tions,” in Conf, Rec. Ass. Comput, Mach. Theory of Computing,
Marina del Rey, Calif., May 1969.

R. Brent, “On the addition of binary numbers,” IEEE Trans.
Comput. (Short Notes), vol. C-19, pp. 758-759, Aug. 1970.

I. Marques, private communication.

A. AviZienis, “Signed-digit number representations for fast paral-
lel arithmetic,” IRE Trans. Electron. Comput., vol. EC-10, pp.
389-400, Sept. 1961.

—, “On the problem of computational time and complexity of
arithmetic functions,” in Conf. Rec. Ass. Comput. Mach. Theory
of Computing, Marina del Rey, Calif., May 1969.

Z. Kohavi, Switching and Finite Automata Theory. New York:
McGraw-Hill, 1970,

Abstract—The purpose of this paper is to demonstrate that represen-
tations of numbers other than positional notation may lead to practical
hardware realizations for digital calculation of classes of algorithms.
This paper describes current research in the use of continued fractions.
Although practicality has not been demonstrated, theoretical results
are promising.

Index Terms—Computer arithmetic, continued fractions, continued
products, hardware, quadratic equation, radix, representation of num-
bers, Riccati equation, selection rules.

I. HISTORY AND MOTIVATION

HIS paper is essentiallv a report on research in progress.

The fundamental observation is that, currently, virtually
all digital hardware calculations are based on the use of posi-
tional notation; equivalently, on weighted sums of series.
Other representations of numbers exist; the concern here will
be with continued products and continued fractions.

The use of positional notation has been limited to addition,
subtraction, muitiplication, division, and, to a lesser extent,
square and higher roots. It has been shown [1] that use of
continued products extends the list of implementable algo-
rithms to the logarithm, the exponential, the trigonometric and
inverse trigonometric functions, as well as multiply, divide,
and square root. Both time of executior and cost of hardware
are reasonable with current technology; in comparison with a
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The Status of Investigations into Computer
Hardware Design Based on the Use
of Continued Fractions

JAMES E. ROBERTSON anp KISHOR S. TRIVEDI

conventional arithmetic unit, factors of 2 to 3 (depending on
the function) for both time and cost are typical. A smail
read-only memory fast enough to match accumulator rates
is also needed. The investigation of the use of continued
products was originally limited to the binary case. Higher
radix techniques appear promising, and are being investi-
gated [2]. Otherwise, emphasis will be given here to investiga-
tions into the use of continued fractions. Results to date are
theoretically promising, but not yet practical in the sense of
hardware implementation.

There appear to be three fundamental requirements for a
proposed representation of numbers to be useful for imple-
mentation in hardware, These are the following.

Requirement 1: Conversion to conventional series form
(positional notation) must be both possible and simple.
Implicit here is the requirement that the set of possible results
spans continuously (in the limit of infinite precision) some
permissible range of values. For floating-point arithmetic, it
seems sufficient to require that the ratio of the upper limit to
the lower limit of the range be at least two.

Requirement 2: The set of algorithms should include algo-
rithms that are easily soluble for the representation of numbers
employed. Compatibility among algorithms, in the sense of
hardware sharing, is also a desirable goal.

Requirement 3: Since most algorithms, other than multipli-
cation, appear to require trial and error procedures in the
absence of redundancy, it must be possible to devise techniques
such that the selection of each of the successive coefficients is
practical (cf., quotient-digit selection in division).

It should be pointed out that the use of the coefficients of a
representation is ephemeral, since conversion to positional
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notation occurs in parallel with the successive steps of the
algorithm, For example, for a continued product

ﬁ (1+ 2'iei) =(1+27%¢) Iﬁl (1+ Z"iei).

i=1

At any one step the (k- 1)st continued product has been
determined, the coefficient €, is determined by the selection
rules appropriate to the algorithm, and the kth value of the
continued product (in positional notation) is calculated by
adding the (k- 1)st value to a shifted version of itself. The

-entire set of coefficients €; (i=1,2,- -, m) is never simul-

taneously provided.

[t is difficult to generalize about the procedures necessary to
determine whether or not a proposed representation satisfies
the requirements previously discussed. For continued products
and continued fractions, determination of the set of coefficient
values' and the associated conversion procedure has been rela-
tively simple. The identification of suitable algorithms appears
to be by far the most difficult requirement to satisfy. In
retrospect, for continued products, the observation that the
logarithm of a continued product is the sum of the logarithms
of the individual terms leads to the identification of the
logarithm and its inverse, the exponential, as suitable algo-
rithms. Similarly, the properties of the complex exponential
indicate that the trigonometric functions and their inverses
are identifiable as algorithms for continued product repre-
sentations. No such general observation is as yet apparent to
the authors for continued fractions. Formulating selection
rules appears to be very much a function of the individ-
ual algorithm,

II. EXAMPLES: DIVISION ALGORITHMS

For illustrative purposes, algorithms for division are de-
veloped for positional notation, for continued products, and
for continued fractions. In each case, the initial assumption is
that

N

—-X-0

D
or some variant thereof, where N is the dividend, D is the
divisor, and X is the quotient. The same procedures are then
used for developing the algorithms, except for the representa-
tion of X. For positional notation the division algorithm in
common use is developed. For continued products, a new
algorithm with many useful propertiesis found. The continued
fraction algorithm is obviously an exercise in futility, since the
conversion procedure requires of itself a division as its
terminal step.

A. Positional Notation ,
We define the remainder at the ith step by

N-DX;=Y,
and also
N-DX;_, =Y;,.

For positional notation
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. i -,
X=X, + 2"x,- = Z 2_].)(]'
j=1
Y;=N-~DX;=N-DX;_, - 27Dx; = Y;_, - 27Dx,.

Since the allowed range of Y; decreases by a factor of two
at each step, it is convenient to define a shifted remainder #;:

r=2'Y;
and also
Tig = 2 Y,
r=2'Y;_, - Dx;=2r,_, - Dx;. 6))

Equation (1) is the familiar recursion for most binary division
procedures in common use. The initial remainder Yo = ry = N,
the dividend, and X, = 0.

B. Continued Products
As in the previous example, the remainder is
N-DX;=Y;
and
N_ ‘DX,I'—I = Yi—l .
For a continued product
. i .
X=X (1+27x) =[] (1 +27x)
j=1
Y;=N-DX;=N-DX;_, - 27'DX,_,x
=Y - Z_i(N" Yi)x;

=Y, (1+27%) - 27Nx;. )
It is again convenient to define a shifted remainder 7,.
r=2'Y,
and
ro =20y
r=2'Y (1 +27%,) - Nx;
=21 (1 + 27%;) - Nx;. 3) ,‘

The conversion procedure is
=Y -i
Xi=Xi, +27%,X;

with Xo = landx;=1,0, 1, orx; = 0, 1. The initial remainder
is Yo =ro =N-D,

An alternative that simplifies the selection procedure is to
let N=1 in (3), and compensate by letting X, =N as the
initial condition for the conversion procedure. 3

C. Continued Fractions
For continued fractions, let X; = P;/Q;, and define the re- x
mainder Y; as :
Y; =NQ; - DP;, ‘
The conversion procedure is given by the recursions

Pi=qiPi +piPi,, Py=0 Py=p,
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0i=qi0i-y +*piQi2, Qo=1 4

hich must be followed by a terminal division (i =m) as
dicated by X,,, = P,,,/Q,,. Otherwise, the conversion consists
f additions and shifts if p; and q; are simple binary coeffi-
ients; e.g., 1,4, 1, and 2.

We note that

Q1 =q,

Y, =NQ; , - DP;_,
Y, =NQ;_, - DP;_,
erefore,

Y; =N(q;iQi-y +0iQi-2) - D(q;Pi_y +DiPiy)

Yi=q;Yi +p0iYi,. ()

Equation (5) is derived here for illustrative purposes only.
ue to the obvious impracticality of the process, neither the
‘rate of convergence (i.e., decrease in range of Y;) nor the
‘selection procedure (i.e., method of choosing g; and p;) have
“been studied.

III. THE FIRST QUADRATIC

Consider the finite continued fraction with & partial numera-
tors p; and k partial denominators q; (i=1, 2, -+, k), whose

value is P, /Qy, i.e.,
Pe P _
O aq1*p2
42+ D3
qs t,
+ Pk

Ik

Py, and Qy, are determined from the recursions
Pi=q; Py tpi Py ,,
0i=qi Qi1 * i Qia, Qo=1 Q1 =4:.

It is clear that P, and Q; can be separately and simul-
taneously determined in two binary arithmetic units in k- 1
addition times if the p; and g; are chosen to be simple in the
binary sense. It is convenient to make the choice p; =1 for
all #; it can be shown (Section VI) that other values of p; are
admissible. The digit set for g¢; is initially assumed to be
two-valued, and after some investigation it was found that
choice of the digit set g; = { —;—, 1} yields continued fractions
whose values P,/Q) are continuous in the limit over the
interval as defined by the following equation:

i=2,3,--,k
Py=0 Py =pg

1 . Py

—< lim—<1

2 ke O
These properties indicate that a suitable continued fraction
representation exists, such that conversion to conventional
binary can be achieved by repetitive use of two binary adders
in parallel, followed by a division to determine the quotient
Pyl Q. :

Determination of an algorithm and the appropriate corre-

P
s,

i
5
e
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sponding computational procedure is much more difficult.
The particular problem chosen for investigation was the solu-
tion of the limited class of quadratics

x2+bhx-cp=(x-u)(x+v)=0

(6)

such that % <u<1. The problem, specifically, is, given
by and ¢y, find u (and hence v = b, +u). This problem was
selected because of the following property of infinite periodic
continued fractions, of period k. If the value of the first K - 1
terms is Py_,/Qr_; and the value of the first & terms is
P/Qk, then the quadratic coefficients by and ¢y are by =
(Qx = Pr-1)/Qx -1 and cx = Py /Qy _;. The value of the infinite
periodic continued fraction is then u, the positive root of the
quadratic. The problem is then resolved specifically to the
following one. Given (Qx = Px_1)/Qx -1 and Py /Qy ., (note
that k is unknown), find the sequence of partial denominators
g (i=1,2,--,k). :

The first three approaches, which for brevity cannot be
described here, were abandoned as impossible or impractical
for mechanization. The fourth approach led to a relatively
simple computational procedure.

The fourth approach was based on the observation that the
value u of the infinite periodic continued fraction of period &
with p;=1, q;= {1,1}, (i=1,2,---,k) is also the value
u of the infinite periodic continued fraction of period one with -
each p; =c; and each q; = by (i= 1,2, - -, ). That is,

Ck
u= N
bk+u

This approach may therefore be considered as a method of
conversion from one form of an infinite continued fraction to
that form which is easily converted to the conventional
binary representation,

The fourth approach, in successive steps, generates partial
quotients g1, g2, etc., by increasing the periodicity of periodic
continued fractions as follows:

U=cy =1
by * ek q1 tCr
bk +£’£_ bk-—l + 1
by *. q1 t €
by t,
=1

q: t1
92t Ckp
b 1,

After a considerable amount of algebra, the recursion relations
can be shown to be

br_on=qn Ckne1 = qno1 Cronsz Y Prnsa
O]

For n = 1, the recursions require that b,y =0, cx4y =1, and
go = 0. Although it was initially felt that the requirement

Chon="qn br_n ¥ qn bx_ns1 Y Ck_nsa-
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p;=1 was necessary, later investigation, described in Sec-
tion VI, has shown that values of p; other than 1 may be used.

IV. EXTENSION OF THE RANGE AND DOMAIN OF
QUADRATIC SOLUTIONS

In the previous section, the generality of the solution of the
quadratic of (6) is limited by the requirement that the root u
is representable. For the choice ¢; € {4, 1} and p; = 1, the
range of u is % Su<1. Replacing x in (6) by i, = % and
Umax = 1, the solutions are limited to the triangular wedge in
the ¢, by plane

Tort 4 <cp <bp+ 1. (8)

It will be shown in Section V that selection procedures impose
the further requirement b, > 0 (9). The purpose of this
section is to show that any point in the upper half of the ¢y,
by plane (ie., cx > 0) can be mapped onto a point in the
region defined by conditions (8) and (9).

At this point, it is convenient to delineate four areas in the
¢x, by plane and relate each area to properties of the root
magnitudes u and v.

1) cx <= (b%)/(4). Both roots are imaginary. ,

2) - (3)/(4) <cxr <0. Both roots are real and of the
same sign.

3) ¢y 20, by <0 (second quadrant). The roots are real and
of opposite sign, with u > v.

4) ¢y =0, by = 0 (first quadrant). The roots are real and of
opposite sign, with v > u.

It is first shown that any point in the first quadrant of the
i, by plane may be scaled to lie within a triangular wedge
such that  <u<1. Since v=u+ b, and c; = uv, it follows
that ¢ = uby +u*, and the range % <u <1 is equivalent to

Thet1<ci<b+1. (9)

Multiplying (6) and (8) by 227 (; an integer) yields

(27%)* + (27x) (27%) - 2%¢, = 0 (10)
2771 (2by) + 220D < 2%ey <27 (27B) + 2%, (1)
Let 27x =x', 27by = b}, and 2%/¢;, = ¢;. Then
"N +bix"-c=0 (12)
271 B+ 22U Lo <27 bl + 2V, (13)

Given ¢} and by, the scaling procedure is then as follows.

1) Determine the value of j, such that (13) is satisfied.

2) Multiply ¢ and b} by 272/ and 277 , respectively, to
obtain ¢ and by, which satisfy (8).

3) When the root u is determined, find the positive root
u' of (12), by scaling u in accordance with 1’ = 27y,

Note that the scaling procedure reduces to that normally
employed for square roots in floating-point computers when
bk = (.

For any point cy, by in the first quadrant, an integer value

‘of j can be found such that (13) is satisfied. It is therefore

sufficient, for the first quadrant, to solve (6) subject to the
constraints of (8), with b5 > 0.

For the second quadrant, with b, <0 it is sufficient to
replace by =v - u by by =-by =u~ v. Equation (6) becomes

L
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x2 4 byx - e =(x- o)x +u)=0. (14)

Solution of (14) yields the magnitude v of the negative root
The value of u is then u = b} + v.

The solution for the case of two imaginary roots has not been
considered. Attempts to find a method of solution for two
real roots of the same sign have thus far been unsuccessful.
The preceding observations, however, indicate that a continued
fraction solution of the quadratic can be found if ¢, >0
Le., if the two roots are real and are of opposite sign.

V. SELECTION PROCEDURES FOR THE FIRST QUADRATIC

This section develops a selection procedure for p; and g; of
the algorithm of (7) for solving quadratics using continued
fractions. We decide to have p; = 1 for all i. Thus the problem 4
reduces to the selection of ¢;.

First, we must choose the set from which to pick g;; we call
this a digit set of g;. We put five requirements on this digit set. 4

Requirement 1: All elements must be of the form 2/ where
J is an integer. 3

Requirement 2: Let the range of numbers representable as §
infinite continued fractions using this digit set be [a, b]. We
require that this range form a continuum between « and b. E

Requirement 3: The range (1, 1] should be a subset of the
range [a, b].

Requirement 4: The cardinality of the digit set should be as
low as possible,

Requirement 5: 1t should be possible to develop a selection
procedure for our algorithm with this digit set.

The set {1,2} does not satisfy Requirement 2. The set
{1, %} satisfies all requirements except Requirement 5. The
reason for this is that, with this set, every number representable
as an infinite continued fraction, has a unique representation;
as will be seen later in this paper, that a certain amount of ,
redundancy in representation is necessary to satisfy Require- !
ment 5. The set {1, 4, 11 satisfies all five requirements; so 3
now we focus our attention on this digit set. :

Requirement 1 is clearly satisfied. It is easily shown that §
the range [a, b}, is approximately [0.39, 1.56} with this digit
set. Thus Requirement 3 is satisfied. Requirement 4 is also
satisfied. To show that Requirement 2 is satisfied we can pro-
ceed as follows.

First any number f; € [a, b] can be expanded as a continued
fraction as follows. Let

1 k-
and in general, let 1
fi B qi +fi+1

If a <f; <3 then choose g; = 1.
If 2 <f; < | then choose ;= 1.
If 1 <f; <& then choose q; = 7.

It can easily be verified that with f, € [g, b} and using the
above rules, f; € [a, b] for all i. Therefore, the above rules 4
can be used for all i > 1. We call such a method of expansion $
a consistent method of expansion. By an expansion of f; to k-4

b
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terms is meant the fraction 1/g, + /g, + - + 1/q;. Next
we use the following theorem which we state without proof.
. Theorem 1: For anumber f; € [a, b], if there is a consistent
| method of expansion of f; in the form of a continued fraction,
then such an expansion converges to the value f; as the
| number of terms in the expansion increases, provided that the
fﬁ smallest element in the digit set is greater than 0 [5].
. Thus every number in [a, ] has an infinite continued frac-
| tion expansion with the digit set {1,4,4} and hence Re-
quirement 2 is satisfied.
We devote the rest of this section to show that Require-
ment 5 is satisfied.
We restrict the problem tc by, = 0.
Let f; = c_i/(byx - + u) be expanded to f; = 1/(qisq *fisy)-
Given that 0.39 <f; < 1.56, we have to find g;,, € {1, %,%
such that 0.39<f;,; <1.56. From these, we get the
following.
1) For
Gi+1 = L
2) For
di+1 © %
3) For
Giv1 = %
The regions where two choices are allowed are as follows.
1) 0.485 (bk—i + u) <ck--i <0.72 (bk—i + u) then div1 =
or 1.
2) 0.553 (bk—i + Ll) <Ck__1‘ <1.124 (bk—i + u) then divy =
Lorl.
Both these are triangular wedges in the (cj_;, by _;) plane.
: We will call these the (% and 1) and the (% and 1) overlap
> regions, respectively. Clearly these wedges vary with u. To
get a selection line that decides between g;4; = 2 or 1 and
which is # independent, (since u is unknown) we should first
ake the intersection of all (% and 1) regions as u varies over
he range [%, 1] and then take a line that is completely
within this intersection. A similar statement can be made
bout the (‘ll and %) region but unfortunately the resulting
- triangular wedges are not yet wide enough for our problem.
- It is clear that if we let u vary over a smaller range, we shall
- have wider overlap regions. Thus partitioning the u-range into
three subranges, namely, I; = [1,3), I, =[5, 3), and [; =
%, 1] works well. It is clear that from the given values of
¢ and by it is simple to determine the subrange for root u
with shift, add, and comparison operations only. For example,

039 (by_; +u) <cp_; <0.72 (by.; + u); choose
0.485 (by_; tu) <cp_; < 1.124 (by, _; + u); choose

0.553 (b s + u) < ¢ _; < 1.56 (by_; + u); choose

W=

- sbe >4
and
k- s b <E =>u€cl.

Now we ask for three selection procedures for these three
ubranges of w. First we discuss the case of subrange /; =
{4, 3)- The (2 and 1) overlap region is given by

0.485 (by_; + §) < 0 <072 (b _; + 1)
Similarly, the (% and %) overlap region is given by
0.553 (bx_it ) S ey S L12 (b + 1),

We show these regions on the (cx_;, by _;) plane, in Fig. 1.
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Fig. 1. The overlap regions,

The upper and the lower bounds of the (% and %) region are
labeled A and B, respectively, and those for the (% and 1)
region are labeled C and D. We also show the greatest upper
bound ¢y _; = 1.56 (by _; + ) as line H and the least lower
bound ¢y _;= 039 (by_; + 7) as line L. We also draw two
selection lines S1 and S2, which are ck_,-=bk_,-+% and
Ck.i=3% bg_; + 7%, tespectively. Notice that the coefficients
in these lines are chosen to be “simple” binary numbers, For
any point in the region enclosed by line H and S1 we choose
Gie1 = %. For any point between S2 and L, we choose
g;+1 =1 and otherwise we choose g;.; = % Notice that with
these rules our choice could be erroneous in certain regions.
Where this happens, we call these regions the forbidden
regions. The quadrilateral enclosed by lines H, B, S1, and L is
the (% and %) forbidden region and the quadrilateral enclosed
by lines H, S2, C, and L is the (4 and 1) forbidden region.
We have to make sure that for no value of i, the point
(cx_i» bx_;) lies in one of these regions. A proof of this fact
can be found in [5]. A similar treatment can be given to the
other two subranges I, and I;. For the subrange I,, the
selection lines S; and S, are, ck_,-=bk_,~+% and ¢ _; =
% by_it %, respectively. For the subrange I3, the selection
lines S1 and S2 are ¢, _; = bk_i+% and ¢ _; = % br_;t ;—,
respectively.

Although this general selection procedure is valid for all
i 0, we want to use a special procedure for i/ = 0 so that when
we make tests for the subrange determination, we also find
q: on the basis of the same tests.

For i=0, f; =u. Then from our previous analysis, we have,
0.485<u<1.124 then g, =4 and 0.39<u<0.72 then
q; = 1. Thus we can choose q; =1 for all u €7, and q, =%
foralluel, ori;.

We now give the complete Algorithm A.

Step A0—[Check]: If b; <O then exit, no solution; other-
wise if (cx - 4bx) <3 or if (cx - by >1) then exit, no
solution.

Step AI—[Subrange] : If ¢, - § by <Z- then set g, < 1,
K1« %, K2+ 3 and go to Step A2; otherwise set g, « 1,
if ey - % by <% then set K1 <—§,K2<—% and go to Step A2;
otherwise set K1« 3, K2« 1.
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Step A2—(Initilize]: SetPy « 0,00 <P, < 1,0, <q,; set
br_t < qick oy < 1+qy (b - by_y);seti< 2.

Step A3—~[Selectionf: 1f ¢y _;,; > (byx_;.; + K1) then set
g; <  and go to Step Ad; otherwise if ¢ ;. <% by s,y + K2
then set q; < 1 and go to Step A4; otherwise set q; < %

Step A4—[Advance] : Set

bk i < qiCk i1~ Qi1 Choivz T Drina
Choi <G (Opjng = bx_) t Cr_ina

Py <qPi tP,

Qi <qiQi t0i,

i «i+1.
Step AS—[Loop Test]: Ifi<iy,y then go to Step A3;
Step A6—[Final]: u (=ROOT ) < P;/Q;, v < by + u.
Note: The value of i,,, will be decided by the machine
precision in case this algorithm is implemented in hardware.

If this algorithm is implemented in software, however, the
value of i,,, will be decided by the allowable error.

VI. RECENT RELATED WORK

In the preceding sections, the discovery of the first continued
fraction algorithm and its method of application have been
described. In this regard, the exposition is historically ordered.
The purpose of this section is to describe briefly the results of
more recent research.

A study of the derivation of the quadratic algorithm of (7)
has indicated that the requirement that p;=1 for all 7 is
unnecessary [3]. Equations (7) then become

_4n dn_1

bp_n= Ck-n+1~
DPn n-1

Cr-ns2 T Dk_nsz

p -
Ckon =~ qnbg_pn Anbx _n+1 + Ck-na+z- (1~))
Dn-1
Selection rules for the digit sets p; € {1, 1} and ¢; € { %, 1}
have been determined.
In [4], it is shown that the Riccati equation

Y tay?+tby+c=0 (16)

leads to relatively simple recursions if the partial numerators
p; and partial denominators g; of the associated continued
fraction are simple in the binary sense. Since both tan x and
€* satisfy the Riccati equation for particular choices of a, b,
and ¢, there is some hope that useful continued fraction
algorithms for these functions can be found. Attempts to find
selection rules for tanx have thus far been unsuccessful and
have not been attempted for the exponential.

The derivation of the recursion relations for the Riccati
equation suggested a similar derivation for the quadratic equa-
tion and led to a second set of recursion relations for the
quadratic. The special selection procedure for i = 0 described
in Section V suffices for selection rules for this second
quadratic algorithm. Recursion relations for higher order
polynomials can also be found by this method.

VII. CONCLUSIONS

It should be emphasized that the primary purpose of this
paper is to point out that hardware construction can be based
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on representations of numbers other than positional notatio
It seems quite clear that the use of continued products yields a
useful set of algerithms that can share the same hardware in a
feasible and practical manner using current technology.

The discussion of continued fractions presented here is a case
study of the problems that arise when a different representa-
tion of numbers is proposed. The research on the use of
continued fracticns is incomplete; the results obtained thus
far do not justify hardware construction based on continued

fractions.

It seems appropriate, therefore, to conclude with a list of
questions for future research. These include the following.

1) Can the set of algorithms soluble with continued products
be extended?

2) How can the set of algorithms based on the use of con-
tinued fractions be extended? Can feasible selection rules for
each algorithm be found?

3) What additional representations of numbers exist? What
is their potential usefulness?
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