-16 approach requires 7 bits of pre-

cision for selection, implementation of the 5 u; = f(ﬁk) equa- %
tions (2.11), costing less than 40 literals, as well as the addi- !
tional inputs to the 7 most significant positions of the adder.
In both cases, the selection requirements are negligible in §

comparison with the rest of the unit.
simple in both cases.

From the above considerations, the hardware requirement

The control is also §

ratio for the radix 2 and the radix 16 is approximately 2:3. ‘;
The basic cycle can be taken to be the same, since the add

time is dominant over control, selection, and shifting time.

i

RCEGOVAC: EVALUATION OF CERTAIN ELEMENTARY FUNCTIONS 565

IU/
[_.=
S

Fig. 6. (a) Pipelined organization

: The ROM capacity requirement ratio is about 1:3 in favor of
- the binary case.

Let the performance of an implementation in the radix r be
P, =log, r/T,, where T, is the total delay necessary to evaluate
0g; r bits of the result, as defined in [15]. T, is equivalent to
the basic cycle. In the radix-2 case with S, € {1, 0, 1},the
probability of S =0 (p, = %) is utilized by providing an adder
ypass and reducing the number of full basic cycles to M/3 on
he average, where M is the number of bits. Then it can be
aken that the radix-16 basic cycle is T, 223T,, since the
umber of basic cycles in the radix-16 case is always the same,
the probability of S; = 0 being too low. Then the ratio of per-
ormances is P4 /P, z% on the average. If the efficiency of
e implementation is defined as the ratio between perfor-
ance and cost per bit, then with all previous assumptions,
16/FE; =1 without considering- ROM requirements. If the
ROM capacity requirement is taken into account, then the
adix-2 approach will offer more efficient design, but the
adix-16 case will maintain better performance with shorter
xecution time. The selection procedure for radix 16 has been
own to be sufficiently simple.

One way to overlap the normalization and the result evalua-
ion using pipelining techniques is shown in F ig. 6. The timing
hart (b) corresponds to the division algorithm. The super-
tipts "-and " denote the right and the left parts of all net-
vorks, registers, and corresponding results. Two periods now
efine the basic cycle, somewhat longer so that the pipelined
pode is 15-25 percent slower than the two separate arithmetic
t mode. The adder with multiple formation networks is

T
SHIFT j)
COUNT —’{ N : SN l
. -
[B I B]
Y
-
[A H A’]
T T
(a)
,)
i + ,
REG.B': X5 'Q Rl Q R, Ri, Q,
N N N N NS
REG. At Qo =Yo R, Q Rz Q Qn Rei Qme
! 1
GARRY C: | o C ses ¢ c
1
t
LATCH L@ | L L L Leee L L
I I
REG. B" X5 1Xg Qg R} Q) Rp Qn
f PG N S N e ~
REG. A" 193w)Q; R} Q] R} Ry Qnoy
I
I
Si: S0 i S Sz LI
t
)
SHIFT COUNT: 10 10 1 2 seee m
| |
oo
L N
1 2 3 4 5 2me2 2m+3 t periods]

(b)

. (b) Timing chart for the division

algorithm.

split into two equal parts, 4S" and AS’, by breaking the carry
path and inserting a orie-bit carry register C. Qutputs from the
left half SN" of the shifting network are to be saved in a latch
L.? The selection is carried out in the block S on the basis of
adder outputs and returns the value of Si. The initial operands
are in register B for normalization, and in register A for result
evaluation. Each register contains two separately controlled
halves: B”, B' and A", A". The outputs from 45" and AS' are
connected, under a separate control, to the inputs of 4" and A’
registers, respectively. A more detailed description can be
found in [17].

VIII. CONCLUSIONS

The use of a higher radix in implementations makes faster
execution of the algorithms possible, but feasibility of the
corresponding selection procedure requires some considera-
tion. For the radix-16 case, we have shown that the selection
rules are very simple for all except the initial three steps, in
which case they are of an acceptable complexity. Further-
more, in the exponential algorithm, only the initial step re-
quires a specialized procedure. With the current trend in lower
hardware cost, the corresponding realization requirements can
be easily justified. It is believed that similar selection proce-
dures could be applied for square-root, trigonometric, and in-
verse trigonometric function evaluation in radix 16. Multipli-
cation has been made compatible [17].

2Two additional 4-bit lat ches, not shown here, are needed to hold bits
shifted left from A4S and SN,

S it i

S R R

ACKNOWLEDGMENT

The author wishes to thank Prof. J. E. Robertson of the
University of Illinois, Urbana, for highly valued guidance and
discussions. Thanks are also due to the referees for helpful
cornments.

REFERENCES

[1] B. G. DeLugish, “A class of algorithms for automatic evaluation
of certain elementary functions in a binary computer,” Ph.D.
dissertation, Dep. Comput. Sci., Univ. Illifois, Urbana, Junée
1970.

{2] H. Marx, “Additionsverfahren zur Berechnung des Logarithmus
und der Exponentialfunktion (1), Mirtt. aus dem Mathem.
Seminar Giessen, no. 54, Giessen 1956.

[3] E.G. Kogbetliantz, “Computation of eV for e < N < +oo using
an electronic computer,” IBM J. Res. Develop., vol. 1, pp. 110-
115, Apr. 1957.

[4] J.E.Volder, “The CORDIC trigonometric computing technique,”
IEEE Trans. Electron. Comput., vol. EC-8, pp. 330-334, Sept.
1959.

[S] L. Y. Akushsky et al., “Methods of speeding up the operation of

digital computers,” in Proc. ICIP, June 1959, pp. 382-389.

[6] J. E. Meggitt, “Pseudo division and pseudo multiplication pro-
cesses,”” IBM J. Res. Develop., vol. 6, pp. 210-226, Apr. 1962.

[7] W. H. Specker, “A class of algorithms for In x, exp X, sin X, cos X,
tan~1 x, and cot~! x,” IEEFE Trans. Electron. Comput. (Short
Notes), vol. EC-14, pp. 85-86, Feb. 1965.

[8] J. S. Walther, “A unified algorithm for elementary.functions,” in
1971 Spring Joint Comput. Conf., AFIPS Conf. Proc., vol. 38.
Montvale, N. J.: AFIPS Press, 1971, pp. 379-385.

[9] T. C. Chen, “Automatic computation of exponentials, loga-

rithms, ratios and square roots,” IBM J. Res. Develop., vol. 16,
pp. 380-388, July 1972.

{10] C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim, “Some
properties of iterative square-rooting methods using high-speed
multiplication,” IEEE Trans. Comput., vol. C-21, pp. 837-847,
Aug. 1972.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1973

[11} H. J. Maehly, “Rational approximations for transcendental func-
tions,” in Proc. ICIP, June 1959, pp. 57-62. .

[12} J. E. Robertson, “A new class of digital division methods,” IRE
Trans. Electron. Comput., vol. EC-7, pp. 218-222, Sept. 1958.

[13] ——, lecture notes for computer science courses 394 and 482,
Dep. Comput. Sci., Univ. [llinois, Urbana, Fall 1970 and Spring
1971.

[14] ——, private communication, Sept. 1972.

[15] D.E. Atkins, “A study of methods for selection of quotient digits
during digital division,” Ph.D, dissertation, Dep. Comput. Sci.,
Univ. Illinois, Urbana, June 1970.

[16] R. L. Davis, “The ILLIAC IV processing element,” IEEE Trans.
Comput., vol. C-18, pp. 800-816, Sept. 1969.

[17] M. D. Ercegovac, “Radix 16 division, multiplication, logarithmic
and exponential algorithms based on continued product repre-
sentations,” M.Sc. thesis, Dep. Comput. Sci., Univ. Illinois,
Urbana, Aug. 1972.

Milo§ D. Ercegovac was born in Belgrade, 3
Yugoslavia, on June 28, 1942. He received the
diploma in electrical engineering from the
University of Belgrade, Belgrade, Yugoslavia,
in 1965, and the M.S. degree in computer sci-
ence from the University of Illinois, Urbana, in
1972. ‘

From February 1966 to June 1970 he was
with the Institute for Automation and Tele-
communications *“‘Mihailo Pupin,” Belgrade,
Yugoslavia, where he participated in the design
and development of digital computers. Since July 1970 he has been a
Research Assistant in the Department of Computer Science, University
of Illinois, Urbana. His research interests include computer arithmetic, 3
logical design, and computing systems organization. He is currently a
Ph.D. student in computer science at the University of Illinois. 3

