Computation Times of Arithmetic and
Boolean Functions in (d,r) Circuits

PHILIP M. SPIRA

Abstract—A (d, r) circuit is a d-valued logical circuit in which each
element has fan-in at most 7 and can compute any r-argument d-valued
logical function in unit time. In this paper we review results previously
published on the computation time of such circuits for addition and
multiplication and for computation of general Boolean functions. We
also explicitly state hitherto unpublished but known results on the time
necessary to divide in such circuits.

Index Terms—Circuits of elements of limited fan-in, time of arith-
metic operations, time of computation,

I. INTRODUCTION

HIS paper summarizes recent results on the time neces-

sary to compute arithmetic operations and Boolean
functions with switching circuits of elements with limited fan-
in. Most of the material has appeared in previous publications
of Ofman [1], Karatsuba and Ofman [2], Winograd [3]-[5],
Spira [6]-[8], Brent [9], and Marques [10]. The rest of the
material has not been previously published though it is known
to specialists in the field. .

We believe we have summarized most of the relevant litera-
ture on the subject with one notable exception—those papers
dealing with redundant number representation. The reader
interested in this topic is referred to the recent work of
Avizienis [11], [12], as a starting-off point.

II. THE MODEL OF COMPUTATION

In any meaningful discussion of time of computation it is
necessary to establish a precise model first. This is especially
true when discussing lower bounds. One must define a unit-
time computing device. Once this has been done it is possible
hopefully to make statements about bounds derived from con-
sideration of the possible ways to interconnect such devices.
Lower bounds tend to involve abstract arguments while upper
bounds are constructive, i.e., one exhibits a circuit for the
particular task of interest. It is, in principal, possible to es-
tablish exact results on the time to compute a given function
by enumerating all circuits first of time one, then of time two,
etc., until one is found that computes the function. Such
methods, however, are both aesthetically displeasing and in
practice impossible for computations involving large numbers.

As the unit-time computing device the papers surveyed here
take modules that compute some d-valued logic function of r

Manuscript received January 22, 1973.
part by NSF Grant GJ-708 and in part by the U.S. Army Research
Office, Durham, N.C., under Contract DA-AROD-D-31-124-71-G174.

The author is with the Department of Electrical Engineering and

This work was supported in

Computer Sciences and the Electronics Research Laboratory, Uni-
versity of California, Berkeley, Calif. 94720.

Fig. 1. A circuit for adding two-bit number.

variables, ie., some f:Zy > Z; where Z; = {0, 1,---,d- 1}.
The most commonly encountered case in practice is, of course,

binary valued logic in which d = 2. Although it is not strictly

true that all such functions take equal time for a fixed d and a
fixed r this is a good model for our purposes. We are mainly
interested in nets of these devices that compute functions of n
variables for n>>>r. Our model is perfectly adequate to give
growth rates of time to compute such functions as » increases.

We now define our model avoiding unnecessary formalism
where ideas should be intuitively clear.

Definition 1: A (d, r) module is a device with 7 inputs and
one splittable output which in unit time computes a fixed r-
variable d-valued function f:Z% ~Z;. A (d, r) circuit Cis a
circuit composed of such modules. The inputs to C are chosen
from Z; and the computation time of C is the time necessary
for the final output values of C to appear, i.c., the longest path
through the circuit.

A basic fact about (d, r) circuits is that it is not possible to
speed up computation of a function by the use of feedback.
Therefore, the reader can consider all circuits to be feedback
free in the sequel. As an example of such a circuit consider
Fig. 1 which is a (2, 2) circuit to add two-bit binary numbers
X1xo and y;y, obtaining their sum z,z,zy in computation
time three. The reader will note that we do not have multiple
fan-out in this circuit. It is also true that the computation
time of a function is unaffected if we restrict ourselves to ele-
ments with nonsplittable output lines. We summarize the two
preceding observations as follows.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-22, NO. 6, JUNE 1973_

v

SPIRA: ARITHMETIC AND BOOLEAN FUNCTIONS

Theorem 1: Let f:Z3 ~Z% be any n-input m-output d-
alued logic function. Then if there is a (d, r) circuit that com-
L putes fin time T there is a (d, 7) circuit in which no element of
‘:the circuit has a splittable output line computing f in this
| same time. ‘

‘ Proof: See Winograd [3].

8 Intuitively speaking, limitation to fan-out one allows us to
| split the function being computed into its “parallel pieces,”
making it easier to obtain lcwer bounds on computation time
which nevertheless are valid for multiple fan-out device cir-
| cuits. On the other hand, when constructing actual circuits,
it is useful to have splittable output lines in order to avoid ex-
essive amounts of hardware.

III. TIME OF ARITHMETIC OPERATIONS

In this section we survey results on the time of arithmetic
[operations, namely addition, multiplication, and division.
¢ These fall into two classes those in which d-ary representation
- of the numbers is allowed and those in which any nonredun-
L dant input and output codes are allowed for the circuit.

. The main tool used in deriving the lower bounds that follow
is given in Ofman [2] and explicitly stated in Winograd [3].
Because it is so important we give it here with proof as follows.

Theorem 2. Let f:Z} - Z be any n-variable d-valued logical
| function that is nondegenerate in all of its arguments (i.e.,
- really depends upon all n arguments). Then any (d, r) circuit
| that computes f has computation time at least [log, #].

: Proof: At each stage of the circuit the number of lines can
be reduced by at most a factor of 7. Hence if the computation
time is T we must have r7 > n. Q.E.D.

As we shall see in the next section this bound is extremely
poor for almost all functions. Amazingly enough, however, it
is a tight bound for addition and multiplication time and a
good bound for division time.

We now consider arithmetic operations of integers coded in
d-ary notation for d > 2. Ofman [1] first considered (d, r)
circuits as a model although his terminology was slightly dif-
ferent. He was interested in the time necessary to add n-bit
binary numbers. He showed that there is a (3, 2) circuit for
addition of n-bit numbers in time O(log 7) + 1. Winograd [4]
gives a construction of a circuit to add base d numbers of n
significant figures coded in d-ary notation in time ¢, +
[c, log, n] by means of a (d, r) circuit where ¢; =1+
10g| 4172 [7/2] and ¢, =10g| 4,5 7. The construction is valid
for r=3. His circuit will compute the sum either numerically
“or modulo d” by ignoring the most significant bit of the an-
- swer. Since the second most significant bit is a function of all
2n inputs Theorem 2 applies to give a lower bound of [log,Z +
log, n] for any r > 2 for this computation. Brent [9] has shown
~that this lower bound can be closely approached for the case
‘d=2 and r>2. He shows that n-bit binary numbers can be
added in time n(1 + €) where € is any number greater than zero
if n is large enough. Marques [10] has shown that this result
generalizes to bases greater than two.

Multiplication on (2,) circuits was first considered by
-Karatsuba and’ Ofman. They showed a (2, 2) circuit to multi-
ply binary coded n-bit numbers in time O(log n) + constant.

£

553

They also noted that this problem is equivalent to the addition
of a column of binary numbers that represent the partial
products of the multiplication. In general they showed that m
n-bit numbers can be summed in O(znn) + constant. Hence the
multiplication result follows as a special case. To the author’s
knowledge no one has published results on the time necessary
to multiply base d numbers on circuits when the numbers are
coded in d-ary notation. However, it is easy to see that num-
bers of # significant figures can be multiplied in O(log) + con-
stant for any fixed d. Theorem 2 again shows that this is the
optimal growth rate for such a computation. The best attain-
able multiplicative constant for the growth rate remains an
open problem.

We now consider division of d-ary numbers. Note that in
contrast to addition cor multiplication, division has no exact
answer. We thus consider the time to divide one d-ary number
by another where both numbers and the answer we desire have
n significant figures. Now one can see that the most significant
figure of the answer depends upon all 2n inputs. Hence for
(d, r) circuits a lower bound computation time of rlog, n) is
valid for this problem. In contrast to previous results for addi-
tion and multiplication it is not known whether this growth
rate is attainable. Note that if one can find an n-place recipro-
cal of an #-bit number in time O(log #) + constant it will follow
that one can divide in time O(log) + constant since multiply-
ing the reciprocal of the divisor by the dividend yields the de-
sired answer. Unfortunately the best known means of comput-
ing the reciprocal are all O(log® n). Hence the fastest known
way to do the division has this growth rate with # as well. We
briefly discuss one such method.

Let X and y be n-place d-ary numbers where we assume that
d' <y<1-d™". Then,lettingZ=1-y

]{=1+Z+...+Zn

J)
to n significant figures. Hence the basic idea is to invert y by
computing powers of Z and adding. To compute the powers
of Z we first compute by successive squaring 22, 2%, -+ - Zm
where m is the least power of two which is not less than .
Then merely multiply appropriate choices of these powers.
Each multiplication takes time O(log #) + constant from be-
fore. The number of multiplications that must be performed
sequentially to eompute Z* is hence at most [10g2 n] plus the
number of ones in the binary expansion of £. This latter num-
ber is at most rlog2 n"l as well. So the powers of Z are all
computable in time O(log?n). The summation of these powers
is time O(log n) + constant. Hence division by this method
takes O(log®n). A similar result attains using the “quadratic
convergence” method based on the formula

ylz(l +Z2)(1+Z)A +2%) - (1 + ZUn2]y,

We now briefly discuss time to perform arithmetic opera-
tions when the input and output codes to the circuit are
allowed to be any I-1 functions. Let ¢:XX XY be any
function with indicated domain and range for finite sets X
and Y.

554

Definition 2: A (d, r) circuit computes ¢: X X X = Y with
nonredundant coding if there are 1-1 functions f, and £, from
X into the set finite-dimensional d-ary vectors and 1-1 func-
tions f3 from Y into the set of finite-dimensional d-ary vectors
such that if x;, x, € X then if C has input [£,(x,), f2(x,)] its
output will be f3(p(x,, x5)).

For example, in the preceding discussion, fi, /3, and J3 have
always been codes into d-ary representation of the numbers
and X has been Zd,, whereas Y has been Zd,,, Zd,,,,,, or
Z ;2n-1 depending upon the function computed. A :

By algebraic methods involving group theory Winograd [4],
[S] and Spira [6] have derived bounds on the time of circuits
that compute specific such ¢ that do not depend upon the
codes so long as they are 1-1. We shall not discuss the details
here. Though we give a simple example to show the reader
that some such ¢ are computable faster using nonstandard
number representation. Consider the case ¢:Z 0 X Zan ™
Zana where ¢ (x, y)=xy, ie., numerical multiplication.
Then from before any (d, r) circuit computing ¢ using d-ary
representation as its input and output codes must take time
O(log n) to operate. Now consider the case in which the rep-
resentation of a number N where 0 <N <d" - 1 contains the
d-ary representation of the exponents in the prime power
representation of N. Clearly no such exponent will exceed
[log2d"] so it will have at most f logy fn logzdﬂ places in d-
ary notation. We now can multiply two numbers N; and N,
so encoded by merely adding their respective exponents. But
these additions can be done in parallel in time C + O(log log n)
using previous method.

We now summarize the results of [4]-[6] and refer the
reader interested in details to the original papers. First some
definitions are necessary.

Definition 3: Let G be a finite Abelian group. Let a(G) be
the maximum order of any cyclic subgroup of G. For an inte-
ger V let a(iV) be the maximum prime power dividing N. Note
that if Gy is the cyclic group of order N then (V) = a(G).

Definition 4: Let Ay be the group of positive integers less
than and relatively prime to N with the group operation being
multiplication modulo V. Let B(V) = a(Ay).
© Definition 5: Let Qp, = lem {1, 2, -+, m} and ¥(V) = min
{m:Q,, >N}. Then we summarize lower and upper bounds
valid for modular and arithmetic addition and multiplication
valid for (d,) circuits having nonredundant coding. All lower
bounds are valid for 73> 2 as are all upper bounds for ¢, ¢,
and ¢4. The upper bound for ¢, is valid for > 3. Upper
bounds for ¢, ¢35, and ¢4 appear in Spira [6] ; all other bounds
are in Winograd [4], [S]. The reader can easily see that the
bounds are very tight if he notes that y(4x) <2 + ¥(x). They
are presented in Fig. 2.

IV. TiME 1O CoMPUTE BOOLEAN FUNCTIONS

In this section we discuss the time to compute Boolean func-
tions. The results here generalize to functions of d-ary logic
for d> 2 but we shall not worry about that here. Hence we
only consider (2, 7) circuits.

Definition 6: Let f: {0, 1}* > {0, 1} be a Boolean function
of n arguments and let T,(f) be the minimum computation
time of any (2, 7) circuit computing f. Let

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197;

Punction | Lower Bound

o]

Upper Bound

9t Ty X2y v Ty

Gllfx.y) = x+ty mod N

1.
.. [[H
eleel] o e
O |
st el fpt)

Fig. 2. Bounds for various functions.

DEENESNESN

Qzlx,y) = xy mod N

byt Ty x Ty Zy
o30x,y) = xty

Ty(n) = max {T,(f):f: {0, 1} > {0, 1}}.
Then it follows easily from Theorem 2 that T,(n) > [log, n] .

Winograd has shown [3] by a counting argument in which 1

the number of trees of a given depth are compared to the num-
ber of functions of » variables that T,(n) > (n log,)(1 - ¢) for
any €>0 and sufficiently large n. In fact almost all
f:{0,1}" > {0, 1} have T,(f) > (n log,2)(1 - €). On theother
hand Spira [7] gives a construction demonstrating that given
any k=1 for n large enough

T;,(n) =Zn+ . 'lngn .

log, log, -

k iterations

n

This result is based on use of Shannon’s expansion [11]. 1t
seems probable that 7,(n) is proportional to n, but this is an 4

unsettled conjecture.

Spira [8] also discusses the time necessary to compute classes
of Boolean functions of special interest—namely, symmetric,
monotone, and threshold functions. It is shown that sym-

metric or threshold functions of # variables are computable in i

time O(log n) on (2, r) circuits whereas there are monotone

functions of n variables requiring time proportional to n to
compute.

Many authors have noted that the best known lower bound 4

on T,(f) for any specific Boolean function of n variables is

flogrn] although almost all such functions require roughly time
n log,2 to compute. We note in closing that it would be ex- |

tremely interesting and probably incredibly difficult to find a
sequence of functions {f;} where f;: {0, 1}¥ > {0, 1} such that
T,(f;) grows faster than log i. This is the case even though any

“randomly” chosen sequence would almost surely have this ¥

property.

REFERENCES

[1] Y.Ofnian, “On the algorithmic complexity of discrete functions,”
Dokl Akad: Nauk. SSSR, vol. 145, no. 1, pp. 48-51, 1962.

[2] A. Karatsuba and Y. Ofman, “Multiplication of multidigit num-

bers with computers,” Dokl Akad. Nauk. SSSR, vol. 145, no. 2,

p. 293,1962.

3]s

tions,” Ph.D. dissertation, Dep. Math., New York Univ., New

York, N.Y.

—, “On the time required to perform addition,” J, Ass. Comput.

Mach., vol. 12, no, 2, pp, 277-285, 1965.

(4]
(51
(6]
{71

Comput. Mach., vol. 14, no. 4, pp. 793-802, 1967,
Comput. Mach., vol. 16, pp. 235-243, Apr. 1969,

—, “On the time required to perform multiplication,” J. Ass, °

P. M. Spira, “The time required for group multiplication,” J. 4ss.

S. Winograd, “On the time required to perform computer opera- §

—, “On the time necessary to compute switching functions,” 3

IEEE Trans. Comput. (Short Notes), vol. C-20, pp. 104-105, Jan. 3

1971

[8] -—, “On the computation time of certain classes of Boolean func- j\

tions,” in Conf, Rec. Ass. Comput, Mach. Theory of Computing,
Marina del Rey, Calif., May 1969.

R. Brent, “On the addition of binary numbers,” IEEE Trans.
Comput. (Short Notes), vol. C-19, pp. 758-759, Aug. 1970.

I. Marques, private communication.

A. AviZienis, “Signed-digit number representations for fast paral-
lel arithmetic,” IRE Trans. Electron. Comput., vol. EC-10, pp.
389-400, Sept. 1961.

—, “On the problem of computational time and complexity of
arithmetic functions,” in Conf. Rec. Ass. Comput. Mach. Theory
of Computing, Marina del Rey, Calif., May 1969.

Z. Kohavi, Switching and Finite Automata Theory. New York:
McGraw-Hill, 1970,

Abstract—The purpose of this paper is to demonstrate that represen-
tations of numbers other than positional notation may lead to practical
hardware realizations for digital calculation of classes of algorithms.
This paper describes current research in the use of continued fractions.
Although practicality has not been demonstrated, theoretical results
are promising.

Index Terms—Computer arithmetic, continued fractions, continued
products, hardware, quadratic equation, radix, representation of num-
bers, Riccati equation, selection rules.

I. HISTORY AND MOTIVATION

HIS paper is essentiallv a report on research in progress.

The fundamental observation is that, currently, virtually
all digital hardware calculations are based on the use of posi-
tional notation; equivalently, on weighted sums of series.
Other representations of numbers exist; the concern here will
be with continued products and continued fractions.

The use of positional notation has been limited to addition,
subtraction, muitiplication, division, and, to a lesser extent,
square and higher roots. It has been shown [1] that use of
continued products extends the list of implementable algo-
rithms to the logarithm, the exponential, the trigonometric and
inverse trigonometric functions, as well as multiply, divide,
and square root. Both time of executior and cost of hardware
are reasonable with current technology; in comparison with a

Manuscript received August 11, 1972; revised November 21, 1972,
This work was supported in part by NSF Grant GJ813, in part by the
Applied Mathematics Department of Brookhaven National Laboratory,
and in part by the Department of Computer Science, University of
Illinois, Urbana, 111

The authors are with the Department of Computer Science, University
of Illinois, Urbana, Ill. 61801,

555

Philip M. Spira was born in Worcester, Mass., on
June 30, 1941. He received the B.S. degree
from the Massachusetts Institute of Technology,
Cambridge, in 1963 and the M.S. and Ph.D. de-
grees from Stanford University, Stanford, Calif.,
in 1965 and 1968, respectively, all in electrical
engineering.

He is currently teaching computer science at
the University of California, Berkeley. His re-
search is mainly concerned with complexity of
computation and algorithms.

The Status of Investigations into Computer
Hardware Design Based on the Use
of Continued Fractions

JAMES E. ROBERTSON anp KISHOR S. TRIVEDI

conventional arithmetic unit, factors of 2 to 3 (depending on
the function) for both time and cost are typical. A smail
read-only memory fast enough to match accumulator rates
is also needed. The investigation of the use of continued
products was originally limited to the binary case. Higher
radix techniques appear promising, and are being investi-
gated [2]. Otherwise, emphasis will be given here to investiga-
tions into the use of continued fractions. Results to date are
theoretically promising, but not yet practical in the sense of
hardware implementation.

There appear to be three fundamental requirements for a
proposed representation of numbers to be useful for imple-
mentation in hardware, These are the following.

Requirement 1: Conversion to conventional series form
(positional notation) must be both possible and simple.
Implicit here is the requirement that the set of possible results
spans continuously (in the limit of infinite precision) some
permissible range of values. For floating-point arithmetic, it
seems sufficient to require that the ratio of the upper limit to
the lower limit of the range be at least two.

Requirement 2: The set of algorithms should include algo-
rithms that are easily soluble for the representation of numbers
employed. Compatibility among algorithms, in the sense of
hardware sharing, is also a desirable goal.

Requirement 3: Since most algorithms, other than multipli-
cation, appear to require trial and error procedures in the
absence of redundancy, it must be possible to devise techniques
such that the selection of each of the successive coefficients is
practical (cf., quotient-digit selection in division).

It should be pointed out that the use of the coefficients of a
representation is ephemeral, since conversion to positional

