~ Abstract—In this paper we discuss directed roundings and indicate
how hardware might be desigred to produce proper upward directed,
downward directed, and certain commonly used symmetric roundings.
Algorithms for the four binary arithmetic operations and for rounding
L are presented, together with proofs of their correctness; appropriate
* formulas for 2 priori error analysis of these algorithms are presented,
Some of the basic applications of directed roundings are surveyed.

Index Terms-Data format, directed rounding, guard digits, ideal
floating-point hardware, rounding.

I. INTRODUCTION

rounding, floating-point arithmetic, and approximation

of real numbers by computer representable numbers; it might

seem as though we are beating a dead horse. However, to

our knowledge, no manufacturer yet builds a computer that

performs these functions ideally—at least, not by our
definition.

In this paper, we sketch our definition of “ideal” floating-

. the four binary arithmetic operations and proofs of their ccr-
© rectness, present the appropriate formulas for a priori error
. analysis based on this design, and survey some of the basic ap-
. plications of this arithmetic. Much of the material in this
- paper is treated in greater detail in [#], [6]-]8]. A thorough
discussion of floating-point arithmetic, including some of the
ideas presented here, can be found in Knuth [1]; however, he
does not deal with directed roundings, which we feel are es-
sential to proper operation of a computer.

Throughout this paper, we will assume that our computer
~ operates in the base § number system. A floating-point num-
ber is a pair (e, f), where e is an m-digit signed integer expo-
nent (power of §) and f is a p-digit signed fraction. Since the
size and particular representation of ¢ have no bearing on ac-
curacy apart from limiting the size of the largest and smallest
machine numbers, we will not concern ourselves with the
details of exponent representation here. In subsequent re-
marks in this section that deal with number representations, it
- is to be understood that the statements are true only within the
- range permitted by the exponent size.

The floating-point number (e, f) represents the number
L 3° X f, where

point hardware, present algorithms for software simulation of

.
s
1
4
Iy
-

a;87",

M~

f== a;=0,1,---,(6-1). (1.1)

y
i

L}
—

Manuscript received January 31, 1973. This work was sponsored by
the U.S. Army under Contract DA-31-124-ARO-D-462.

~ Wisconsin, Madi$on, Wis.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-22, NO. 6, JUNE 1973

T "HERE has been a great deal of work done in the areas of

The author is with the Mathematics Research Center, University of

577

Roundings in Floating-Point Arithmetic

J. MICHAEL YOHE

It is clear from (1.1) that any number that can be expressed
as a p-digit base § fraction .times an m-digit power of fis a
machine representable number, and no other numbers are
representable. Since m and p are fixed, only finitely many
different real numbers are representable. Any nonrepresent-
able number R must be approximated by a machine number;
if m;, m, are the two consecutive machine numbers such that
my <R <m,, and R is approximated by either m, or m,,
then it is clear that the approximation is subject to an error
of the order of $77. This is sometimes referred to as the basic
machine precision.

A floating-point number is said to be normalized if a, # 0; we
will assume that all floating-point numbers are normalized,
since maximum accuracy is maintained by use of normalized
numbers. In this terminology, zero is a special case; we will
assume that it is expressed by a zero fraction and any desired
(but specific) exponent (this is usually taken to be the smallest
allowable exponent); we will admit zero as an exception to the
rule that all numbers must be normalized.

II. ROUNDINGS AND DIRECTED ROUNDINGS

An axiomatic approach to computational rounding has been
given by Kulisch in [2]. For the sake of completeness, we
sketch some of the points of his theory here. We do not state
the theory in full generality; those interested in further in-
formation along these lines should consult [2].

Let R be the real number system and let M be the set of
machine representable numbers. A mapping J:R - M is said
to be a rounding if, for alla, b € R we have

Oa <0Ob whenever a <b.

A rounding is called optimal if for all a€M, Oa =a. In
practice, this must be true for any reasonable representation
of @, which must certainly include any representation the com-
puter might manufacture during an intermediate stage of an
arithmetic operation. The definition of optimal rounding im-
plies that if € R and m,, m, are consecutive members of M
with m; <a <m,, and if J:R - M is an optimal rounding,
then either Oa = m,y or Oa = m,.

A rounding is downward directed (upward directed) if, for
alla € R, we have Oa < a(0a > a). A rounding is symmetric
if Oe=-0(-a). If O is a rounding, 2, b are machine num-
bers, and * is an arithmetic operation, then by a B b we will
mean O(z * b).

By [2, theorem 1] optimal directed roundings are unique.
We denote the optimal upward directed rounding by A, and
the optimal downward directed rounding by V.

There are three symmetric roundings that are of interest:
inward directed rounding, or rounding toward zero, which is
often called truncation and which we denote by T outward

directed rounding, or rounding away from zero, which we call
augmentation and denote by A; and the symmetric rounding
that takes each real rumber to the closest machine number
(rounding to the next machine number whose magnitude is
larger if there is a tie), which we denote by 0.

1IL. FLOATING -POINT HARDWARE DESIGN

By our definition, proper hardware design would enable the
computer to perform any of the roundings 4, V, and O at the
user’s option. The rounding O is most frequently used, since
it produces maximum accuracy. However, the roundings A
and V are used in implementation of interval arithmetic, for
example, and in certain other situations; we will discuss ap-
plications briefly in Section VII. The following is a brief
sketch of the theory presented in [6].

What information does a computer need in order to round a
real number properly? It clearly needs the first p digits of the
appropriate base § fraction. Moreover, in order to be able to
round to the nearest machine number (by our definition of
such rounding) it needs the p+ Ist digit of the fraction.
Finally, in order to obtain a correct upward or downward
directed rounding, it needs an indicator to tell us whether
there are any nonzero digits in the remainder of the fraction.

The result of an arithmetic operation combining two ma-
chine numbers is not, in general, a machine number; we must
usually approximate the answer. In order to assure ourselves
that our computer has all of the above information at the con-
clusion of an arithmetic operation, we must design it to pre-
serve even more information during the execution of the
operation. We will illustrate this by means of a floating-point
decimal representation which uses a three-digit fraction and
sign-magnitude representation for negative numbers. We will
confine our discussion to addition, since subtraction is es-
sentially the same, and multiplication and division have less
stringent requirements for additional information.

First, we clearly must have a signed fraction in the arithme-
tic register; we denote the sign by S (it may be a single binary
digit) and the fraction by FFF. Next, since the addition of
two three-digit numbers can yield a four-digit number, the
arithmetic register sometimes needs an overflow digit to con-
tain the sum of two numbers. This is denoted by O in Fig. 1.
These parts of the arithmetic register would be necessary even
if we were doing only integer arithmetic.

We will also need two guard digits at the right-hand end of
the register to preserve information that is shifted out of the
right-hand end of the three-digit fraction. These guard digits
are appended to the three fractional digits to form a five-digit
fraction; all five digits participate fully in the addition. The
initial value of the guard digits is, of course, zero (in (8- 1)’s
complement arithmetic, a zero digit is expressed as zero if the
number is positive and as (8- 1) if the number is negative).
The need for one guard digit is self-evident; the need for two is
illustrated by the following problem:

0.100 X 10°
-0.995 X 1072,

This would be computed as follows in sign-magnitude
arithmetic:

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197

[EREEEE

Fig. 1. The structure of the accumulator.

0.10000

-0.00995
0.09005.

Normalization now yields 0.90050 X 107! ; the former secon
guard digit is now the first guard digit, and is necessary fo
proper rounding. It will be shown in Section V that two guar
digits are always sufficient to preserve maximal accuracy. ;

The two guard digits are denoted by GG in Fig. 1.

The final item of information needed is an indicator to sho
whether there are any nonzero digits beyond the second guar
digit. This indicator can be a single binary digit, and is de
noted by I in Fig. 1.

Although we have avoided any mention of exponent ove
flow and underflow conditions, proper hardware design shoul
include proper handling of out-of-range numbers. This in
cludes an interrupt upon occurrence of the error condition,
complete set of indicators to tell the user exactly what wen
wrong, and a result that is at least indicative of the problem if-
not meaningful. The algorithms Section IV are designed with:
these considerations in mind.

One further word about hardware is appropriate: if the ma-
chine operates in the base 85 10, then the hardware ought to’
provide facilities for conversion between base 8 and base 10.;
If the hardware is designed to do arithmetic operations and.
rounding in the manner described here, accurate conversions—
at least from base 10 to base f—should also be relatively easy.
to incorporate. This is discussed in detail in [8], and we will
explore it no further here. ~

IV. ALGORITHMS FOR ROUNDED FLOATING-POINT
ARITHMETIC

The algorithms presented in this section are designed to
simulate the floating-point arithmetic described in Section III.
These algorithms are distillations of the algorithms appearing
in [6]; those algorithms were intended primarily as microflow -
algorithms to suggest how hardware might be designed to pro- #§
duce the above roundings, whereas these algorithms are de-
signed primarily for software implementation of the principles
outlined in Section IIL. 3

The algorithms presented in this section postulate the follow- §
ing machine features and capabilities. !

1) There is a double-length register AX that can be shifted 1
left or right as a single register; however, either half (4 or X)
of the register may be loaded, stored, tested, and shifted sep- ;
arately. When considered as a double-length register, 4 is as-
sumed to contain the most significant portion of the number.
The full double-length register is not of vital importance to any 3
of the algorithms; in fact, the X register is primarily a sub- §
stitute for the indicator I of Section HI. What is important is
the ability to determine whether the resuit contains nonzero §
digits beyond the second guard digit. Thus, if the double-
length register is not available, it will be necessary to find
another means of sensing and preserving this information.

YOHE: FLOATING-POINT ARITHMETIC ROUNDINGS

2) There is a single-length auxiliary register or temporary
storage location called U that can be manipulated as necessary,
and an indicator or storage cell called S that may be used to
keep track of the sign of the result during calculation.

3) There are separate arithmetic registers for carrying out
exponent arithmetic, and these registers have sufficient ca-
pacity that overflow will not occur during operations on valid
exponents. '

4) The computer is equipped with the followmg fixed-point
arithmetic operations.

a) Single-length fixed-point addition that adds the corw-
tents of U to the contents of 4, leaving the result in 4.

b) A fixed-point fractional multiply instruction that mul-
tiplies the contents of 4 by the contents of U and produces a
double-length product in the AX register. The radix point is
assumed to lie immediately to the left of the high-order digit
of A (and U).

¢) A fixed-point fractional divide instruction that divides
the contents of AX by U, leaving the quotient in 4 and the
remainder in X.

If the computer is not equipped with fractional multiply and
divide instructions, but is equipped with integer instructions
that produce a double-length product or require a double-
length dividend, respectively, these instructions may be used,
provided necessary modifications to the algorithms are made.
The reason for choosing the fractional instructions is that, on
binary machines, the sign bit of the low-order word may or
may not be regarded as a significant digit in the' double-length
number, according to hardware design. Choice of the frac-
tional operations relieves us from having to clutter up the
algorithms with the two cases. In the algorithms that follow,
we will always assume this fractional format in describing
fixed-point numbers.

5) The arithmetic mode is not important; however, in either
sign-magnitude or §’s-complement arithmetic, clearing a por-
tion of a word to zero means replacing each affected digit by
zero, while in (- 1)’s-complement arithmetic each affected
digit is to be replaced by zero if the sign of the number is
positive, and by (- 1) if the sign of the number is negative.

6) The exponent field of a floating-point number is located
in the high-order portion of the machine word (exclusive o
sign), and occupies at least three base 3 digits. The fractional
part of a floating-point number occupies the sign position and
and p low-order base 3 digits; i.e., when regarded as a fixed-
point number, the fractional part of a normalized ﬂoatmg
point number always lies in the range 3D < |f| < g™
B (mﬂf’)

We wﬂl denote the largest positive floating-point number by
max, and the smallest normalized positive floating-point num-
ber by min.

The location of the exponent is restricted only in order tc
allow for precise specification of shifting in the arithmetic
algorithms. The size of the axponent is specified in order tc
allow room in a single register for the two guard digits and the
overflow digit, which are essential to the algarithm. We need
two base § digits for guard digits, and we need one digit for
overflow. The.latter need not be a base § digit; a binary digit
will suffice for this purpose. (On a muchine such as Systeim/

presented by Knuth in [1].

5§79

360, the singlelength accumulator will not be sufficient to
perform the algorithms, and double-length accumulators will
have to be used for the calculations. This will lead to special
problems in representing the information that these algorithms
assume to be contained in the X register; see 1) above.)

In addition to these machine features, we assume in these
algorithms that any exponent bias present will be removed
during the unpacking of floating-point numbers, and replaced
during the packing process. No assumptions are made about
the exponent system used; in particular, it is not assumed that

a floating-point zero is represented by a word that is 1dent1cally
zero. (Perhaps this results in s lightly more complicated algo-
rithms than would otherwise be necessary.) We will designate
the exponent used to represent zero by ey; we designate the
maximum possible exponent by €pay, and the minimum pos-
sible exponent by emin.

The algorithms assume that the operands are normalized
floating-point numbers that do not represent too and are
present in the 4 and U registers in packed floating-point
format. The result will be placed in the 4 register in packed
floating-point format. In addition, there are four error in-
dicators or fault flags that may be set by the floating-point
operations given by these algcrithms: exponent underflow,
exponent overflow, infinity, and divide by zero. These flags
will be set if the corresponding fault has occurred during the
calculation of the result.

The rounding procedure is the most important part of the
algorithm; apart from it, the algorithms are essentially those
The rounding algorithm will pro-
vide all five rounding options mentioned in Section II, namely:
T,A,A,V,and O. ‘

In each of these cases, the action of the rounding algorithm
is obvious if the result lies between two nonzero normalized
floating-point machine numbers. In particular, if the result is
an exact normalized machine number all of these options will
produce that machine number.

In the case of underflow, the rounding algorithm will set the
exponent underflow indicator; the result will be zero, +min, or
- min depending on the rounding option chosen.

In the case of overflow, the rounding algorithm will set the
exponent overflow indicator. If the rounding option implies
rounding toward zero the result will be +max. If the rounding
option implies rounding away from zero, the infinity indicator
is set and the result is replaced by the particular bit configura-
tion used to represent “infinity.” There may not be such a bit
conflguratlon in this case, *max may be substituted as being
indicative of the result. We designate this configuration by
(ees, fw), O simply oo,

In Table I, we show the machine number produced by each
of the five roundings for any real number R, together with the
indq‘cators that are to be set, if any. In this table, 7, and m,
represent consecutive positive normalized floating-point ma-
chine numbers with m; < m,, and m represents any number
representable on the machine as a normalized floating-point
number or zero.

In Table II, we show the implications of Table I in terms of
rounding toward zero or rounding away from zero.

The algorithms are presented in what follows. During the _

IEEE TRANSACTIONS ON COMPUTERS, JUNE 1973

580
TABLE !
EFFECT OF ROUNDING .
Rounding Option .
R A v T A 0
Case tange of Values Value Ind?® Value Ind Value Ind Value Ind Value Ind

1 R=m m m m m m

2 max + 6emax_p <R oo 0,i max o max o o0 0,1 oo 0,1

3 max + £ﬁemax—@+-1) < R < max + ﬁema"“p =] 0,i max max o0 0,i o0 0,1

4 max < R < max + %ﬁema"_(pﬂ) o 0,i max max % 0,i max

5 %(ml +my) <R <my my my my ny my

6 my <R <%(m+m2) msy my mq Moy my

7 min - %ﬁemin—(pﬂ) < R < min min 0 u 0 u min min

8 % min <R < min - %ﬁemin—-(pﬂ) min u 0 u 0 u min u min u

9 0 <R <% min min u 0 u 0 u min u 0 u
10 —% min <R<O0 0 u -min u 0 u -min u 0 u
11 -min+ %ﬁemi”—(pﬂ) <R <-%min 0 u -min 0 u -min -min u
12 -min <R < -min + %pe’"i“_(” AR u ~min 0 u ~min —min
13 —%(ml +my) <R < -my -my -my -my -mq -my
14 -my <R < - {y(m1 +my) -my -msy -my ~My -my
15 —-max _%Bemax—(pﬂ) < R < -max --max —00 0,i -max —o0 0,I -max
16 -max -~ ﬁemax—p < R < -max - %Bemax_(pﬂ) ~max —co 0,1 —max —oo 0,i —oo 0,i
17 R < -max - ﬁemax—p ~max o ~c0 0,i -max o —oo N —o0 0,i

8j represents the infinity indicator;o represents the overflow indicator; and u represents the underflow indicator.

TABLE 11
ROUNDING IMPLICATIONS

Sign of Number

Rounding Option + -
T round toward zero round toward zero
A round away from round away from
Zero zero
A round away from round toward zero
Ze10
v round toward zero round away from

Q; |result] > min and
p + 1st digit < /2

O; |result] > min and
p + st digit > g/2

C; lresult| < % min
Q; % min < jresult| < min
O; exponent overflow

Z€ero

round toward zero

round away from zero

round toward zero

round away from zero
round away from zero

course of the actual arithmetic computations, the overflow
digit, the p digits of the fraction, and the two guard digits de-
scribed in Section III are all carried in the low-order p + 3
digits of the 4 register, while the X register functions as the
indicator I of Section IIl. After normalization but before
rounding, the guard digits are shifted into the X register to
allow for easier determination of an exact result; from there
on, the two high-order digits of the X register function as the
guard digits, and the remainder of X functions as the
indicator /.

Algorithm 1 (Addition)

Step I: (Unpack.) Remove the exponents of the operands
and clear the corresponding position to zero. Clear all in-
dicators. Clear X to +0.

Step 2: (Prepare for addition.) If e4 > ey, interchange e4
with ey and A with U. Shift both A and U left circularly two
places.

Step 3: (Make A positive.) If 4 <0, change signs of 4, U,
and S.

Step 4: (Test for zero operand.) If U=0, go to Step 9. If
A # 0, go to Step 5. Otherwise, set 4 « U, e,y < ey, and, if
A < 0, change the signs of A and S. Go to Step 9.

Step 5: (Compute shift necessary to align fractions.) Set
c=min(p+2,ey-eyq).

Step 6: (Align fractions.) Shift AX right o places.
€4 < Eey.

Step 7: (Add.) Algebraically add U to A using fixed-point
arithmetic.

Step 8: (Prepare for normalization.) If 4 =0, clear 4 to

Set

YOHE: FLOATING-POINT ARITHMETIC ROUNDINGS

+0, set e4 <o, and go to Step 9. If 4 > 0, go to Step 9.
;' Otherwise, change signs of 4 and S, and, if X # 0, subtract
L 570™P) from A.

‘ Step 9: (Normalize, round, end sign correction, and return.)
Execute Algorithm 5.

Algorithm 2 (Subtraction)
- Step 1: (Change sign.) Change the sign of U.
Step 2: (Add.) Execute Algorithm 1.

Algorithm 3 (Multiplication)

Step 1: (Unpack.) Remove the exponents of the operands
and clear the corresponding positions to zero. Clear all in-
dicators. Clear X to +0.

Step 2: (Test for zero operand.) If A =0, go to Step 5. If
U=0,clear 4 to +0, set e4 < ey, and go to Step 5.

Step 3: (Prepare to multiply.) If 4 <0, change the signs
of 4 and S. If U <0, change the signs of U/ and S. Shift U left
circularly m places. Shift 4 left circularly two places.

Step 4: (Multiply.) Execute the fractional multiply instruc-
tion to multiply 4 by U. Setey < ey +ey.

Step 5: (Normalize, round, end sign correction, pack, and
return.) Execute Algorithm 5.

Algorithm 4 (Division)

4 Step 1: (Unpack.) Remove the exponents of the operands
¢ and clear the corresponding positions to zero.
dicators. Clear X to +0.

Step 2: (Test for zero operand.) If U=0, set the zero di-

visor indicator, set S < (sign of A), set eg4 < emay + 1, set
A< § D and go to Step 5. If4 =0, go to Step S.

Step 3: (Prepare to divide.) If 4 < @, change the signs of A
and S. If U< O, change the signs of U/ and S. Shift 4X right
m - 2 places.

Step 4: (Divide.) Execute the fractional divide instruction
to divide AX by U. Setey < ey - ey.

Step 5: (Normalize, round, end sign correction, pack, and
return.) Execute Algorithm 5.

Algorithm 5 (Normalization, Rounding, End Sign Correction,
and Packing)

Step 1: (Test for zero result.) If4 = 0, go to Step 11.

Step 2: (Right normalization.) If 4 > g2 shift 4X

- right one place, set ey < e, + 1, and go to Step 4.

Step 3: (Left normalization.) If 4 <C Bm=D shift A left
one place, sete, «e, - 1, and repeat Step 3.

Step 4: (Align fraction.) Shift AX right two places.

Step 5: (Test for exact result.) If X =0, go to Step 9.

Step 6: (Test for truncation.) If the rounding option is
Oand either =2, e4 = exly, and A =™ - g7"*P) or > 2,
€4 =emin- 1l,and 4 = 347" - g~Um*P} o5 to Step 13. Other-
wise, if rounding option implies rounding toward zero (see
Table 1) go to Step 9.

Step 7: (Round away from zero.) Set 4 < A + g~(m+P),

Step 8: (Test for rounding overflow.) If 4 <37 go to
Step 9. Otherwise, shift AX right one place and set
eq “eyq +1.

Clear all in-

Step 9: (Test for bounds faults.) If e4 <epm;,, go toStep
13. If e4 > emqy, g0 to Step 14.

Step 10: (End sign correction.) If § <0, change the sign
of A.

Step 11: (Pack.) Pack the result into the desired format.

Step 12: (Return.) Operation is complete; return to calling
program.

Step 13: (Underflow fault.) Set the exponent underflow
indicator. If rounding option implies rounding toward zero,
set 4 <0 and e4 <€y and go to Step 10. Otherwise, set
€4 < emin, A <871 and go to Step 10. ~

Step 14: (Overflow fault.) Set the exponent overflow in-
dicator. If rounding option implies rounding away from zero,
set e4 < e and fy « fe, set the infinity indicator, and go to
Step 10. Otherwise, set €4 < emax, 4 <87 - 7P and go
to Step 10.

V. PROOFS OF THE CORRECTNESS OF THE
ARITHMETIC ALGORITHMS

In this section, we prove that the algorithms given in the
previous section indeed produce the results claimed for them.
Since the primary purpose of these algorithms is to produce
results of known accuracy, and since the primary reason for
having results of known accuracy is to be able to obtain rig-
orous bounds on the results of computations, it is reasonable
to regard such proofs as a necessary part of the algorithms
themselves. Indeed, developing rigorous error analyses on the
basis of unproven algorithms would be akin to building a sky-
scraper on a sand foundation.
~ We first prove (Lemma 2) that the normalization and round-
ing algorithm produces a correctly rounded packed floating-
point representation of a real number R under certain hy-
potheses; we then show for each of the arithmetic algorithms
that the result produced prior to the execution of Algorithm 5
satisfies the hypotheses of Lemma 2. Thus the algorithms are
seen to be correct.

Lemma 1: Suppose R = B X F is a normalized real number
and * is one of the five rounding options shown in Table I.
Then applying * to R is equrvalent to rounding R as shown in
Table II. Moreover, if R= BE x F is the approximation to R
obtained by rounding F to a p-digit fraction as specified by *,
renormalizing and adjusting the exponent if necessary, then we
have the following.

1) Underflow is indicated in Table I if and only if E< €min-

2) Overflow is indicated in Table [if and only if E> €max -

3) Infinity is indicated in Table I if and only if either:

a) the rounding option specifies a bound, and there is no
machine representable real number that will serve as a
bound of the type indicated, or

b) the rounding option is O, and E> €max, 5O that R is
an indeterminate distance from max; i.e., no a priori
bound can be given.

Proof: For any of the rounding options *, *(R) =R if and
only if R is a machine representable number; hence the first
line of Table I is correct, for all roundings.

The value column shown under T in Table I can easily be
verified by inspection to be equivalent to rounding toward
zZero.

582

The rounding A is defined to be rounding away from zero.
If an attempt is made to round a number whase magnitude is
larger than max away from zero, there will be no machine
representable number greater than R, and the infinity indica-
tor will be set. On the other hand, if R is any number less than
or equal to max, then max is at least as far away from zero as
R; consequently, there is a machine representable number that
will serve as a bound of the type indicated, and the infinity
indicator will not be set. Thus the value column and the
presence of infinity indicators under the A column are
verified.

It is shown in [2, theorem 1] that the rounding A is equiv-
alent to the rounding 7T for negative numbers, and the rounding
A for positive numbers; similarly, the rounding V is equivalent
to the rounding A for negative numbers and to the rounding T’
for positive numbers. Consequently, the value columns and
the presence of infinity indicators are verified for these col-
umns also.

For the rounding O, lines 5 through 14 of the value column
are easily verified by inspection from the definition of the
rounding given in Section II. Lines 4 and 15 follow from the
fact that max + %Be’“a"—(p "V i exactly halfway between max
and the real number whose exponent is e, + 1 and whose
fraction is £7!. This fact also serves to verify the infinity in-
dications in lines 2, 3, 16, and 17 of this column.

The only points that must still be verified are the overflow
and underflow indications. Clearly, whenever we have an in-
finity indication we have exponent overflow, since any num-
ber greater than max, when rounded away from zero, rounds
to a number whose exponent is necessarily greater than
€max- The only other overflow case to consider is when a
number R whose magnitude is greater than or equal to max +
ﬁem‘”‘—p is rounded toward zero. But the exponent of such a
number is greater than ey, , and rounding the fraction toward
zero cannot decrease the exponent. Consequently, the expo-
nent of the number R is still out of range, and the overflow
indication is valid.

We must now prove that underflow is indicated if and only
if £ < epjy. For the rounding T if (R | <min then E <ep,
since rounding toward zero cannot increase the exponent. On
the other hand, if {R|> min, then min is a machine number
lying between R and zero, hence F = e;, and no underflow
condition exists. This verifies the underflow indicators in the
T column.

For the rounding A, we observe that any number in the
range shown on line 12, when rounded away from zero, will
round to min; thus there is no exponent underflow in this case.
However, if R is any number in the range shown on lines 10
and 11, we will still have E < ep;,. Conversely, we have
E < epiy if R is in the range shown on these two lines. The
cases for lines 7 through 9 are proved by symmetry, and the
underflow indicators in the A and V columns follow from the
relationships between those roundings and the T and 4
roundings.

The proof of the underflow indicators for the O rounding
follows from the above discussion, and the observation that
the exponent resulting from rounding a number toward zero
is no greater than the exponent resulting from rounding that
number away from zero. The lemma is proved.

" quently, we must add 1 to the exponent. Similarly, we must

~required by the floating-point format.

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197

Lemma 2: Let R = +5*("=2) X F be a real number, where:2
F is zero or a positive fixed-point number less than 6'(m'3).
Suppose that Algorithm 5 is presented with the following in-
formation in the locations indicated.
a) Eiscontainediney,.
b) The high-order m + p digits of F are contained in the
A register; moreover, either the contents of A are an
exact representation of For F > 7.

¢) There is a nonzero number in the high-order p digits of
the X register if and only if the contents of the 4 reg-
ister are not an exact representation of F;i.e., if we have
AL F <A+ mp)

d) The sign of R is the same as the sign of the indicator S.

Suppose further that Algorithm S is given one of the five ;
rounding options shown in Table I. Then Algorithm § will
produce the correct packed floating-point approximation to R
as shown in Table I together with the error indications shown
there.

Proof: If A =0, then zero is the correct result; the hy-
potheses of the lemma imply that e 4 will contain the exponent
used to represent zero; Step 1 takes us directly to the packing §
step and at Step 12 we correctly return zero as the result of
the algorithm. Note that, since 4 is identically zero, no adjust-
ment is necessary to reposition the radix point. ,

If A # 0O, then it may be necessary to normalize the number; i"
i.e., to multiply the fraction by a “fudge factor” to insure that -
gm0 < F<g ™2 We will do this by shifting; of course,
we must make the appropriate adjustment to the exponent. A i
right shift of one position divides the fraction by j, conse-

subtract 1 from the exponent for each position of left shift %
of the fraction.

If F > 37 then the hypotheses of the Lemma insure
that F < 6'('""3‘); i.e., that one place of right shift will besuf- 4§
ficient to normalize F. The normalization and exponent
adjustment are correctly performed in Step 2.

If F < "1 then the hypotheses of the lemma guarantee
that either the normalization can be accomplished by one po-
sition of left shift, or that X = 0. In either case, left shifting 4
by the number of positions required to normalize the number
yields a normalized fraction that is correct to p+1 digits; 7§
this is done in Step 3.

We now shift 4X right two places to align the fraction as
Now, regardless of §
the normalization steps executed, we have a p-digit fraction, 4
normalized, in A, the p + Ist digit of the fraction in the high- §
order position of X, and a nonzero value in X if and only if 4 is ‘$
not an exact representation of the fraction F X 872, For if right }
normalization occurred, the total right shift is at most three 3§
places, and consequently no information was lost. (Note that §
X cannot be -0; the only possibility of this would be on a bi- }
nary machine with 1’s complement arithmetic; but in this case §
the sign bit is not counted in the m + p bits we are using, so the §
low-order bit of X would still be zero.) If left normalization §
occurred, either the net right shift of the X register is +1, or §
X was zero to begin with; in either case, none of the informa-
tion in X was lost. In addition, the contents of the two guard
digits (after normalization) now appear in X, and the claim is §
verified.]

J
.

YOHE: FLOATING-POINT ARITHMETIC ROUNDINGS

If the result is exact, Step 5 takes us directly to the test for

- bounds faults. If the result is not exact, we perform the tests

in Table II for choice of rounding; by Lemma 1, these choices

will yield a correct rounding.

If the rounding option chosen implies rounding toward zero,
then the contents of the A register are already a correctly
rounded fraction and we proceed to Step 9. If the rounding
option implies rounding away from zero, then the fraction
must be incremented by 1 in the low-order digit. This is done
in Step 7.

If incrementing the fraction results in an unnormalized frac-
tion, then it must be renormalized. This is done in Step 8;
the exponent is increased by 1.

At this point, we have an approximation to R consisting of
a properly rounded p-digit fraction, normalized and positioned
in the low-order p digits of 4; and an exponent in e4. The
pair (e, f4) is thus a correct approximation to R if the ex-
ponent e is in the proper range. In that event, we apply the
proper sign correction to f4, pack the result into floating-
point format, and return it; no error indicators have been set.
(The divide by zero indicator is the only one not under the
control of Algorithm 5; but if it is set, then the division algo-
rithm has also insured that exponent overflow will occur.)

Step 13 is reached only if the exponent is too small; ie., if
exponent underflow has occurred. It can be reached either
from Step 6 or from Step 9.

If Step 13 is reached from Step 6, then the rounding option
is “nearest machine number.” In this case only, no rounding
correction has yet been applied. If Step 13 was reached from
Step 9, and the rounding option implies rounding away from
zero, a rounding correction has already been applied and the
result failed to be a representable machine number, but the
result of rounding the rounded number will be the same as it
would have been for the original result. (The only case where

“double rounding can produce an erroneous result is the case

of “nearest machine number” where the original number was
less than 7 min but the rounded number is equal to 4 min;
this case was specifically tested for in Step 6 and rounding
was inhibited.)

At Step 13, the exponent underflow indicator is set; if
rounding toward zero was implied, a zero result is produced;
if rounding away from zero was implied, min is produced as
the result. In either case, we exit to Step 10, having produced
the result indicated in Table I.

If we reach Step 14, overflow has occurred. The exponent
overflow indicator is set, and, in addition, if the rounding
option required rounding away from zero, the infinity indica-
tor is set. The maximum pesitive machine representable num-
ber is substituted for the result in the case that rounding
toward zero was indicated; the representation of infinity is
substituted for the result in case rounding away from zero
was indicated.

In any case, the correct exponent and fraction pair is pro-
duced, and the indicators are set properly. We then exit to
Step 10, where we apply the appropriate sign correction, pack
the result, and return it.

This completes the proof of the lemma.

Lemma 3: If more than one position of left shift is required
to normalize the result of Step 8 of Algorithm 1, then at most

5;8:3

one position of right shift was required in Step 6 to equalize
the exponents, and therefore in this case the result of the addi- .
tion is exactly expressed in the A register.

Proof: See [1, p. 194, exercise 4.2.1.2]. The proof is also
given explicitly in [6].

Theorem 1: The results of Algorithm 1 (addition) satisfy
the hypotheses of Lemma 2 with respect to the real number
(ea, fa) +(eu, fu).

Proof: It will be convenient to divide the proof into
several cases.
Case 1: One of the operands is zero. Suppose first that
(ey, fu) =0. Then the exact resultis (e, f,4). After Step 1,
the indicators will be cleared and X will be cleared to +0.
Step 2 will shift 4 and U left two positions, thus placing the
radix point as required for Lemma 2. If e4 > ey (which is
probably the usual state of affairs), no interchange takes place.
In Step 3, 4 is made positive and S is made negative if A was
negative to begin with, and Step 4 sends us directly to Step 9
with all hypotheses of Lemma 2 satisfied. Ifey <ey, then
interchange takes place at Step 2; Step 3 has no effect, and
interchange again takes place at Step 4. The sign of 4 is now
tested; 4 is made positive and S is correctly set to the sign of
the result. We then proceed to Step 9, again with all hypoth-
eses of Lemma 2 satisfied.

Suppose now that (ey, fiy) #0; then (e4, f4)=0. The
argument for this case is analogous to the above argument;
consequently, we again reach Step 9 with all hypotheses of
Lemma 2 satisfied.

Case 2: Both numbers are positive and nonzero. Step 2

' places the number with the smaller exponent in A and its expo-

nent in e4 ; the number with the larger exponent is placed in U
and its exponent in ey;. Both numbers are shifted left two
places to position the radix point as required by Lemma 2.
Since both numbers are assumed to be positive, Step 3 has no
effect; since both are assumed to be nonzero, Step 4 sends us
to Step S.

In Step 5, o is calculated. If (eyy-e4) <p+2, then in
Step 6, we shift AX right (ey - e4) places, which simply
divides 4 by B°, creating an unnormalized fraction with the
same exponent as e;y. Now ey is set to ey, which is the cor-
rect exponent of the result. Note that at most p digits of f4
are shifted into X, so X satisfics the hypotheses of Lemma 2
with regard to positioning of nonzero information; moreover,
there will be nonzero digit in the high-order p positions of X
if and only if A does not exactly represent the original num-
ber with its new exponent.

Addition now takes place; the result is an exact representa-
tion of the sum, with the 4 X register being the fraction. More-
over, since both operands were assumed to have been nor-
malized, we have §"™) < 4 < g7, consequently, the
hypotheses of Lemma 2 are satisfied. Step 8 has no effect in
this case, so we enter Step 9 with all hypotheses of Lemma 2
satisfied.

If, at Step 5, (ey~ e4) > p + 2, then all p digits of A are
shifted into X; note again that X satisfies the condition of
Lemma 2 with regard to positioning of nonzero information.
Addition now is equivalent to placing U into A; since both
operands were assumed to have been normalized, the contents
of A satisfy hypothesis b) of Lemma 2. Moreover, in this

584

case we are assured that X # 0 and that 4 is not an exact
representation of the sum. Again, Step 8 has no effect, and
we enter Step 9 with all hypotheses of Lemma 2 satisfied.

Case 3: Both operands are negative. Then at Step 3,
both are made positive and S is set negative, reflecting that the
result is negative. Algorithm 1 proceeds with the magnitudes
of the operands and, by the above argument, produces results
that satisfy the hypotheses of Lemma 2. Consequently, the
theorem is proved for this case.

Case 4: The operands are of opposite signs. Let us sup-
pose first that (e4, f4) is positive at Step 3. (The previous
discussion extends easily to establish the validity of Step 2 in
this case.)

Steps 5 and 6 remain valid; again, X contains a nonzero value
in the high-order p digits if and only if f4 contains ncnzero
digits beyond the second guard digit, and this value indicates
that, when the contents of the A register are regarded as a
fractional number N, we have N <[4 <N + §("*P)

In Step 7, we perform the addition. Since fi is negative, the
sum may be positive, zero, or negative. Since the operands
were assumed to. have been normalized, the sum will be zero
if and only if (ey, fy) =-(e4, f4) (proof of this statement
is an easy exercise). Thus in this case we clear 4 to O (in case
addition cannot produce -0, this step is unnecessary), set e4
to eg, and proceed to Step 9 with all hypotheses of Lemma 2
satisfied.

If the sum is positive, then, again because the operands were
normalized, we must have e4 = ey ; thus the result is exact
(and X is zero); we may proceed with normalization since all
hypotheses of Lemma 2 are again satisfied.

If the sum is negative, we must change the sign of .4 since
the normalization procedure requires a positive fraction. We
record this by also changing the sign of S. If X is zero, the
result in the A register exactly represents f4 + fi7, and we may
proceed directly to the rounding and normalization. By
Lemma 3, the result in A will be exact if 4 < 87 con-
sequently, in this case the hypotheses of Lemma 2 are satis-
fied. If, however, X is nonzero, then the original result rep-
resented NV + fyy, and we have NV + fiy <fy + fu <N+ fy+
§7("*P) The presence of nonzero digits in X indicates that we
must make a positive correction to the negative number
N+ fy; and thus it indicates that we must make a regative
correction to the positive number we now have in 4. Since
the rounding algorithm always regards the presence of nonzero
digits in X as indicating a positive correction, we must make
an adjustment to the contents of 4. Specifically, the presence
of nonzero digits in X indicates that the result F of the addi-
tion satisfies the inequality

fa <F<fy+pmP
or
fa - B <-F <y

Thus, when we change signs, we must subtract 87" from
our result in order for the contents of 4X to satisfy the hy-
potheses of Lemma 2.

In the case where (e, , f,4) is negative at Step 3, we appeal to
the previous argument for the case where both numbers are
negative to conclude that S is set properly, and then to the

IEEE TRANSACTIONS ON COMPUTERS, JUNE l97f

above argument to conclude that the algorithm yields a valid'i§
result in this case. This completes the proof of the theorem.
Theorem 2: The results of Algorithm 2 (subtraction) satisfy
the hypotheses of Lemma 2 with respect to the real number
(e4,fa) - (ev.fu)]
Proof: Since subtraction is accomplished by changing the
sign of the subtrahend and adding, the theorem follows from
Step 1 of Algorithm 2 and Theorem 1. 3
Theorem 3: The results of Algorithm 3 (multiplication) |
satisfy the hypotheses of Lemma 2 with respect to the real .;
number (e4, f4) X (ev, fu)- ;
Proof: If either operand is zero, the product is zero. In -
Step 2, we test for this condition and produce a zero result if
the condition is satisfied. '
In Step 3, suppose first that both factors are positive. We
align the fractions so the product will have its true radix point -
positioned between the (p + 2)nd and (p + 3)rd digits to the -
left of the right-hand end of the A register. To do this, we
position the radix point of the multiplicand in that position, -
and the radix point of the multiplier immediately to the left
of the high-order digit of the U register.
In Step 4, we multiply; the double-length product will in -
fact have at most 2p significant digits, so in particular the
three low-order digits of X will still be zero. Since we are
using the fractional multiply instruction, we are multiplyinga |
fraction in the range 8"V < f < 8""? by & fraction in
the range ! < f' < 1; the result, then, will be a fraction in
the range 7" < f X f' < g7~ Thus either the fraction is
already normalized, or ore place of left shift will be required

" to normalize it. The exponent of the product is the sum of

the exponents of the factors.

Thus all hypotheses of Lemma 2 are satisfied and the
theorem is proved in this case. If both numbers are not posi-
tive, Step 3 will set S negative if the numbers are of opposite
signs, and positive if they are both of the same sign. Thus S is
the sign of the expected result. The multiplication then pro-
ceeds with the magnitudes of the numbers, and the hypotheses
of Lemma 2 are again satisfied. This completes the proof of -
the theorem.

Theorem 4: 'The results of Algorithm 4 (division) satisfy the
hypotheses of Lemma 2 with respect to the real number
(eq, fa)l(ey, fu) provided fyy # 0. If fiy = 0, Algorithm 4
sets the zero division indicator and produces an out-of-range
result.

Proof: If the divisor is zero, the algorithm sets the zero
divisor indicator and assures that Algorithm S will sense an
overflow condition so that the result produced will be infinity 3
if rounding away from zero is specified. In case the divisor is 3
nonzero but the dividend is zero, Step 2 simply goes to Step 5
since the dividend is the result.

If both divisor and dividend are nonzero, we proceed to
Step 3. Assume first that both are positive. X is cleared to
zero, and the A X register is shifted right m - 2 places so that
the result of the division will be in the correct range.

In Step 4, division takes place. Since the dividend is a frac-
tion in the range =" < £ < 7™ 2 and the divisor is a
fraction in the range §~"™*D < f' < g™, the quotient is a
fraction in the range 87"V < f/f' <$ 3 Thusin partic-
ular we have at least p + 2 significant digits in the quotient, and

3

i
i
i
;
i
{4
k"
i3
13

YOHE: FLOATING-POINT ARITHMETIC ROUNDINGS

the fraction is either normalized or it will become normalized
with one position of right shift. The exponent is set to the ex-
ponent of the dividend minus the exponent of the divisor, and
the remainder is placed in .X. Note that the remainder can have
no more than p significant digits, and since it is placed in the
high-order positions of X, the three low-order digits of X are
zero. Thus the hypotheses of Lemma 2 are satisfied. The argu-
ments for the other cases of the division algorithm are analo-
gous to the corresponding arguments for the multiplication
algorithm; we will not repeat them. This completes the proof
of the theorem. ’

VI. A Priori ERROR ANALYSIS

The standard reference work on a priori error estimates for
floating-point arithmetic is Wilkinson [5]. For multiplication
and division, Wilkinson’s error estimates are as natural as can
be expected; however, in the case of addition (and subtraction)
the realities of computer design make it necessary to produce a
rather unnatural and somewhat intractable error estimate in
order to reflect the true situation. We will see that the
floating-point arithmetic and rounding algorithms presented
here yield a more natural and more tractable error bound for
addition than can be hoped for if the computer produces less
than optimal accuracy.

Throughout this section, we assume that overflow does not
occur during arithmetic operations. Overflow is almost in-
variably fatal to the computation; underflow can often be
tolerated, and calculation can proceed with a zero replacing the
underflowed quantity,
least optionally trigger an error indicator or interrupt so that
it can be detected; the absence of automatic error detection on
underflow can lead to failure to recognize invalid computa-
tional results!) Replacing an undersized result with zero
complicates the error analysis slightly; this was considered by
Schoenfeld in [4] and we present his modifications here.

If # is any of the four arithmetic operations in the real field,
then we will denote the machine approximation to * by *,,.
The constants w, §, and o that appear in the following for-
mulas are determined by the hardware design (see [4]), but
are essentially of the order of 7. The constant ¢ is deter-
mined such that if computer underflow occurs on the opera-
tion X *3; Y then we always have |.X * Y| <. The smallest
normalized floating-point machine number is an upper bound
on t. In each formula, 0 and 8, are constants in the range
-1 <6, 0o <1 that deperd on the operation and the oper-
ands; to keep notation uncluttered, we will not reflect this
dependency.

Schoenfeld’s modification of Wilkinson’s a priori formulas
is as follows:

XXppy=(xXp)(1+0u)+04¢ 6.1

X y=(+p)(1+68)+04 6.2)

Xty y=x(1+0a)+y(1+60'0)+0,¢. (6.3)
These formulas imply that

IxXppy-xXyI<|xXylutt 6.4)

Xy -x+yI<|x+pl§+. (6.5)

(All the same, underflow should at

585

Ix+y y-x+yl<o(ix|+|yD+e (6.6

Typical values for the constants u, &, and « are %61 P,
(8- 1)pP, and 287, depending on the design of the
hardware.

If we are using the floating-point algorithms presented here,
however, we can regard our machine M as being three ma-
chines, known as O, A, V, which perform the roundings O,
A, and V (described in Section II), respectively. For each of
these machines, we have x *5 y = x B y whenever * is one
of the four arithmetic operations. Moreover, we can replace
(6.3) with the formula

xBy=(x+y)(1+0a)+0,¢ 6.3
which implies that
xBHy-x+y|<|x+ylate (6.6")

These estimates are clearly more natural and perhaps more
aesthetically pleasing than (6.3) and (6.6). Moreover, in the
case of rounding to the nearest machine number, we have
u=8 =0 =318 while in the cases of upper and lower bounds,
u=8=a=g7.

In case underflow does not occur, the ¢ term may be

~dropped. Thus, if underflow does not occur, the following

formulas are valid:

x®y=(x*y)(l+687P), -i<o<t (6
xBy=x*y+0|x*y|pP, 0<6<1 (68)
x\Fy=x*y-0|x*y|87, 0<0<1. (69
These formulas imply that
lx*yI(1- 36P)<x®y <lx*yl(1+3p7) (6.10)
x*y<x ANy <x*y+|x*y|pP (6.11)
x*y-|x*y|fP<xWy<x*y. (6.12)

Moreover, it should be noted that whenever the result of any
operation is a machine representable number, then the result
of the operation is exact, (This, unfortunately, is not always
the case with present-day hardware.)

As an extreme example of the improvement in error bounds,
let us consider the case of a machine with a ten-digit fraction,
operating in the decimal number system; let us assume that
a=2107'°, Then, if we have the following addition:

0.1000000000 X 10!

~0.9999999999 X 10°
0.0000000001 X 10° = 0.1000000000 X 107°

(in which the result is exact), the error bound obtained from
(6.6) would tell us that the result is, assuming ¢ < 10739,
0.1000000000 X 10~° + 0.99999999996 X 107'°, or, essen-
tially, that we have no significance left. However, (6.6') says
that the result is 0.1000000000 X 107 + 0.1000000001 X
107, which is a far more optimistic bound on this particular
addition! (Actually, in this particular case, the term does not
apply, but we do not know that g priori.)

It can be argued that these summands are probably inac-
curate in the last decimal place, so that the bound given in

586

(6.6) is more realistic than the bound (6.6'). Perhaps this is
the case; however, that decision should be left to appropriate
error analysis on the summands. The important fact here is
that, using Algorithm 1, the result of the above problem is
computed exactly, and consequently the less uncertainty the
bound reflects, the better it is.

The necessity for such a pessimistic bound as that in (6.6)
can be seen from looking at the preceding example as it might
be computed by a computer that truncated before adding,
as some present-day computers do

0.1000000000 X 10*

~0.09999999999 X 10!
0.0000000001 X 10" = 0.1000000000 X 1078,

Here, of course, we would have o ~ 0.100000000 X 107°
since the machine truncates before adding, and conse-
quently (6.6) yields an estimatz of 0.1000000000 X 107° +
0.19999999999 X 1078; this is not unduly pessimistic. Of
course, (6.6") does not apply to hardware of this design.

VII. APPLICATIONS

We will mention a few of the applications of the roundings
presented here. The rounding O has applications in almost
every computation using floating-point arithmetic. It is this
rounding that we expect to get, and (usually erroneously)
assume we do get, from a piece of equipment costing several
million dollars.

The roundings A and V, while not provided with any pro-
duction computer we know of, also have
applications.

Perhaps the most obvious application of these roundings is in
the implementation of interval arithmetic. Hardware designed
to produce these roundings would render the programming of
an interval arithmetic package nearly trivial, and would enable
interval operations to be executed in one tenth to one fifth of
the time normally required to execute them with simulated
floating-point arithmetic (simulation is usually necessary if we
are to be able to produce the tightest possible bounds). The
formula for addition of two intervals, for example, is

la, 0] + [c,d] = [a+ec,b+d].

If we assume that a, b, ¢, and d are machine representable
numbers and denote the computer approximation to [a, b] +
[c,d] by [a,b] @ {c,d], then the above formula translates
as follows:

(a,6] & [c,d] = [aF c,b A d].

Evaluation of this formula on a computer equipped with
directed rounding takes just twice as long as evaluating the sum
of two floating-point numbers.

An interval arithmetic package for the Univac 1108, using
simulated floating-point arithmetic as described in Section IV,
is detailed in [3].

important .

IEEE TRANSACTIONS ON COMPUTERS, JUNE 197

Another consequence of directed roundings is that upper and
lower bounds for sequences of machine operations are much
more easily and accurately computed, both a priori and dur-
ing computaticn, than is possible with conventional rounding.
This enables one to combine a priori analysis with computa-
tional considerations to produce rigorous bounds for relative
error in evaluation of mathematical functions. In [7], it is
proved that on a binary computer with optimal directed
rounding, the square root of a machine representable number
can be calculated exactly if it is machine representable, and
bracketed by two consecutive machine numbers if it is not
machine representable; this is accomplished without using
interval arithmetic. Similar, although not as tight, bounds - |
are obtained for the cube root. '

REFERENCES

{1] D. E. Knuth, The Art of Computer Programming, vol. 2, Semi-
numerical Algorithms. Reading, Mass.: Addison-Wesley, 1969.

[2] U. Kulisch, *“An axiomatic approach to rounded computations,”
Math. Res. Cen., Univ. Wisconsin, Madison, Tech. Summary
Rep. 1020, Nov. 1969.

[3] T.D. Ladner and J. M. Yohe, “An interval arithmetic package for
the Univac 1108,” Math. Res. Cen., Univ. Wisconsin, Madison,
Tech. Summary Rep. 1055, May 1970.

{41 L. Schoenfeld, “Floating point error estimates,” Math. Res. Cen.,
Univ. Wisconsin, Madison, Tech. Summary Rep. 721, ch. 9, Aug.
1967.

[51 J. H. Wilkinson, Rounding Errors in Algebraic Processes, National
Physical Laboratory Notes on Applied Science, no. 32. London:
HMSO, 1963.

{6] J. M. Yohe, “Best possible floating point arithmetic,” Math. Res.
Cen., Univ. Wisconsin, Madison, Tech. Summary Rep. 1054, Mar.
1970.

[7] —, “Rigorous bounds on computed approximations to square
roots and cube roots,” Math, Res. Cen., Univ. Wisconsin, Madison,
Tech. Summary Rep. 1038, Sept. 1970.

[8] —, “Accurate conversion between number bases,” Math. Res.
Cen., Univ. Wisconsin, Madison, Tech. Summary Rep. 1109, Oct.
1970.

J. Michael Yohe was born in Delaware, Ohio,
on June 8, 1936. He received the B.A. degree
from DePauw University, Greencastle, Ind., in
1957, the M.S. degree from the University of
Wisconsin, Madison, in 1962, and the Ph.D.
degree in mathematics from the same university
in 1967.
i From 1967 to 1968 he was an Assistant Pro-
fessor of Mathematics at the Mathematics Re-
* search Center, University of Wisconsin, and from
1968 to 1969 he was an Assistant Professor of
Mathematics at Pennsylvania State University, University Park. From
1969 to 1971 he was a Project Associate at the Mathematics Research
Center, University of Wisconsin, and since 1971 he has been an Assistant
Director at the Mathematics Research Center. From 1971 to 1972
he was a Lecturer at the University of Wisconsin. His interests lie in the
areas of computer systems programming, computer arithmetic, and
topology of three-dimensional manifolds with emphasis on link theory.
Dr. Yohe is a member of the American Mathematical Society, the
Mathematical Association of America, and the Association for Com-
puting Machinery.

