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A Combinatoric Division Algorithm for Fixed-Integer Divisors
DAVID H. JACOBSOHN

Abstract—A procedure is presented for performing a combinatoric
fixed-integer division that satisfies the division algorithm in regard to
both quotient and remainder. In this procedure, division is performed
by multiplying the dividend by the reciprocal of the divisor. The
reciprocal is, in all nontrivial cases, of necessity a repeating binary
fraction, and two treatments for finding the product of an integer and
repeating binary fraction are developed. Two examples of the applica-
tion of the procedure are given,

Index Terms—Combinatoric division, division algorithm, fixed-integer
division, hardware division, modular division,

INTRODUCTION

In certain operations such as that of base conversion and that of
locating elements in a multidimensional list, the availability of a combi-
natoric algorithm to perform a division by a fixed-integer divisor that
will supply both an exact quotient and an exact remainder is of value,
This correspondence will discuss the general techniques for developing
such a combinatoric division algorithm and the evaluation of such an
algorithm for several divisors.

Two specific examples to be considered are the conversion of base 2
integers into binary coded decimal (BCD) and the mapping of the bits
of a memory organized into 48-bit words into a contiguous bit-
addressable array.

GENERAL DESCRIPTION AND APPROACH

Division by binary integers that are integral powers of 2 is trivial.
It is accomplished by partitioning the dividend. Given a divisor

B=bpby_y " b;i* " bibe
bp=1land b;=0, fori#k
and dividend

A =amam " a1a9
the quotient is
Q=9m kdm-k-1'" "0
where

, Am-k-i “4m-i

and the remainder is
R=ayx_jap, " aya,.

In the more general case where B is not an integral power of 2, B can
be partitioned into an odd number and an integral power of 2 as
follows:

B = bnbn—l e bl_. . blbO'
Divide B by B" = 2¥ where % is the largest value such that 2% divides
B and leaves a zero remainder, Then
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1Subscripted literals assume positional significance throughout the
text. -

B=(B/B"B".
B =B/B"
B =bp by k1"

bp_k-;=bn_i

B=B B =by xby i by 2.
Having shown that the divisor B can be partitioned into a & and

B trivially, it now remains to be shown that the division of A by B can

also be partitioned trivially, The follow}‘cng should suffice as proof,
Given 4 and B =B' * B" where B" = 2" 35 above then

AlB=A/(B'B")
A/BII =QII +R”/B”
Q"B =Q+R/B

A _ . RN

F e RIE

R R BRAR"
BJBII + B/Bn - Q + B

A_
B9

In this expression for A/B, only Q and R are generated nontrivially.

Having shown that Q and R above are the only values that must be
generated nontrivially, it becomes obvious that the division process to
be implemented by the combinatoric algorithm need only be concerned
with odd integers.

DivISION BY FIXED ODD INTEGERS

Now that the total process has been reduced to division by fixed odd
integers, it is appropriate to outline the basic approach for imple-
mentation,

In order to generate A/B = Q + R/B, the following procedure is taken.

1) The reciprocal I of B’ is generated.

2) A combinatoric multiplier is constructed based upon the fixed
constant / and having A as a variable input parameter. The output
parameters of this multiplier are Q and a number related to R,

The significant point to observe is that the value of 7 above must be
represented as a repeating binary of value less than 1. The cycle length
of this repeating binary must be less than the value of B.2 The problems
that remain are to construct a fixed finite multiplier to represent a
repeating binary, to extract the integer portion Q of the result, and to
convert the fractional portion of the result to the appropriate value
for R. More specifically, the problem is to generate the product A * I
where A is a variable, and extract Q and R from that product. Since / is
a repeating binary fraction of cycle n, it can be represented as

2When performing an integer division by B, all of the partial re-
mainders must be integers of values less than B. Upon the repetition of
any partial remainder, the cycle will repeat, and should the partial
remainder zero occur, the process will terminate; therefore, there can
at most be B - 1 possible partial remainders limiting the cycle to a
maximum of B - 1 in length.

.
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\ =1y 27"
. "»‘ j=0
Therefore, the product

A-I=4-1"Y 27",
J=0

The product P=A4 - I' can be generated easily by combinatoric methods,
such as Wallace’s,3 reducing the problem to generating

P'i 27",
j=0

(Subsequently T will be used to represent 2;0 2'f".) P is a product
of finite length and can be represented as

P=Pum_1 "'P].PO

where each P; element is of 7 bits in length (i.e., a digit base 2").
The following illustrates the generation of P+ =:

PPyt P1Po
x (20424 My

(Pm Pm--lh'.Pl Pl))‘
+WPm Pyt P1 Py)
+ Py Py Pr Pp)

Pry=-re.
Reorganizing the above expression, we get
FPmBmy = PrPo

X(20+2M4 27y

P P P e

+ Py Py

+1)0P0...

'E, pPex=-

' In the preceding product, we can replace Py, by P,,,, and each prior
£ P; by P}, where

Pi{=Fy+ Piyy +5

with 5§ =1 whenP;+ P{,; > 2" ~ 1 and 5 = 0 otherwise. (6 is the carry
when adding two digits in base 2”7.) Then

Py =Prln 2—n(~m-x) +P1‘n—1 2—n(m—2) +- 4Pl 4P} Z 2-in'

i=1
Since P; can have values greater than 2" — 1, the above may be resolved
to

P I =PpPpyy P (P52

. " . "ot " .
(where again the P; are integers base 2. PPy * " Py, the portion

to the left of the binary point is the exact integer quotient Q of A/B.

The portion to the right of the binary point is a repeating fraction
of period n representing the quantity R/B. Multiplying R/B by B with
suitable rounding gives the exact integer value of R, hence R =
Bz 270,

Electron. Comput., vol. EC-13, pp. 14-17, Feb. 1964.

3¢, s. Wallace, “A suggestion for a fast multiplier,” IEEE Trans.
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ALTERNATE P'Z GENERATOR

An alternate and more economical approach for the generation of
P+ 3 exists and is similar in concept to the process of casting out
rines.# In this approach the single adder array shown as follows is used.

Pypy Py Py 0 Py Py Py Py O
+0 Py Ppy Pl B © Py P Py
1
P 2=Ppy Py Py P P{ - P{"Py X

This adder can be considered to be blocked into m + 2 units, each of
n bits. Into the leftmost block P, will be inputted. Each successive
block to the right will have the next P; inputted with i going from
m to 0. Therefore, the rightmost block will have no P; input. If we
now name the outputs of the various blocks of the adder P;’ where
each P;' output corresponds positionally to a P; input, we will get
Py, -+ Py X as the output. The generation of the P* £ product is
obtained by inputting the P;'th terms into the remaining inputs of the
i - 1st block of the adder. A carry is inserted into the right end of the
adder to accomplish rounding, and the previously unspecified inputs at
blocks m and ~1 of the adder receive zero’s. Py« - P -+ P{' - P{ is
the product P+ £, Of this product P,y * ** P;’ is the integral part of the
quotient, and Py the fractional remainder. This alternate method
reduces the hardware requirements for the generation of P* T toa
third of that of the method contained in the correspondence.

EXAMPLE I: BASE 2 T0 BASE 10 CONVERSION

In this process, a binary integer is to be divided by 10 base 2. The
remainder will be the BCD rightmost decimal digit of the conversion,
The quotient residues are repeatedly divided by 10 until the final
quotient residue is less than 10. At each step, an additional digit to the
left of the previous digit is generated.

For this illustration of method, we shall assume a 9-bit binary
number is to be converted, Given

A=agayagagdsasasay g

B =1010. base 2

then
B =101.
B" =10,
Q" =agajagasagazaza;
R" =ay
I =0.00110011 =%
I' =0.0011
n =4,

P then equals Q" * I’ which is generated as follows:
ag @7de 45 44 A3 4y Gy

+a8a7a6a5 dg azaz ay

P=ayagasagasayasaayag
and
P=PyP1 Py
where
Py=azazaqag
Py=ajagasa4
Py=0 0 agas.

4D. E. Knuth, Seminumerical Algorithms, Vol. 2: The Art of Com-
puter Programming. Reading, Mass.: Addison-Wesley, 1969, p. 253,
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P % is then generated by the basic approach as follows:
Py =F,
Pi=Py+Pi+5=cqajafalal

which is generated as follows:

0 0 a5a30 0 agag
tayagasaganagasay

+1

Py=cqa7agai a}
and
Py=Pi+Po+s =csafayaiay
which is generated as follows:
ajagasalalagat ay
+azayayapazayajap

+1

Py =c3ayayaiag
Then
s ajayafaf
+ ¢y ay ag af alf

+000 0 a5dg
e Hy 0 e nr

Przr= @loas’ ag’ a7’ ag’ a5’ ay' a3 a3 aY ag .

Alternately, P * T can be generated as follows:
+1
a9 ag a5 ag a5 ay ay ay ay ap 0 0 0 O
0 0 0 dypas’ag’ "ay ag a5’ ay’ a3 ayafay
4!3 d2 a'l' tlo XYXXXX

e e M trr grr

7
aic ag’ ag’ ay' ag’ a5’ ay’

Now reassembling the parts

I L [T N T e T T T

Q=ajp ay' d§’ a7’ ag’' o' aj
and
R=PB'" (a3 a%ayap) i 167,
Hence
A/B=Q+ 2RB+a0_

ExampLE II: BIT LOCATION IN A WORD-ORGANIZED
MEMORY

In this example it is desired to locate a bit in a 64-word memory
of 48-bit words. The bits are to be addressed contiguously independent
of word boundaries, The memory has 64 X 48 bits in total. The
location of a bit is achieved by dividing the bit address by 48 , accepting
the quotient as the word address, and the remainder as the b1t address
within that word. Given

A =apapagcrrayag
B =110000. base 2
then
" =11,
" =10000.

"=apagpcasag

TR W

'=azaza;ay
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= veez b
I =0,0101 7 )
I' =001
n =2,

P then equals Q"' * T', which is

P=0yy ajo ag ag a7 ag"as a4

and
P= P3 Py Py° Py
where
Py=as5ay
Pi=aqyaq4
Py =a9 a3
P3 =ayy ajp.

P % is then generated by the basic approach as follows:
Pé =Py
Py =P3+Py+ 8 =coagay
which is generated as follows:
211 430 411 410
tag ag a9 ag

+1

¢y ay ag
and similarly

Py =Py +Pi+5=cqayaj
and

' ’
Po=Py+Py+5 =(350'51121.

’ '
Cs a5 44
+ ¢q a7 ag
+ cg ay ag
tay ayp
Pz =4d% ag a5 a4 a3 a3 ay ag
Alternately, P+ T can be generated as follows:
g
211 410 49 ag a7 4ag 4aAs 4aa 0 1
+0 0 4% ag ds a4 a3 a3 4 ag

a7 ag as ai a3 aycay ag X X

Now reassembling the parts

Q=05 a4 d§ af a3 &5

and
= B'(d'{ay) Z 4~
Hence
A/B=0+ 16R+a3;2a1a0 .
CONCLUSION

A method for developing combinatoric structures for performing
divisions by fixed integers has been demonstrated. In the examples
shown, the divisions were performed through the use of full adders
only, thus illustrating that this technique can be implemented using
standard off-the-shelf MSI components.
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