;ﬁ

i
‘5
g
;

0 U

TEEE TRANSACTIONS ON COMPUTERS, VOL. C-22, NO. 6, JUNE 1973

587

A Simulative Study of Correlated Error
Propagation in Various
Finite-Precision Arithmetics

JOHN D. MARASA axp DAVID W. MATULA

Abstract—The accumulated roundoff error incurred in long arithmetic
computations involving a randomized mixture of addition, subtraction,
multiplication, and division operations applied to an initial randomly
generated data base is studied via simulation. Truncated and rounded
floating-point arithmetic and truncated and rounded logarithmic arith-
metic are simultaneously utilized for each of the computation sequences
and the resulting roundoff error accumulations for these four systems
are compared. The nature of the correlated errors incurred under
various arithmetic operator mixes are discussed.

Index Terms—Accumulated roundoff error, correlated error, floating-
point arithmetic, logarithmic arithmetic, simulation study.

I. INTRODUCTION AND SUMMARY

HE accumulation of rcundoff error in long computerized

calculations is a phenomenon that can destroy an efficient
and sound computational procedure predicated on arithmetic
in the real number field. The additional time consuming steps
of computing rigorous error bounds for the computation can
yield overly pessimistic assessments of the accuracy of the re-
sults for two reasons. First, the progressive computation of
error bounds via techniques such as interval analysis do not
adequately compensate for the correlation of individual errors
introduced when the same variable reappears in the computa-
tion, so the generated error bounds can be far from the
tightest error bounds possitle. Second, the general statistical
nature of the errors introduced by roundoff will usually cause
the results to satisfy much tighter error bounds than the worst
possible cases with probability 1 - ¢, where € may be much
smaller than the error probability for erroneous results due 1o
undetected machine failure.

[t is the purpose of this study to investigate and summarize
the effects of accumulation of roundoff error in long randomly
chosen computerized computations via simulation. More de-
tails relevant to the computerized implementation of the pro-
cedures described in this study are given in [1].

With regard to the methods of roundoff, four different
“arithmetics” have been utilized simultaneously for the com-
putation sequences. Rounded and truncated floating-point
six significant hexadecimal digit arithmetic are two of the

Manuscript received January 22, 1973. This work was supported in
part by NSF Grant GJ-446 and in part by the Advanced Research
Projects Agency of the Department of Defense under Contract SD-302.

J. D. Marasa is with the School of Medicine at the Missouri Institute
of Psychiatry, University of Missouri, St. Louis, Mo. 63139.

D. W. Matula is with the Department of Applied Mathematics and
Computer Science, Washington, University, $t. Louis, Mo. 63130.

modes investigated. An overall assessment of the effect on
error growth of using a large base such as 16 for floating-point
computations is difficult to determine. It is well known [2]
that the relative spacing between neighbors in a base § floating-
point system has a log-periodic variability of a factor of 8. For
comparison, to avoid this variability of a factor of 16, we have
also introduced a logarithmic number system where the rela-
tive spacing between neighbors is uniform. Two arithmetics
characterized as rounded logarithmic and truncated logarith-
mic are developed. [n Section II the rigorous specification for
these four finite-precision arithmetics is presented.

The nature of our computational model for the assessment
of correlated error growth for long “‘randomized” arithmetic
computations is presented in Section III. A computerized
computation may well involve 10° to 10° arithmetic oper-
ations executed on only 10 to 10° independent input data
elements. Thus the phenomenon of correlated error due to
multiple use of the same variable can be very pronounced in
actual long computations.

In Section IV the results of numerous simulated computa-
tions are described and interpreted. The overall error-growth
rates have a distinctive and somewhat predictable pattern de-
pending on the operator mixes (i.e., add, subtract, multiply,
divide frequencies). The results show that only a modest
perturbation of the error-growth pattern is effected by the
particular finite-precision arithmetic utilized for any oper-
ator mix.

The simulations of various multiply-divide operator mixes
yield log-linear relative error accumulation curves when
plotted against the number of operations performed, with
higher multiply frequencies yielding steeper error accumula-
tion slopes. This behavior for higher multiplication fre-
quencies is attributed to a phenomenon that we have termed
the principle of correlated multiplication: a continuing se-
quence of multiplications applied to a bounded set of ap-
proximate data elements will almost always eventually yield
uniformly signed error biases and no further benefit from
error cancellation.

Repetitive additions of positive elements exhibit only a
linear growth of relative error accumulation with the number
of operations. Combined multiply-divide-add operator mixes
have error-growth rates essentially determined by the multiply
and divide frequencies, as the rnultiply and divide error propa-
gation swamps the errors attributable to addition operations.
Introduction of the subtraction operation into the operator

588

mix causes the steepest error-growth rates as can be expected
from the explosive nature of error accumulation under sub-
traction (i.e., occasionally computing the difference of nearly
equal approximate values).

The total accumulated error may be logically divided into
two parts: 1) the initial conversion errors in the starting data
will be propagated by (exact) arithmetic operations; and
2) operations on exact initial data will be subjected to the re-
peated roundoff errors of finite-precision arithmetic operations
which error will also be propagated. Several simulations are
performed that allow a separation and comparison of the ef-
fects of propagated initial error and overall accumulated error.

II. FINITE ARITHMETIC SYSTEMS

Six significant hexadecimal digit-truncated arithmetic and
six significant hexadecimal digit-rounded arithmetic describe
two finite-precision arithmetic systems that are fairly well
understood. In this section we wish to formalize these notions
and also to define finite-precision arithmetics derived from
truncated and rounded logarithmic arithmetic.

Following Matula [2], for the integers 8 = 2, called the base,
and # 2 1, called the significance, the significance Space S§ is
the followmg set of real numbers:

={b|b=iB' wherei,jare integers, | i | <p" }.

The set S3 may be interpreted as the space of f-ary numbers
of n significant S-ary digits, or simply as the n-digit base 8
floating-point numbers.

The truncation conversion mapping T; and the rounding
conversion mapping Rz of the reals into S§ are defined, for
nz1,22,by

max {b|b<x,bES}}, forx>0
min {blb>x,b€S§}, forx <0
0, forx =0

Th(x) =

A .
)>x,b€S,'3’}, forx >0

min{b | (b :

RG(x)= min ’{b | <b 2b>2

0, forx =0

beSB} forx <0

where b’ is the successor of b and is defined for b # 0 by
b =min {aia€SE,a>b}.

By applying Tf arithmetic to an expression we shall
mean the performance of the implied sequence of arithmetic
operations on the specified real numbers where all real
numbers utilized and all intermediate results obtained are
mapped by T§ to Sj before each subsequent operation. Thus
applying T arithmetic to the expression (@ + b) * ¢ yields
Tg(Tﬁ(TE(a) + T3(b)) * T{(c)). The relative difference be-
tween TR(TF(T5(a) + T3(b)) * TH(c)) and (a +b) * c is then
the accumulated relative error effected by applying T" arith-
metic to (@ + b) * c. Six significant hexadecimal digit- truntcated
arithmetic is then characterized as TS arithmetic.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1973

g arithmetic is defined similarly, and R$s arithmetic
then characterizes six significant hexadecimil digit-rounded
arithmetic.

As an alternative to floating-point arithmetic a logarithmically
based arithmetic system will now be introduced.
For the arbitrary real number u > 1, called the base, the

logarithmic space L, is the following set of real numbers:
={XIIXI=ui, {aninteger} U {0}

The truncation mapping 7, and the rounding mappingR,, into
the logarithmic space L,, are defined as follows:

IO_W'J
| logu
@ﬂj
[log i
.0, x=0

] ¢ such thati = x>0

Tu()= -1 such thati = x<0

log x|

i u* such that i =
[logu

+%J, x>0

; 1
-u' such thati= {ﬁ—‘ﬂ
log u

0, x = Q.

Ryu(x)= J x<0

Note that mapping by R, employs geometric rounding rather
than arithmetic rounding since the operation of rounding is
carried out on the exponents.

The notion of applying T, (or R,) arithmetic to an ex-
pression is then defined similarly to that of applying T arith-
metic. The details of realizing 7}, arithmetic and R, arithmetic
via integer arithmetic and log-antilog subroutines are described
in [17.

In order to compare Tj arithmetic with T, arithmetic a
choice of u must be made so that the relative spacing and
density of points in L, is comparable to that in S§. Consider
the members of S§ between B! and B. Each such member
may be thought of as the product of 8’ and an n-digit base 3
fractional value between 1/8 and 8. Floating-point representa-
tion involves the storage of the integer exponent and the n-
digit fraction. If instead we were to approximate a real number
between '~ and ¢ by a fixed-point approximation to its base
B logarithm, this approximate log would have the characteristic
i - 1 and could have a mantissa correct to n-base § digits
stored in place of the n-digit fraction of the floating-point
representation. This means that for a comparison with equi-
table storage constraints in a machine word we should have
g= u(ﬁ). Thus

= ﬁ(ﬁ_")‘

To have L, comparable to S$s, we then have u = 16116~) =

207 or about 1.000000165.
Thus the four finite- pr<=c151on arithmetics denoted by TS,

RS, T,, and R, foru= 2@7**) are chosen as comparable on
the basxs of storage space needed in their implementation.
The complexity of circuitry and total cost of implementation
of these arithmetics will certainly vary, and constitutes an in-
teresting study that we shall not pursue. Our concern here is

fARASA AND MATULA: ERROR PROPAGATION 589

original
radix poim:l

)

Sem————
7-bit 24-pbit (6 hexdigit)
exponent fraction
sign bit
(a)
. "

e —-
30-bit integer logarithm base u

Sign bit for logarithm Sign of magnitude

of corresponding
value in Lu

)

Fig. 1. IBM/360 32-bit word usage for (a) floating-point and (b) loga-
rithmic representations.

. solely with the accuracy preservation properties of these
comparable precision finite-precision arithmetics in heavy
© computing environments.

III. RANDOM COMPUTATION MODEL

Our computational model for analysis of error accumulation
is based essentially on studying the effect of a random se-
quence of arithmetic operations applied to randomly generated
initial data. The total number of data values (i.e., variables)
under consideration remains constant as each computed result
replaces the value of one of the operand variables. Thus ef-
fects of correlated error are pertinent to our model just as they
must be in any practical computational procedure where the
number of arithmetic operations performed far exceeds the
maximum number of data values ever stored at any time
during the computation.

Specifically the simulation model developed consists of a
60-element vector @ of pseudorandom IBM 360 double-
precision floating-point numbers (i.e., in S1¢) with the first
30 numbers chosen uniformly in [+0.25, +1.00) and the re-
maining 30 chosen uniformly in [+1.00, +4.00). Thus the
first 30 hexadecimal numbers have exponent 0 and the latter
30 have exponent 1. From the doubls-precision vector a four
more vectors are formed giving the initial data sets for the four
different arithmetics considered. Letting u = ‘2(2_“),

ri=R%¢ (a)), i=1,--+,60
t; =TS (a)), i=1,---,60
m,-=2><logMITM (a,)l+p(T“ (a;)), i=1,---,60
n,-=2Xlog“IR,u(a,-)l+p(RM(a,-)), T.=1,"',60

where p(x) =1 for x < 0, p(x) = 0 for x > 0.

The elements of the vectors r and ¢ are IBM 360 single-
precision floating-point numbers. The logarithmic encoding
must contain sign information both for the logarithm and the
original value being represented. It was found convenient to
represent twice the base i logarithm of | 7,,(a;) | as an IBM
360 integer m; with the final (parity) bit of m; giving sign in-
formation on T,(a;). Similarly n; is an integer representing
R, (a;). The floating-point and logarithmic formats are shown
in Fig. 1 (see Marasa [1]).

For each arithmetic operation two indices 7 and j are chosen
at random uniformly over 1 to 60 (with { #). An arithmetic
operation © is also randomly chosen according to some speci-
fied distribution over the operations add, subtract, multiply,
and divide. Then in the vectorsa, r, ¢

a; < Ti§ (a; O qp)
ri<RSs (r; O 1))
1< TS6 (4; © 7).

Similarly m; and n; are replaced with the appropriately
coded data resulting from the same operation using 7, and
R, arithmetic on the ith and jth elements of m and n, re-
spectively [1]. Notice that the jth element of each vector is
unchanged in this process.

The value |a;| is then examined and if it falls outside the
range [+0.25, +4.00), multiplication by the appropriate power
of 16 to scale the value of | ;| to this range is then per-
formed. The same scale factor is applied to 7;, t; and the
values encoded by m; and #;.

Relative errors for the arithmetics effected by R$g, T4,
T,, and R, are calculated with respect to arithmetic on the
standard double-precision vector a as the “true value.” Thus
for example we compute (r; - @;)/a; for eachi=1, -, 60 to
find the accumulated relative errors under the rounded arith-
metic R$q, and similarly for the other vectors. Although the
magnitude of the values represented by r;, £;, m;, and n; can
drift outside the range [0.25, 4.00), no anomalous behavior
for these values was observed until the median errors were
close to unity.

The scaling process does not alter any current relative error
nor does it affect the further accumulation of relative error
under multiply and divide operations. The scaling will tend to
accentuate the error growth under subtraction, as prospective
arguments are brought closer together in value.

The simulated random computation sequences we performed
involved between 200 and 2500 arithmetic operations simul-
taneously performed by five different arithmetics. These were
the four finite-precision arithmetics under study and the
standard IBM 360 double-precision (T'1¢) computation that
was taken as “exact,” that is, the errors of the double-

590

precision computation were taken as negligible compared to
those of the single-precision level computation.

IV. AccUMULATED ERRCR GROWTH IN RANDOM
COMPUTATION SEQUENCES

A data base for our model consists of a randomly generated
double-precision vector @ = (ay," -, ago) With a; € Si¢ for
1 <i < 60, and the converted values of ¢ in r, ¢, m, and n.
Two data bases, K| and K,, were generated. The process of
converting each of the double-precision “true” values of the
vector a4 to the initial data for 754, R{s, Ty, and R,, arithmetic
= 2(2—“)) introduces initial conversion error. These initial
errors will be propagated through the succeeding arithmetic
operations, so they will have a marked effect on the overall
accumulated error.

Fig. 2 shows the median relative error introduced in the data
bases K, and K, by the necessary conversions. As expected,
the median relative error under truncation is close to twice
the median relative error introduced by rounding.

The specification of a probability distribution for the four
arithmetic operations add, subtract, multiply, and divide con-
stitutes -an operator mix. Nurnerous random computation
sequences were applied to members of the data bases K| and
K, by the procedure described in the previous section utilizing
different cperator mixes. The specific operator mixes studied
were as follows.

1) 100 percent multiply.

2) 50 percent multiply-50 percent divide.

3) 75 percent multiply-25 percent divide.

4) 100 percent addition.

5) 100 percent subtraction.

6) 75 percent addition-25 percent subtraction.

7) 50 percent addition-50 percent subtraction.

8) 25 percent each operation.

9) 33%— percent each for addition, multiplication, and
division.

Some additional examples involving random ‘“double-
precision” Tle computations applied to the vector ¢ of data
base K; were generated to allow a separate assessment of the
effects of just the propagated error.

The growth of relative error as a function of the number of
arithmetic operations executed was plotted on a semilog scale
for 16 different random computation sequences. The median
relative error for the 60 elements of each data vector was com-
puted by averaging the 30th and 31ist ranked (in absolute
value) relative errors and this quantity exhibited sufficiently
smooth behavior for plotting.

Considerable information is immediately gleaned from the
graphs. By far the determining characteristic of error growth
is the operator mix. Although rounding is preferable to
truncation in general, the improved performance is essentially
limited to a relatively small factor (2 to 70) which does not
significantly grow with the number of operations performed.
The logarithmic arithmetics show a modest advantage for

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197

108 Rl‘i Ru TlssTM 107
K} Ll i |
L | T
6 [
K R R e T
2! L] I L

Fig. 2. Median of the absolute values of the relative errors intréoduced
to the data bases K; and K, by the initial conversions Rj¢, Ry,

| Teand T,

multiply-divide operator mixes, but otherwise no trend is §

discernible.

reproducible. A detailed analysis of the various cases follows.

A. Multiplication and Division Operator Mixes

For multiplication (division) operations the propagated error
is essentially the sum (difference) of the relative errors of the
operands. Note that for the truncated arithmetics 7'¢ and
T, all initial relative errors are negative or zero. Thus under
100 percent multiply these errors will be compounded with-
out cancellation.
more subtle.

The initial relative errors from conversion utilizing rounding

are about one-half that of those imposed by truncation in ;

The operations on data bases K; and K, are 7§
sufficiently similar so that the results should be considered

For rounded arithmetic the situation is ';

average magnitude (absolute value). If the signs of the average |
relative errors are taken into account the initial average relative ';
error is then essentially zero. The nature of the 100 percent
multiply computation would then make plausible the con- %

clusion that the average expected relative error should remain

zero. Actually the expected relative error of zero can be justi-

fied, but only as an average over many such simulated com-
For any single -

putations with different random data bases.
data base it should be noted that with probability one the

signs of all 60 relative errors in the data of R and R, arith-

metic will eventually become either all positive (50 percent
chance) or all negative (50 percent chance). From that point
on the propagated errors will show no more cancellation, and
the growth rate of the magnitude of the relative error should
pattern that of the truncated arithmetics. This fading out of
the beneficial effects of error cancellation under correlated
multiplication is a noteworthy phenomenon that we term the
principle of correlated multiplication.

The data of Figs. 3 and 4 clearly show this behavior. Over
the first several hundred multiply operations the rounded
arithmetics exhibit slower growth rates in Figs. 3 and 4, but
after 300-400 operations the error-growth rates then increase
slope and proceed essentially parallel to the truncated arith-
metics’ error-growth rates. Applying a curve-smoothing func-

i

i

tion over the range of near linear behavior on this semilog 3

scale one derives the equations of Table I.
From Table I it is evident that the error-growth rates given

by the slopes in the linear equations vary only by a few per-
cent for the different finite-precision arithmetics and the dif- 3

ferent random data bases. The rounded arithmetics are uni-

formly better than the corresponding truncated arithmetics in
controlling overall accumulated error by factors of from about
7 to 75, but these factors do not significantly change over the

RASA AND MATULA: ERROR PROPAGATION 591

TABLE 1
EQUATIONS DERIVED FROM SMOOTHED CURVES FOR
100 PERCENT MULTIPLICATION OPERATIONS ON RANGE
FROM 200 1O 900 OPERATIONS

Data Base
Mode of
Arithmetic Ky K,

T?ﬁ Y =0.00688X - 6.90 Y =0.00671X - 6.47
Y R?(, Y =0.00710X - 8.77 Y = 0.00660X - 8.04
gj T, Y = 0.00690X - 7.12 Y = 0.00694X - 7.16
G R, Y =0.00678X - 8.13 Y = 0.00687X - 8.03
[

Log of relative

(median element)

200 400 60C 300 1000
Number of Operations

Fig. 3. 100 percent multiply using daita base K.

Log of relative error

/,’/ ;/
/ //

E ’/ ,;/
‘ o , .
&‘ 2 // 200 400 600 880 1000 1200 100
E g /4’ Number of Operations
3 -3 /,;/ Fig. §. 50 percent multiply-50 percent divide using data base K.
§
44 et .
3 a) ;
@ B / / TABLE II
- A EQUATIONS DERIVED FROM SMOOTHED CURVES FOR
. S / 6 50 PERCENT MULTIPLICATION AND 50 PERCENT DIVISION
o S Tie —— OPERATIONS USING DATA BASE K,
S y 7
/A
Yy Th coeee- 8 Y = 0.00388X — 6.88
— ‘.
g Ry — - R$s Y = 0.00379X - 8.24
s Ty Y = 0.00321X - 7.36
g R, Y = 0.00366X - 8.27

-84

range of operations considered. Thus rounding does more to
delay the eventual growth rate rather than lessen its slope.

-5 e = o TREETIT The error-growth rate corresponding to an operator mix of
Humber of Operations 50 percent multiply and 50 percent divide is seen in Fig. 5 to
Fig. 4. 100 percent multiply using data base K. have a less severe slope. Fitting linear equations to the data of

Fig. 5 yields Table II, and it can be seen that the growth rate
for 50 percent multiply and 50 percent divide has a slope

5§92

essentially one-half that of the 100 percent multiply operator
mix.

This is a significant improvement in the control of error
accumulation. The reason for this improvement is that di-
vision yields a relative error equal to the difference of the rela-
tive errors of the operands. Thus repeated error cancellations
will continue to occur in our random computation model in
contrast to the 100 percent multiply case. Figs. 6 and 7 show
results for the operator mix, 75 percent multiply-25 percent
divide, applied to both data sets K; and K, and the growth
rate of error is seen to fall in between the rates for 100 percent
multiply and 50 percent multiply-50 percent divide.

The conclusions from these computations with various
multiply-divide operator mixes is that the actual operator mix
essentially determines the extent of error cancellation and
therefore the growth rate of accumulated error. The purpose
of rounded arithmetic has been thought of as an effort to
effect error cancellations, but these computations show that
when the number of arithmetic operations far exceeds the
number of variables utilized in the operations, the accumu-
lated correlated error inherent in the finite-precision computa-
tions eventually swamps any further benefits from rounding
after some definite initial advantages. It is noted that the T
standard floating-point arithmetic as implemented on the IBM
System/360 gives uriformly the worst relative accuracy for
all multiply-divide operator mixes examined.

B. Addition and Subtraction Operator Mixes

An analysis of the growth of accumulated relative error for
addition and subtraction is not nearly so straightforward as
that for multiplication and division. The error in the result of
an addition of positive numbers will tend to be dominated by
the error of the operand that is the larger operand in magni-
tude of the two.

Consider two positive operands @; and @, and their respec-
tive accumulated relative errors #; and 5. Let

1 = A[l + Zkal and a) =:/42 +'Zka2

where 4; and A, are the “true values” of ¢, and 4, and Aa,
and Aa, are the absolute errors in these values. The relative
error of the sum of the two values ¢; and @, can be calculated
by r, =Afa; +Aay)/(A, +4,) or

111 <Z&a1) z42 Z&az>
Yy =———{ —
TTA +A\A,] A4, +4,\ 4
A, 4,
= rl +
A+ 4, VA, 4,
If we let 9 =A1/(141 +A2), then(l - 9)=A2/(Al +/42)and
’+=9r1 +(l_6)r2.

ra.

Thus, the relative error in addition is a weighted function of
the relative errors of the operands [3].

The results of 100 percent addition applied to data base K,
(all positive values) are plotted in Fig. 8. The median values of
the relative errors are seen to grow very slowly on the semilog
scale. The data from Fig. 8 with abscissa beyond 1000 oper-
ations is replotted in Fig. 9 using a linear-ordinate axis. It is

IFEE TRANSACTIONS ON COMPUTERS, JUNE 19

(median element)

Log of relative error

200 400 600 800 1000 1200 1400
Number of Operations

Fig. 6. 75 percent multiply-25 percent divide using data base K.

(median element}

Log of relative error

v v T T -
200 400 600 8co 1300 1200 1400
Number of Crerations

Fig. 7. 75 percent multiply-25 percent divide using data base K.

K

then observed that the accumulated relative errors are growmg
linearly with the number of observations. 1

Using the same notation as above, Pennington [3] also
describes the accumulated relative error r_ for the dxfference '
a, - a,. This expression is

ARASA AND MATULA: ERROR PROPAGATION

593+
~ 3
o
g
G
£
LY
~
o o
g M
o
.
hel
[0}
:]
&
i
o
£
1%
o .,
o
>
Nal
o
Ll
~
]
s
i 3
5 al
o 3
L = .8
200 400 600 800 1000 1200 100 1600 1800 2800
Number of Operations
Fig. 8. 100 percent addition using data base K.
’ /
/ /
/
8200 /
/
7
7
7
/
5800 /
;
v
’
14
//
7 5400 /
5 K
H
/
A /
v /
= 5000 /
el i/
e // ,
b / /
& / /
4600 /
{
/ //
’ /
G\S // /
/
% 42004 ,
N ’
o
I
i
LY
Y 3800 . /
2 - //
5 /
—
U '
o 7
3400 /
. T o
y /
Ry o
300¢C / / s
i
2600 4 /
/
1200 1400 1€00 1800 2090 2200 2400
rumber of Operations
Fig. 9. 100 percent addition-actual relative error.
A +4

r.

--mz— [ry+(1-0)rs].

If A; and A, are two numbers that are near each other in

value, the accumulated relative error could “explode” into

quite a large value. To quote from Pennington [3, p. 93]:
The loss of the leading significant figures in the sub-

traction of,two nearly equal numbers is the greatest

source of inaccuracy in most calculations and forms the

weakest link in a chain computation where it occurs.
Floating-point arithmetic offers little or no protection
against this form of accuracy loss * * * .

Fig. 10 is a graph of 100 percent subtraction operations on
data base K'; and the operations do indeed “explode” after
relatively few operations. This effect when combined with
addition is illustrated graphically in Fig. 11 which gives the
curves for the accumulated relative error growth for the oper-

594

(median element)

4
4]
3]
£
o
6
o
E Ti6 -
o]
3 Rl‘——— R
4
w Ty e
10
8 Ry
-8
200 400 600 800

Number cf Operations

Fig. 10. 100 percent subtraction using data base K.

ator mix consisting of 75 percent addition and 25 percent sub-
traction. The growth rate is somewhat steeper than linear on
the log scale. Similar behavior is noted for the operator mix
50 percent addition and 50 percent subtraction in Fig. 12.
Figs. 13 and 14 involve data base K, and show results com-
parable to Figs. 8 and 11.

For addition and subtraction operator mixes no one of the
four arithmetics 7%, RSs, T,, or R, clearly dominates in
controlling error growth in all cases. The error growth is al-
most completely a function of the add-subtract operator mix
with practically no dependence on the mode of arithmetic
utilized.

C. Operator Mixes for All Operations

We have previously seen that multiplication and division
operator mixes tend to propagate and accumulate roundoff
error at a linear rate on a log scale and that the accumulation
of relative error of strict addition grows at a true linear rate.
The introduction of subtraction, however, caused a great dif-
ference in the patterns of growth in the addition tests. This is
true in this third class of tests also. Fig. 15 shows that the
growth of accumulated relative error for a sequence involving
equal amounts of all four arithmetic operations is very similar
to the tests involving only addition and subtraction as shown
in Figs. 11, 12, and 14. The slope of the error growth is in-
creasing even on the log scale. Once again, the subtraction
operation tends to dominate the growth of the error, although
it occurs only 25 percent of the time.

(median element)

Log of relative error

200 400 600 800
Number of Operations

Fig. 11. 75 percent addition-25 percent subtraction using database K.

(median element)

Log of relative error

-84

200 40C 600 $0¢C
Number of Operations

Fig. 12. 50 percent addition-50 percent subtraction using database K 1

[ARASA AND MATULA: ERR OR PROPAGATION

-y

595

M
=
@
g
@
—
o
5
Gl
sl
o
1
&
&
o
9
|
[}
]
>
.t
e
o
~
L
4
G
o
0
)
A
200 400 500 80¢ rren 1rar PR 1600 1800 2000
wurber of (reratis-n:

0
-
pi
5
@
E
[
&
o
=
J
Il
o
@
&
v
i
[}
N
&
@
v
>
al
T
b
6
4 Tis
e
6
° R
w 16—
5 p
= -7 V T[.l —————
Ry oo
-8

A

00

T T -
400 600 800 0t
Number of Cperations

Fig. 14. 75 percent addition-25 percent subtraction using database K ;.

Fig. 16 shows the accumulated relative error curves for equal
ratios of addition, multiplication, and division. After a full
2500 operations, the total accumulated relative error has still
not reached 0.1 in any of the four finite-precision arithmetics.
In this case, the addition operations are smoothing and slow-
ing the growth rate of the relative error from the multiplica-
tion and division operations. Note that compressing this curve
by a factor of 2/3 on the horizontal axis yields a curve similar
in general growth to the 50-S0 multiplication and division
operator mix results of Fig. 5. No one of the four particular
finite-precision arithmetics shows an improvement factor

| greater than 10 over any other in Figs. 15 and 16.

Fig. 13. 100 percent addition using data base K.

-1 1

1
~

(median element)
&

1
=
N

Log of relative error

200 400 600 800

Number <f Operations

Fig. 15. 25 percent-all operations using data base K ;.

D. Propagation of Initial Error

We now want to examine the effects of propagated con-
version error only, unaffected by the accumulated roundoff
error inherent in the arithmetic operations. To implement
this, the data base vector a is simply mapped by T4 arith-
metic to ¢, and then further arithmetic on ¢ is executed in
standard double-precision just as are operations on the “true
values” of a.

In Fig. 17 it is shown that the propagated conversion error
generated for all operations using data base K; grows at a rate
equally erratic and comparable to the curve of Fig. 15 which
includes accumulated roundoff error.

596

IEEE TRANSACTIONS ON COMPUTERS, JUNE

-2
.
-3
=
=9
S
E
8w
[
[
o
4
el
)
E -5
I -
- /f// 6
5 o-8 P Tie —_—
~ T E
U / 7’ 6
| RS
T 7
S A7 L
£ /’
% RM ————
[
Q
i
200 Loe 500 260 10C0 1200 1500 1600 1800 2000
Number of Operations
. . 1
Fig. 16. 33% percent additon-333 percent mult1ply-33% percent divide using data base K.
O-
-11 11
propagated and
accumulated error
G -2 2]
2 /

propagated and
accumulated
error

-4 propagated

error only

T T T
600 800 1000

Number of Operations

T Y
200 400

Fig. 17, Propagated initial conversion error versus accumulated round-
off error for 25 percent-all operations mapped by T?G using data
base K ;.

Fig. 18 shows that propagated conversion error for 100 per-
cent multiplication mapped initially by T$s (data base K;)
does compare favorably to the case also admitting further
truncation errors. It is less by an approximate factor of 0.3 on
the vertical log scale (a factor of two). The curves are virtually
parallel implying the same growth rate once the model has
settled down.

The propagation of initial conversion error for 100 percent

propagatec
error only

(median element)

Log of relative error

T T T T
400 600 800G 1000 1200

Number of Operations

200

Fig. 18. Propagated initial conversion error versus accumulated round
off error for 100 percent multiplication mapped by T?a using data;
base K. 5

3

addition mapped initially by T$s (data base K,) is compared §
to the same arithmetic including accumulated roundoff error§
in Fig. 19. After 500 operations the error stops growing com-4
pletely. This is to be expected since the relative error of the §
result of an addition operation was seen to be a linear com
bination of the relative errors of the two operands. Thus the
accumulated relative error can never exceed the largest initia 1
relative error.

‘MARASA AND MATULA: ERROR PROPAGATION 597

"
o
@«
£
[
-
@ - L
b =
3 it Propagated and accumulated error - —
3 s
. 3 oA
‘. E e
4 ~€ e
e %
7 I Propagated_error only
1 g ——— . e
. o _-d T T T Tt T o mTETmTTT
3 EI
Iy
<
-
[
4
w —89
© A
ad
Q
A
1 T T T T T
1000 1200 1400 1600 1800 2000

! 200 400 600 800

& Number of Operations

Fig. 19. Propagated initial conversion error versus accumulated roundoff error for 100
percent addition mapped by T?G using data base K.

REFERENCES

[1] J. D. Marasa, “Accumulated arithmetic error in floating-point and
alternative logarithmic number systems,” M.S. thesis, Sever Inst.
Technol., Washington Univ., St. Louis, Mo., June 1970.

[2] D. W. Matula, “A formalization of floating-point numeric base
cgr’;version,” IEEE Trans. Comput., vol. C-19, pp. 681-692, Aug.
1970.

[3] R. H. Pennington, Introducrory Computer Methods and Numerical

Analysis, 2nd ed. Toronto, Canada: Macmillan, 1970.

John D. Marasa was born in St. Louis, Mo., on
April 5, 1946. He received the B.S. degree in
applied mathematics and computer science from
Washington University, St. Louis, Mo., in 1968
and the M.S. degree in computer science from
the Sever Institute of Technology of Washington
University in 1970.

From 1968 to 1969 he taught introductory
Fortran programming at Washington University
and in 1970 taught at the University of Missouri,
St. Louis. Since June 1970 he has been em-

ployed as Senior Scientific Programmer/Analyst for the University. of

Missouri School of Medicine at the Missouri Institute of Psychiatry in
the Department of Clinical Neurophysiology and Psychopharmacology.
He is engaged in research in the quantitative real-time analysis of human
electroencephalograms (EEG) and the effects of drug therapy on the
EEG and other physiological measures during sleep and wakefulness.
Mr. Marasa is a member of the Association for Computing Machinery.

David W. Matula was born in St. Louis, Mo., on
November 6, 1937. He received the B.S. degree
in engineering physics from Washington Uni-
versity, St. Louis, Mo., in 1959 and the Ph.D.
degree in engineering science (operations re-
search) from the University of California,
Berkeley, in 1966.

From 1959 to 1960 he was a Woodrow Wilson
Fellow at the University of California, Berkeley.
During the period from 1957 to 1968 he was
associated both part time and as a consultant
with the Monsanto Chemical Company, St. Louis, doing research into
the structure of inorganic polymers. From 1960 to 1966, while at the
Computer Center, University of California, Berkeley, he did program-
ming and research in conjunction with the center’s consultant to the
physical sciences, and co-developed a 20-h videocourse on Fortran pro-
gramming. He has been a consultant to both education and research
divisions of International Business Machines. Since 1966 he has been
at Washington University, where he is currently Associate Professor of
applied mathematics and computer science. For the period February-
June 1973 he has been a Visiting Research Scientist at the Center for
Numerical Analysis, University of Texas, Austin. His research interests
are computer arithmetic, finite-precision arithmetic, graph theory, and
combinatorial mathematics.

Dr. Matula is currently a National Lecturer for the Association for
Computing Machinery and Secretary-Treasurer of their special interest
group on computer science education. He is also a member of Tau
Beta Pi, Sigma Xi, the Operations Research Society, the Mathematical
Association of America, and the Society for Industrial and Applied
Mathematics.

