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A Unified Approach to the Evaluation of a
Class of Replacement Algorithms

EROL GELENBE

Abstract The replacement problem arises in computer system man-
agemexnt whenever the executable memory space available is insuf-
ficient to contain all data and code that may be accessed during the
execution of an ensemble of programs. An example of this is the page
replacement problem in virtual memory computers. The problem is
solved by using a replacement algorithm that selects code or data items
that are to be removed from executable memory whenever new items
must be brought in and no more free storage space remains. An auto-
maton theoretic model of replacement algorithms is introduced for the
class of “random partially preloaded” replacement algorithms, which
contain certain algorithms of practical and theoretical interest. An
analysis of this class is provided in order to evaluate their performance,
using the assumption that the references to the items to be stored are
identically distributed independent random variables. With this model,
it is shown that the well-known page replacement algorithms FIFO and
RAND yield the same long-run page-fault rates,

Index Terms—Markov chains, memory hierarchies, page-fault rates,
page replacement algorithms, paging, storage allocation.

I. PREFACE

THE replacement problem is basic to certain situations in
which a limited number of resources are multiplexed
among a larger number of users. The problem may be stated
as follows. Consider a set of users U= {u,uy, - -, u,} and
a set of identical resources R = {ry,r;, ", ¥, } withm <n.
At each instant of time

tl)t:!’-"atky.y'

exactly one of the users requests and utilizes a resource with-
out consuming it. At that time, one may discover that all of
the resources have already been allocated, so that if our policy
is to systematically satisfy each request we shall have to de-
allocate a resource from one of the users. A replacement algo-
rithm is applied at such times to select the user who is going to
lose his resource, and the replacement problem is to select an
algorithm based upon certain criteria and to evaluate the per-
formance of the algorithm. Various generalizations of this

problem may be imagined; one may consider several types of

resources, for instance.

A typical application of this problem is to computations
carried out with limited merory space. Suppose that the set
of resources corresponds to a set of memory units of equal size

from which instructions can be executed, and let the set of

users be an ensemble of data items (all of equal size) that are
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stored normally on some peripheral memory unit and brought
into a memory unit (one data item per memory unit) at execu-
tion time. In such a situation, the replacement algorithm is
selected so as to reduce the number of times data items have
to be transferred to and from the peripheral memory since this
is usually a time consuming bperation.

A class of replacement algorithms of interest are the random
partially preloaded algorithms we shall study here. One may
imagine that in many cases it is imperative that certain users
never lose their resources, or that certain data items never be
removed from their memory units. A random partially pre-
loaded algorithm maintains the resources allocated to these
users, and selects the user who will lose his resource at random
from the remaining ones with equal probability. This class of
algorithms is also of particular interest on theoretical grounds,
as will be szen in what follows.

The mathematical model we shall use to describe and eval-
uate this class of algorithms is a stochastic automaton [6].
These automata have appeared in the literature primarily as
models of communication channels and sequential machines
with random failures, as well as to represent adaptive or learn-
ing automata.

In the sequel, we shall discuss the problem using the termi-
nology of storage allocation problems [1] both to simplify the
discussion and to provide motivation for the reader. It should
be stressed, however, that we consider the problem as being
of broader interest.

In some virtual memory computer systems [1], a program’s
address space is divided into equal size blocks called pages.
Similarly, primary memory space is divided into page frames
each of which may contain a page of some program. At a given
instant of time, not all of a program’s pages need reside in
memory so that when the program references a page not in
memory, a page fault occurs suspending computation until the
referenced page can be brought in.

Suppose that a program’s set of pages is N=(p1,pP2, " ", Pn)
and that exactly m of these can be kept in memory. Then,
if m <n, each time a page fault occurs one of the pages cur-
rently in memory must lose its page frame to accommodate
the incoming page. An algorithm that selects the page to be
removed from memory when a page fault occurs is called a
page replacement algorithm (PRA ).

Since a high page-fault rate will cause a deterioration of sys-
tem performance, it is of great interest to determine the page-
fault rate caused by-various PRA [2].

The class of random partially preloaded (RPPL) PRA con-
tains both RAND [2] which selects the page to be replaced at
random with equal probability among the pages in memory,
and 4, which was shown in [4] to be the “optimal” algo-
rithm if program references are represented as a sequence of
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independent identically distributed random variables. RAND is
used as a benchmark: [2] since no PRA used in practice should
have a worse performance than RAND. The class of RPPL

PRA contains
= < >
=0 \

algorithms, and the evaluation presented in this paper gives us
a single expression for the long-run page-fault rate for any algo-
rithm in this class, based on a model of the page reference
string.

Any theoretical evaluation of a PRA requires a mathematical
model of the reference string. The model we shall use here is
the same as the one used by King [3], namely the independent
identically distributed model. This model captures the fact
that programs do not refer to their pages with the same fre-
quency; i.e., some pages are referred to more frequently than
others. It does not capture the correlations that exist between
successive page references or any time-varying behavior that
may exist. Thus this model is of interest over relatively short
lengths of program activity; a detailed discussion of its region
of validity is given by Denning and Schwartz [7]. Since re-
placement algorithms are of more general interest than in their
applications to virtual memory machines, the independent
reference model yields an evaluation that is more universal
than a more realistic but more restricted representation of the
reference process.

II. INTRODUCTION

In this section we shall define some concepts of use to us.
Subsequent sections will contain the results of this paper.

Definition 1: A page reference string is a sequence of sym-
bols from N, the set of pages. It represents the sequence of
pages referenced by the program during execution.

Definition 2: A memory state s is an m-element subset of V.
There are (,':,) distinct memory states, where m is fixed and
1 <m <n. S, is the set of all memory states.

We will now define formally a PRA. Before doing that,
however, let us describe informally what it does. A PRA isa
control mechanism that examines the page reference string
and the memory state, and with this information (and other
information that it may store) changes the memory state with
the following constraints.

Constraint 1: 1If the last page referenced is in memory, the
new memory state will still contain it.

Constraint 2: 1If the last page referenced is not in memory,
the new memory state will contain it.

This notion of a PRA may be generalized to randomized
algorithms in which memory and control-state transitions are
probabilistic.

A probability distribution on the finite set ¥V = (vy, vy, -+
Ur) is the row vector @ = (ay, @y, * - -, ar)
where

a; 20, 1<i<f

and
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r
Z o; = 1.
i=0

This is interpreted as follows. Let v be a random variable tak-
ing valuesin V. Then

a,-=Pr [U:Ui].

We say that o is degenerate if for some j, 1 <j<f, a; = 1.
Definition 3: A PRA is the system

B = (Sa Q7N7 S0,40, {M(r)})
where

S Nonempty |S|' element subset of S,,,.

Q Finite | Q| element set of control states.

N n-element (n = m) set of pages.

So Initial memory state, s, € S.

Initial control state, gy € Q.

n-element set of stochastic? matrices each of which
is |SI-10Q| by |S|-1Ql, and contains a matrix
M(r) for each p, € N.

qdo
{(M(r)}

Each pair (s,q) €S - Q is called a configuration. To each dis-
tinct configuration (s, q), we assign a distinct integer i = g(s, q),
I <i<|S]-|Q|, with the restriction that g(so,q,)=1. The
set {M(r)} is interpreted as follows. For any p, € N, let my;(r)
be the ith row jth column entry of M(r), where 1 <i < |S| -
(0,1 <j<|S|-1Q|. Then m;ir) is the probability that
when the program references page p, and B is in configuration
(s, ¢), the new configuration will be (s', ¢'), where i = g6, q)
and j=g(s',q").
Let

X =Dp Dry " Prlriyy T

be a page reference string. The PRA B responds to x by pass- ‘5
ing through a sequence of configurations ]

Yly},27'..ayk) Yk+la”'
where

Pr{g(Y1)=71(s0.q0), Pr,} =my;(ry) (1)

Pr{e(Yir1) =j18(Ye) =0, pr, } =mij(risy) (2

forany 1 <i,j <|S|-|Q}, and &k > 1.

We say that a PRA is deterministic if for each p, €N, myi(r)
iseither Oor 1 forall 1 <i,j < |S|: |0l

In Definition 3, S is a subset of S,, to indicate that certain :
PRA (such as 44 [2]) keep the memory state in a proper sub- ;
set of Sy, .

The model of program behavior under which we will evaluate ke
a PRA is identical to the one defined by King [3]. Let
B=(B1,B2," -, Bn) be a probability distribution on N, the set
of pages. We shall assume that for any page reference string

1| X|is the cardinality of the finite set X, k-
2A matrix is stochastic if each of its entries is nonnegative, and the
sum of the entries along each row is 1.
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prlpr2 o ‘prkprk,,l e

he following properties hold.

Property 1: Pr[rp=i] =f;forany k>1and 1 <i<n.
Property 2: Forany k #1,12 1,k > 1, the event [r, =i] is
independent of the event [r, =] forany 1 <i,j <n.

Property 3: 8;+ 0, for each 1 <i<n.

This simple model is known as the independent reference
. model of program behavior. Henceforth, it will be understood
that the page reference string constitutes a random process
governed by Properties 1,2, and 3. Let

1 Yl,Y2"',Yk:Yk+1>"'
be the sequence of configurations the PRA B passes through in
 response to a page reference string. Due to Property 2 of the
} page reference string and (1) and (2) we have that

Pr {g(Yk+l) =]|g(Yk) = [9 Yk—l s T, Y2, Y'l’ (SquO)}
=Pr {g(Yi.y) =7 18(Ye) =i}

so that the sequence (1) is a Markov chain [5]. The states of
this chain are the configurations of B and the transition prob-
abilities are easily obtained as follows; let ¢;; be the probability
¢ of transition from the configuration numbered i to that num-
. beredj, 1 <i j<|S|]Q|. Then

ciy=Pr{g(Yis ) =jlg(Yy) =i}

;
"
4
B
i
|

n
=3 B my(r) 3)
r=1
¢ and we denote by C the matrix whose ith row jth column
entry is ¢;;.  Evidently C is a stochastic |S|- Q1 by |S|- 10l
. matrix.
L Definition 4: A PRA issaid to be a demand paging algorithm
- if for any i = g(s, q),j = g(s', ¢') such that m;{r) # O and
pr & s we have that p, is the only element in s that is not in s.
That is, only the page that has been demanded is loaded into
memory.
In a demand paging PRA, a transition from configuration
(s,9) to (s', q') is called a page-fault transition if s #s'.
Alll PRA studied in this paper are demand paging
algorithms.
Now let us turn to the performance measure for a PRA
which we will use in this work.
Again, consider the sequence of configurations

Y15Y2s.”aYkaYk+ls'"5Yw"”

that the PRA produces in response to a page reference string.
Let Yo = (89, qo) and define fi(s, @), k 2 1, as follows:

1,  if the transition from Y% _; to Y is a page-

fi(s,q) = fault transition, and Y, = (s, q) (4)
0, otherwise
for any configuration (s, g). Let
W -
Ny(s,q)= Z fi(s,q). (5)
k=1
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Defintion 5: The expected long-run page-fault rate for the
PRA B is

FB= Y [lim E{———NW(;’Q)”

all wree

(s ‘?)ES'Q

if the limit exists.

For the class of algorithms studied in this paper, the limit in
Definition 5 always exists.

Let C* be the matrix obtained by multiplying C by itself ¢
times. We say that the Markov chain is irreducible and ape-
riodic if there exists a natural number ¢4 such that each entry
in C? is nonzero for all * > t,. This is equivalent to stating
that the probability of transition from any one configuration
to any other one (including itself) in ¢ steps is nonzero for all
t >to. A chain with this property is also called regudar {5].
Regular chains have useful properties, some of which will be
applied here since we will be dealing with PRA for which the
chain with transition matrix C is regular. The following is a
well-known theorem.

Theorem I [5]: Let the Markov chain with transition ma-
trix C be regular. An|S|-|Q|element stochastic row vector &
exists such that

£-C=¢.

The ith entry of £, denoted by &(i), i =g(s, q), is the long-run
probability of finding the chain in configuration (s, q), for any
(s,q) €S X Q. £ is unique.

A form of F(B) which is more convenient for our purposes is
given in the following lemma whose proof can be found in the
Appendix.

Lemma 1: Let T(i) be the set of integers

(W) ={jli=g(s,9),i=2(s',q")

and the transition} from (s, q) to (s, ¢') is a page-fault transi-
tion. Then if the chain with matrix C is regular, for any
initial configuration

IS1-1Q1
F(B) = Z EQ) > o

all
JETH)
for any demand paging PRA B and the independent reference
mode! of program behavior.

This lemma simply states that if C is the transition matrix
of a regular Markov chain, then the expected long-run page-
fault rate is merely the probability of a page fault occurring at
steady state.

III. RANDOM, PARTIALLY PRELOADED ALGORITHMS

In this section we introduce the class of PRA that are the
subject of our study. A theorem giving the expected long-run
page-fault rate for this class is stated.

Definition 6: For 0 <k <m- 1, let Y, be any k-element
subset of V; Yo is the empty subset. An RPPL PRA is the
system B of Definition 3 with the following restrictions.

nRistriction 1: § = {s|s €8,, and Y C s} so that (S| =
(;n:k)'
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Restriction 2: Q= {qo}, hence |Q] =1 and each M(r) is | S|
by |S1.
Restriction 3: For any s, s' €S; any p, EN, i =g(s, qo),
i=g6"q0)
ifi=7 and p, €5

1 ' .
mi;(r) = P— if p, €', p, & ¢, and p, is the only
m page in s’ that is notin s

0, otherwise.

Note that for each k there are (',:) distinct RPPL algorithms.

An RPPL algorithm always maintains ; in memory, where
Vi has been chosen on the basis of some decision external to
the algorithm, Each time a page fault occurs the page to be
replaced is chosen with equal probability among those pages in
memory that are not in . Clearly, an RPPL algorithm is a
demand paging algorithm.

With the following theorem we obtain an expression for the
expected long-run page-fault rate of any RPPL PRA.

Theorem 2: let B be an RPPL PRA with Y =(py, 02, -,
px) such that §= (8, B,, -, By) is the probability distribu-
tion on the set N = (py, p2, -+, py). (No ‘special relation
among the 8;, 1 </ < n, is implied by this choice of Yy .)
Then

2 Bigey By By 2 B
ali p;Es
S8

Z B"kﬂ Bik+2 T Bim

all

sES

F(B) =

where s = (p1, P2, Piy Digy > Pigyy» " 5 Diy) i 1 <k <
m-1,and s =(p;,py, " yPi,,) if k=0,

Theorem 2 is proved in Section IV. The rest of this section is
devoted to an application.

The PRA A, [4] maintains the m - 1 pages whose prob-
ability of being referenced is highest, constantly in memory.
King [3] obtained F(4,); we obtain the same result here as a
corollary to Theorem 2.

Definition 7: Let the relationship 8; > 8, = - - - > 8, hold.
Then A, is the RPPL PRA with k =m - 1, m-1 =(P1, D2,
" Pm-1)and So = (P12, Py Pm)-

Theorem 3:

Z Bim Z (31
all piES
SES

Fldy)= ———
> B,
all
sES
where S = {s|s €5, and ¥,,., C s}, and any s €5 is of the
forms:(:pl:pZa s Pm-1 7pi”1)’m <Zm <h.

F(A,) in Theorem 3 may be rewritten as
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since m < i,, <n, and because p; ¢ s implies that m <I<n. 1
But then

n
j=m

2. B

j=m

F(4,) = [

which is equal to the expression obtained by King [3].

IV. PROOF OF THEOREM 2

Let C be the transition matrix defined by (3) of Section 1I. #
The proof of Theorem 2 consists of the following parts. '

Fart 1: The entries of C will be obtained.

Fart 2: 1t will be shown that C is the transition matrix of a
regular Markov chain.

Fart 3: The stochastic row vector £ satisfying

£C=§

will be obtained.
FPart 4: F (RPPL) will be derived using Lemma 1. ]
Fart 1: By Definition 6, Cis [S| by |S|. Let u =g(s, qo), 4
v=g(s'",q0);s,s €S. Then by (3) and Restriction 3 of Defini-
tion 6 we have

Cuy = é Br My (1)

=36
. alt
DrESs

—rk’ if p, €s,p, €5, and p, is the only ,
page in s’ that is notin s (7) 4
in all cases not covered by (6) and (7). (8)

Part 2: To show that C is regular, it must be shown that the
probability of reaching any configuration w = g(s”, g,) from
any u = g(s, qo) in t steps is nonzero for any t 2 tg, and ¢,
fixed. This is easily provec. Let s” contain y pagesnotin s;
let these pages be

p213p229. T 3p2y'

Evidently y <m - k. Then w =g(s", q,) is reached from u =
&(s, qo) with no more than m - k transitions of the type whose §
probability is given in (7). Since §; # 0, 1 <i <n, by Prop- §
erty 3 of the independent reference model of program be-
havior it follows that the probability of this V-step transition is
nonzero since it can be no smaller than

by By B, j
Cm-Y ©

The probability of reaching w from u in more than y steps is 4
also nonzero since an arbitrary finite-number transitions of the 4
type whose probability is given in (6) can be used as well. §
Therefore C is regular and tq <m - k. 3
Part 3: For any s € §, recall that without loss of generality
we write :




"GELENBE: REPLACEMENT ALGORITHMS

S=(p1;p2, e apk:‘pik,._lspik_iq, e 5pim) (10)
ifk>1and yx = {ps,ps, "+, pr},and
s=(pi1)pi2, e apt'm) (11)

L if k = 0 (since Y, is empty). Further, note that for 0 <k <
m -1

pik-l-j$ wk (12)

¢ forany 1 <j<m- k. Let (s,90), (5", qo) be two configura-
tions of the RPPL algorithms so that u = g(s, go) and v =
(s', qo). By Theorem 1 and Part 2 of this proof, there exists
an |S|-dimensional row vector £ whose uth entry &(u), 1 <
u < |S|, is the longrun probability of finding the Markov
chain C whose entries are given by (6), (7), and (8), in con-
figuration (s, go) where u = g(s, qo). Furthermore, £ satisfies

£-C=§ (13)

¢ and
| S|

Z guw)=1.

Equation (13) may be written as | S| equations of the form (for
b cach 1 <u<|[S,u=¢g(s,90),5ES)

(14)

[ 8]
) = 5" E0) cun

which, using (6), (7), and (8) becomes

o . m-k Bik+j

b Ew=tw 3 B+ X EHy —— (15
4 all i=1 all m-k

: p,ES vER(, )

' where R(u, j) is the set of all v=g(s", qo) such that if s’ is the
f memory state when the program references page Digerjo for
some /, 1 <j<m - k, then a page fault will occur and the new
memory state will be s with probability [from (7)]

ﬁik ] .
Cou = %Tﬂl? (16)

Thus, each s’ may be expressed as
S’ =s U {pa} - {pik+]'} (17)

where p, € s, if v=g(5", q0) € R(u,j). We shall show that for
eachu,1 <u <|§|,

Piey Birs " Biy

Zl: Bikrﬂ Bikﬂ Bik+2 Y Bim
al

sES

Eu) = (18)

satisfies (15), where u = g(s, q,,) and s is given in (10). By (17)
and (18)

) = -2

“)’.k+]'
Let the right-hand side of (15) be called 4. To show that &(u)

in (18) satisfies (15), it suffices to prove that by substituting
(19) in 4 we still obtain

E(u). (19)
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A=E).
Substituting (19) in 4 we get that
m-k E u
PEEOD S S SR
all F=3 all m
p.ES vER (U, j)

But, for each p, ¢ s, R(u, j) contains exactly one v and
|R(u, /)| =m - n, independently of j. Therefore,

m-k
A=8u) 3 B+ 2 i(li 2. B (20)
all j=1mo ko
p,Es p,Es
But £(u) {in (18)] is independent of j, therefore,
A=tw Z By + () Z B, = &) (21)
a all
prlés p,Es

so that the proof that &(u) in (18) satisfies (15) and (13) is
complete. The vector ¢ defined by (18) is stochastic since its
entries sum to unity. This completes Part ? of the proof.

Part 4: By Lemma 1, and Part 2 of the proof, for any
RPPL PRA, independently of the initial configuration

IS
FRPPL)= 3 1) 5 Cur 22)

u=1 all
vET (u)

Let u = g(s, qo) and let p, & 5. If the RPPL PRA is in config-
uration (s, g¢) when the program references page p,, the PRA
may enter any one of (m - k) configurations of the form
(s', g0), v = g(s', qo), where s’ = s U {p,} - {p; .} for any
1<j<m- k, with probability [see (7)] 8,/(m - k). "Evidently,
each such v is in T(u). Since this is true for each p, ¢ s, we
have

. Br
> o= (m-k)-
a %T m-k
vET W) p,¢Es
= > 8. (23)
all
p, s
Turning to (22), we see that it may be rewritten as
F(RPPL)= 3 &u) 3 6 (24)
all all
sES p,Es

using (23) and the fact that for each 1 <u < |S| there isa
unique s €S such that u =g(s, g¢), and vice versa. When (20)
is used in (24) we obtain

21.:4 Bik+1 Bik+2 T ﬁim Z Br

all

F(RPPL) = = i
T B P Py
all
sES

which completes the proof of Theorem 2.
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V. THE ALGORITHMS RAND anp FIFQ

It is the purpose of this section to define and examine the
algorithm RAND and to show that the expected long-run page-
fault rate or RAND and of the well-known PRA riro [3] are
equal for the independent reference model of program
behavior.

RAND is, in some sense, the most trivial PRA. Whenever a
page fault occurs, RAND chooses the page to be replaced at
random among the pages in memory so that the probability
of being removed is equal for all pages in memory. Thus any
PRA being used should have a page-fault rate that is at least no
worse than RAND’s, and RAND is useful as a basis for
comparison.

FIFO (first-in first-out), on the other hand, always replaces
the page that was first to enter memory among the pages
currently in memory. FIFO is briefly discussed in [2]. King
[3] has obtained F(FIFO) under the independent reference
mode] of program tehavior.

Definition 8: RAND is the RPPL PRA with k=0 (s0 that Y,
is the empty subset of N, and § = §,,,).

As an immediate consequence of Theorem 2 and Definition
8 we have the following theorem.

Theorem 4: The expected longrun page-fault rate of
RAND is
2 By Biy - By, % By

a

ail

=S pr¢s

2 Biy By - By,
all
sES

F(RAND) = d

where s = (p;,, Piy>* ", Di,,) for any s € S. From King’s paper
[3] we have an expression F(FIFO) that we will presently show
to be identical to F(RAND). But first let us describe the PRA
FIFO. Informally, ¥IFO keeps a marker on that page that was
first to enter memory among all pages currently in memory.
When a page fault occurs, the marked page is removed from
memory and the marker is updated. Thus, FIFO is a deter-
ministic PRA with S = S,,,; whenever s = (Piy> Piy>* " " Piyy)
is the memory state, the control state is q4=(Dj;»Pjy, " ij)
where (J1, /2, ", J;n) is a permutation of iy, iz, ", i,)s0
that p; , p,, - , Djy,, 18 the ordering of the members of s
from left to right in order of first entry into memory (i.e.,
pj, is the firstin-first-out). If now the program references
Pa & s causing a page fault, the new memory state is

"=sU{p,} - {p;}

and the new control state is

4" = (PjysPiys " D)+ Pa)-

Thus, for each memory state there are m! possible control
states. For a formal treatment of FIFO the reader is referred
to [3].

Theorem 5—(King [3]): The expected long-run page-fault
rate of FIFO under the independent reference model of pro-
gram behavior is
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m

Zu 13,'15,'2"‘5;,"(1‘5,'1‘@;'2‘"'"Bj )

qEQ

F =
(FIFO) Z 5/'1 51'2 — B'm
all

9€Q

q =(p/‘1,l?j2, T ,ij)-

When the control state is g of Theorem 4, the memory state ]

iss =(piy, iy, " " Diy,) Where (ji, /2, ,jm) is 2 permuta-

tion of (i;,75," ", i) so that
2 B BB, =(m) Y 8 Bi, - By,
all all .
qEQ

sES
Furthermore,

%}: Br=(1"ﬁjl—l3,~2—"'—
p,éEs

G )

m

so that
Z Bil Bi2”'6im Z Br
all

all
py s

Z 6i1 Bi2 . 'ﬁ"m
all

se§

ses

F(FIF0) =

and since S = S, for both FIFO and RAND, we have the fol-
lowing theorem. ,
Theorem 6: F(¥FIFO) = F(RAND).
APPENDIX
PROOF OF LEMMA 1

It is to be shown that if the Markov chain with transition '»

matrix C, given by (3), is regular for the PRA B under the in-

dependent reference mode of program behavior, then the ‘_
expected long-run page-fault rate F(B) defined in Definition § 1

is given by

ISt-1Q1
FB)= Z_: (i) 3 o

all
JET()

(LD ‘

where £(7) is the ith entry of the vector £ of Theorem 1, and 1

¢ij is an entry of the matrix C defined by (3).
Let u=g(s,q),v=g(s',q"), forany two configurations (s, q),
(s',q"). Let

YV15Y2,.‘.7Yk9".

i
]

1

be the sequence of configurations the PRA B passes through in
response to a page reference string; B is started in Y, = §

(S0,90). Define the function

1,
hy(u) = {

0, otherwise

ifg(Yr)=u

for all k 2 0, and

(1.2) §
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M) = E (). (13)

§£We will need the following theorem known as the law of large
numbers for regular Markov chains.

THE LAW OF LARGE NUMBERS ([5, THEOREM 4.2.1])

. Let C be the transition matrix of a regular chain with
. stochastic vector £ satisfying

§EC=¢

L Then, for any initial state (in this case

; “configuration™) it
. follows that

lim E{ﬂﬁ@} = £(u)
wroo w

2

’ Foranyv=g(s',q"), k=1, let

'1: and for any ¢ >0

lim Pr

w0

1, ifg(Ye,)=u and g(Y)=v
Xi(u, v) = { - ¥ (1.4)
0, otherwise
‘ and W
1 > Xi(u, v)
ew(u’ U) =F .L__
w
1w
== E{Xp(u,v)}. (1.5)
4 W s
‘ But quite simply, by (1.4)
‘ E{Xe(u, v)} = Pr {Xp(u,v)=1} (1.6)

and by Bayes’ rule and (1.2)

E Pr {Xic(u,0)= 1) = Pr {0=g(Yi) | =g(Yep)}

“Pri{h_ (w=13}.
But since

‘ Vi Ya Yo
is a Markov chain, we have that

% w =Pr {v=g(¥Yi) lu=g(Yry)}
independently of k, so that by (1.5) and (1.6) we obtain

1] w
ew(u,v) = — Z Cuy Pr {ge_y () = 1}. 1.7)
k=1
But then
w1
ew(u,v) = cuv Z Pr {Ag(u) =1}
Ik w k=0
 and by (1.2)

'Pr {he(u) =1} =E{h(u)}.
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Therefore, using (1.3) we obtain
M, (w)
ew(u,v)=cy E {_%v—'}
so that by the law of large numbers
lim ey, (u, v) = &) cyy (1.8)
W

for any u, v. In particular, this is true if the transition from
(s, ) to (s', q") is a page-fault transition, u = g(s, q), v =
g(s', q"). With reference to (4) of Section II and (1.4), notice
that f(s', ¢") = 1 if and only if X4 (u, v) = 1 for any (s, ) such
that the transition from (s, ) to (s', ¢') is a page-fault transi-
tion. Therefore, from (5)

w
Nw(s,> q,) = Z Z Xk(u’ U) (19)
k=1 all u
such that
veT(w)
so that by (1.5)
N I" !
E{—W(-s—q—)} = T ew(u,v). (1.10)
w all u
such that
vET(u)
By (1.8) and (1.10)
N 13 13
lim E {—ﬁw} = Y Hwew (11D
W w all u
such that
vET(u)

Finally from (1.11) and Definition 5 we obtain

Z h-rn E Nw(s’,q')
all wo e w

(s',9)es-Q

1S1-1Q1
= Z Z
all u

v=1
such that
vET(u)
The two summations in the above expression are used to sum
§(u) ¢y, over all pairs (u, v) such that v € T(u). Therefore, we
may rewrite this as

F(B)=

E(u) Cu.

| SI-1Q1}
FB)= Z Z: £(u) cyy
u=1 all
vET(u)
completing the proof.
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Circuit Structure and Switching
Function Verification

MIN-WEN DU anp C. DENNIS WEISS

Abstract~A new approach is presented for the design of multiple fault
detection tests in which the structure of a combinational circuit is used
to reduce the number of input combinations required. The structure is
defined by the interconnection of the basic elements, each of arbitrary
complexity. The fault model assumes that the functions realized by the
basic elements may undergo any deviation whatsoever, but that the cir-
cuit structure is fault free. Thus, arbitrary combinations of multiple
faults within one or more basic elements are included in the model.
Decomposition theory can be used to verify that a set of input combi-
nations is a multiple fault detection test set under this model. A process
called expansion will be introduced to simplify this task. A well-defined
procedure is given for deriving a suitable test set which for some circuits
is minimal or near minimal. It will yield a multiple fault detection test
of length less than 2" for any circuit with a nontrivial nondisjoint de-
composition, defined by a basic-element partition. Higher order basic-
element partitions are introduced as a generalization. An upper bound
is given on the length of a multiple fault detection test for any circuit
with a given structure, independent of the function realized on the
structure. The bound is tighter when function information is also used.

Index Terms—Combinational logic networks, fault detection, func-
tional decomposition, multiple fautts.
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I. INTRODUCTION

ESIGNING tests for multiple faults in combinational
circuits has proven to be extremely difficult, primarily

because most approaches require the consideration of each .

combination of possible signal faults, usually assumed to be of
the stuck-at-1 or stuck-at-0 variety. If there are n lines in a
circuit, there are 3" - 1 possible multiple stuck faults. Al-

though these may be considered in equivalence classes [1],

[2], the number of such classes may still be quite large. ,
The most familiar approaches to the design of fault detection

tests involve either simulation [3] or employ the basic path
sensitization idea [4]-[6], sometimes with the use of the "
Boolean difference [7]-[10]. In the present study, a quite

different approach is possible, in which knowledge of the struc-

i

ture of a combinational circuit is used to reduce the number of

approach employed in [11] also exploits circuit structure, and -

the results reported here can be incorporated into the proce-

dures in [11].

A circuit’s structure is defined by the interconnection of the §
basic elements, each of arbitrary complexity. The idea is to
exploit the fact that the structure of a circuit implies con- ;
straints among certain sets of subfunctions of f, the circuit

3

input combinations required to test the circuit. The fault free :

output function. These constraints enable one to draw infer- @

ences of the following form.

If a circuit C' with known structure produces outputs fo(S)




